发电机100定子接地保护

合集下载

100%定子接地保护在发电机上的应用

100%定子接地保护在发电机上的应用
关键 词 :10 定子接 地 保护 0% 发 电机 中性 点 三 次谐 波 中图分类 号 :T 7 文献标 识码 :B 文章 编号 :1 0 7 4 (0 7 5- 0 0-0 M7 2 0 6— 3 5 2 0 )0 0 4 2
1 前 言
由发 电机 三 次 谐 波 电压 元 件 和基 波 零 序 电压
维普资讯
第3 5卷 20 0 7年 l O月






V0 . 5 No 5 13 .
Oc . o t 2 o7
YU NNAN EL C I OW E E TR C P R
1 0 定 子 接 地 保 护在 发 电机 上 的应 用 % 0
目 ,10 前 0 %定子接地保护广泛应用在各种大
型发 电机组上 ,在 云南 电 网大 型 水 轮发 电机 组 和
元件构成的 1 %发电机定子接地保护在 国内外 0 0
已获得 广 泛应 用 。现 场运 行 情 况 表 明 ,基 波 零序
汽轮发 电机组采取不 同的中性点接地方式 ,定子 绕组发生接地故障时故障量表现出不 同的特点。
电压保护适 用于任何 型式 的发 电机 ,装置简单 , 保护性能可靠 ,保护发电机定子绕组范 围的 8 % 5

3 接 地 方 式 与 定 子 接 地保 护 的 配合
3 1 水 轮发 电机 .
9% ( 5 从发 电机 机端开始 ) ,而剩 下 的 5 ~ %
云南 电网大型水轮发 电机 中性点普遍采用经 消弧线圈 ( 欠补偿)接地方式 ,这是 由于随着机 组容量增大 ,三相对地电容也 相应增大 ,单相接 地故障时发电机三相对地 电容 电流 I 可能超过允 c

发电机定子接地现象及处理

发电机定子接地现象及处理

发电机定子接地现象及处理
发电机定子接地是指发电机定子绕组中的一个相位与地之间发生了电气连接。

这种情况下,电流会从相位流向地,导致电路故障,甚至可能对设备和人员造成危害。

因此,发电机定子接地问题需要及时处理。

发电机定子接地的原因主要有以下几种:
1.绝缘老化:发电机定子绕组的绝缘老化会导致绝缘破损,从而引起接地故障。

2.绕组短路:发电机定子绕组中的两个相位之间发生短路,也会导致接地故障。

3.接线错误:发电机定子绕组的接线错误也会导致接地故障。

处理发电机定子接地问题的方法主要有以下几种:
1.检查绝缘:定期检查发电机定子绕组的绝缘情况,及时更换老化的绝缘材料。

2.维护接线:定期检查发电机定子绕组的接线情况,确保接线正确牢固。

3.定期维护:定期对发电机进行维护,检查各项指标是否正常,及时发现和处理问题。

4.安装保护装置:安装合适的保护装置,如接地保护、过电压保护等,可以有效地防止发电机定子接地故障的发生。

总之,发电机定子接地问题需要引起足够的重视,及时处理,以确保发电机的正常运行和设备的安全运行。

发电机定子接地保护动作分析及处理

发电机定子接地保护动作分析及处理

-发输变电-发电机定子接地保护动作分析及处理王立荣(华能福州电厂,350020,福建福州)大型发电机定子绕组采用氢气和水作为冷却介质,水冷的效果是氢冷的50倍。

定子冷 却水必须具有很高的工作可靠性,能确保发电 机长期稳定运行。

冷却水不允许含有机械杂质,其电导率应不大于1-0 'S/cm ⑴,氢离子 浓度指数(pH )为7〜8 ,硬度不大于2'mol/L 。

水中含氧量要尽可能少,否则影响发电机的安全运行。

我厂要求电导率小于2 'S/cm 。

过大的电导率会引起较大的泄漏电流,从而使绝缘引水管老化,还会使定子相间发生闪络。

为达到上述要求,一般采用凝结水或除盐水作为水源,并设有连续运行的树脂型离子交换器系统,2%定冷水经过离子交换器,以保证运行中的水质。

1 现场情况某机组负荷600 MW 运行正常。

由于发电机定冷水电导率偏高(1-4 'S /cm ),根据技术监督要求,在定冷水离子交换器中加入了 1kg 阳树脂,电导率没有下降。

于是,将定冷水离子交换器树脂进行全部更换。

更换后,按照操作规程投入离子交换器。

此时,电导率为1.3 'S/cm 。

离子交换器投运后,电导率开始快速爬升。

4 min 后,主水路电导率达 4.15 'S/cm ,离子交换器出口电导率达10 'S/cm 。

图1定冷水电导率变化曲线发电机定子绝缘下降,达到报警绝缘值20 k#,发变组保护装置发出定子接地保护报警。

发电机定子接地报警波形图如图2所示。

延时3 min 后,发电机定子接地保护动作,其波形图如图3所示。

发电机保护柜显示 “注入式定子接地灵敏信号”报警,以及“注良好的经济和社会效益。

理时间,为企业节约了设备维修成本,取得了图3升降装置现场应用(编辑志 皓)【高压断路器 维修 机械与设备 设计】140■ ■■(2020 -3)-发输变电-图2发电机定子接地报警波形图图3发电机定子接地保护动作波形图入式定子接地保护动作”。

发电机定子接地保护解读

发电机定子接地保护解读

注:1)对氢冷发电机为 2.5。
单相接地故障时的零序电压
U AD

d
EA

U CD

U d 0 E U BD A



U AD (1 ) E A U BD E B E A U CD E C E A

Cf

发电机定子绕组单相接地故障电流允许值

中性点不接地的发电机,当发电机内部单相接地时,接地电容电 流应在规定的允许值之内,如下表所示。大型发电机由于造价昂 贵,结构复杂,检修困难,且容量的增大使得其接地故障电流也 随之增大,为了防止故障电流烧坏铁芯,大型发电机有的装设了 消弧线圈,通过消弧线圈的电感电流与接地电容电流的相互抵消, 把定子单相接地故障电流限制在规定的允许值之内。
S3
N
E3 Cf 2 Cf 2
S
N
E3 Cf 2 Cf 2
S
U N3
Cw
U S3
UN3
3L
Cw
U S3

发电机三次谐波电势和对地电容的等值电路图
3 (3L)( X N3 j 2 ) 3C f 2 3C f
3 (3L)
X N3 j
6 (7C f 2C w )
U S3 7 U N3 9
利用零序电压构成的定子单相接地保护
3U 0 1.0 0.5
U0p
100V

定子绕组单相接地时3U 0 与 的关系曲线
0
0.5
1.0

保护构成原理
装置交流模件
3U0
装置 交流 模件
动作方程: 3U0>3U0g 3U0 ——机端TV开口三角电压或中性点TV(或消弧线圈)二次电压; 3U0g——动作电压整C w 2(C f C w )

例析发电机定子接地保护动作及处理方法

例析发电机定子接地保护动作及处理方法

例析发电机定子接地保护动作及处理方法随着电力事业在我国的飞速发展,一些地区开始呈现出小电网大机组的特征,再加之单机容量的不断增大,使得定子接地保护越来越重要。

一般情况下发电机中性点都采用经高阻抗接地的方式或不接地的方式,如果定子绕组采用单相接地,就可能会导致匝间短路或发电机定子绕组相间,因为发电机电压系统在流过故障点时对地的电容电流而生成的电弧可能会将铁芯灼伤。

1 发电机定子接地保护的要求大型发电机的结构比较复杂,一旦损坏会很难修复,并且大型发电机在整个系统中的地位十分重要,所以需要在大型发电机上安装无动作死区,且灵敏度较高的定子单相接地保护。

针对于主变压器直接连接的大规模的发电机定子单相接地保护的要求是可以查出发电机中性点周围保护范围为100%的接地故障,并且要求还需要可以监测出水内冷发电机中性点附近的绕组绝缘下降,绝缘水平会因为中性点附近的漏水现象而降低,不断的漏水现象还可能导致线棒在相邻线槽中绝缘或者同一线槽的损坏,进而引发相间短路或匝间短路。

出线端附近如果出线接地故障,发电机中性点对地电压的升高会导致靠近中性点的绝缘下降以及发生部分闪络,最终引发两点接地故障和发电机的严重损坏。

在母线上直接联接着的发电机定子绕组如果出线单相接地故障,在忽略消弧线圈的补偿作用并且发电机电压网络的接地电容电流超过5A的时候,应当安装跳闸与动作的接地保护。

然而,如果没有设置安装专门的定子绕组接地保护,那么可以利用与母线电压互感器连接的绝缘监视设备产生信号。

在发电机电压回路三相对地电容电流超过5A 的情况下,应当安装消弧线圈予以补偿,如果三相对地电容电流少于5A的情况下,可以在接地点运行少许时间之后适时移转负荷和停机。

据此我们认为接地电容电流大于5A的情况下,铁芯由于灼伤严重将很难修复;如果接地电容电流少于5A的情况下,铁芯只是被轻微灼伤。

事实上在运行中,定子铁芯可以被允许存在适当的损坏,被熔化铁芯的体积和被熔化的迭片数量和铁芯被灼伤的程度都需要限制在一点的范围内。

两种不同原理的定子接地保护对比分析

两种不同原理的定子接地保护对比分析

两种不同原理的定子接地保护对比分析摘要:阐述了注入式定子接地保护与基波零序电压+三次谐波构成100%定子接地保护的工作原理,对比分析了二者之间的优缺点。

关键词:定子接地保护注入式基波零序电压 100%定子接地保护1引言发电机定子接地是指发电机定子绕组回路及与定子绕组回路直接相连的一次系统发生的单相接地短路。

目前机组中性点接地方式基本采用高阻接地方式,随着机组容量的不断增大,金属性单相接地的电流也不断增大,为了防止接地电流拉弧引起更加严重的短路故障,应配置定子接地保护,快速、准确、可靠的反应定子接地现象。

2原理介绍2.1 注入式定子接地保护注入式定子接地保护通过辅助电源装置将20Hz低频电压加在负载电阻Rn上(以南瑞保护为例,原理图如图1),并通过接地变压器,将低频电压信号注入到发电机定子绕组对地的零序回路中;利用带通滤波器防止50Hz电压倒灌入装置;通过保护装置检测注入的电流电压信号,保护计算判断接地故障。

4 特点比较4.1注入式定子接地保护由于其独特的保护原理,注入式定子接地保护具有以下特点:1)不受发电机运行工况影响,在发电机停运、启停、运行的全过程中,都可以提供灵敏的定子接地保护,可检测定子绝缘的缓慢老化。

2)保护范围不仅包括整个定子绕组,还包括发电机中性点,保护的灵敏度一致,不受接地位置影响。

可以准确测量接地电阻的大小。

3)原理成熟,多个大型机组均采用此保护原理。

4.2 100%定子接地保护1)设备简单,无需配置新的低频电源辅助装置;2)保护原理算法简单,易整定;3)保护无法反应机组中性点接地;5结语通过对比分析两种不同原理的定子接地保护,可以看出注入式定子接地保护具有一定的优越性。

然而,二者又是互补的:根据继电保护“反措”要求,定子接地保护配置完全双重化,两套定子接地保护均采用不同保护原理,对于双重化保护尽量采用不同保护原理的要求。

基波零序电压保护原理和注入式定子接地原理,均可以灵活整定为报警或跳闸,方便相互配合。

发电机定子接地故障及保护

发电机定子接地故障及保护

发电机定子接地故障及保护摘要:本文介绍了发电机定子接地的危害,中性点接地方式,单相接地故障时的基波零序电压,三次谐波电势,并介绍了发电机定子接地保护。

关键词:定子接地零序电压三次谐波保护发电机定子接地是指发电机定子绕组回路与定子绕组回路直接相连的一次系统发生的单相接地短路。

定子接地按接地时间长短可分为瞬时接地、断续接地和永久接地;按接地范围可分为内部接地和外部接地;按接地性质可分为金属性接地、电弧接地和电阻接地;按接地原因可分为真接地和假接地。

1 发电机中性点的接地方式发电机中性点的接地方式与定子单相接地故障电流的大小、定子绕组的过电压、定子接地保护的实现等因素有关,尽管接地方式不同,但均要求单相接地电流尽量小些,动态过电压倍数低些和易于实现高灵敏度的定子接地保护。

我国目前应用的发电机中性点接地方式主要有以下几点。

发电机中性点经消弧线圈接地后,可使接地故障电流减小到安全电流以下(300 MW及上以发电机一般都欠补偿到1 A以下),从而有效地防止了接地故障发展成相间或匝间短路,使故障点电弧存在时间大为缩短,特别是在补偿良好时更是如此。

这对构成无死区的100%定子接地保护非常有益。

2 正常运行和单相接地故障时的基波零序电压2.1 正常运行时当发电机中性点没有消弧线圈时,即使三相电势完全对称相等,由于发电机电压系统三相对地电容不完全相等,中性点也有一定的不平衡电压存在。

当中性点接有消弧线圈(欠补偿)时,为降低定子接地保护零序电压的动作值,可适当改变串联电阻,使一般中性点的不平衡电压可降到规定值以内。

2.2 单相接地时对于金属性接地,假设三相电源电势和三相对地电容完全对称,并设故障点位于定子绕组A相距中性点处。

当在机端接地时,=1.0,U0=EX;当在中性点接地时,=0,U0=0。

当故障发生在定子绕组任一相的任一点时,零序电压U0=EX,U0与成线性关系。

3 发电机三次谐波电势的分布特点由于发电机气隙磁通密度的非正弦分布和铁磁饱和影响,在定子绕组中感应的电势除基波分量外,还含高次谐波分量。

发电机定子接地保护原理及应用

发电机定子接地保护原理及应用

发电机定子接地保护原理及应用摘要:发电机作为电力系统最重要的运行设备之一,保证发电机的安全稳定运行是电力系统继电保护的最重要的任务。

发电机定子接地保护,作为发电机保护中相当重要的一员,应该引起我们继电保护人员的足够重视。

本文详细分析了目前国内常见的几种发电机定子接地保护原理,在实际生产运行中,应根据系统接线及运行方式,决定保护接线,选择合适的定值整定和跳闸方式以及发信方式,保证发电机组安全稳定运行。

关键词:发电机定子接地原理应用正文:发电机是电力系统中最重要的设备之一,根据安全的要求,发电机的外壳是接地的,因此,定子绕组因绝缘破坏而引起的单相接地故障比较普遍。

发生定子单相接地后,接地电流经故障点、三相对地电容、三相定子绕组而构成通路,当接地电流比较大,能在故障点引起电弧时,将使绕组和定子铁芯烧坏,并且也容易发展成危害更大的定子绕组相间或匝间短路,因此,应装设发电机定子绕组单相接地保护。

目前,发电机定子接地保护已经有很多不同的保护原理,包括利用零序电流构成的定子接地保护,利用基波零序电压构成的定子接地保护,利用基波零序电压和三次谐波电压构成的100%定子接地保护,以及利用附加电源构成100%的定子接地保护,本文将一一介绍各个保护的保护原理。

发电机定子单相接地的特点首先,我们先来了解一下发电机发生单相接地故障时,发电机两侧的故障电压故障电流的分布情况。

现代的发电机,其中性点一般为不接地或经消弧线圈接地(或者通过接地变压器接地)的,因此,当发电机内部单相接地时,流经接地点的电流仍为发电机所在电压网络(即与发电机直接电联系的各元件)对地电容电流之和,而不同之处在于故障点的零序电压将随发电机内部接地点的位置而改变。

如图1(a)所示,假设A相接地发生在定子绕组距中性点a处,a表示出中性点到故障点的绕组占全部绕组的百分数,故障点各相电动势为,,,则发电机中性点电位将发生位移,产生零序电压,如图1(b)。

图中,C0G为发电机每相的对地电容,C01为发电机意外电压网络每相对地的等效电容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电机100%定子接地保护
发电机定子单相接地后,接地电流经故障点、三相对地电容、三相定子绕组而构成通路。

当接地电流较大能在故障点引起电弧时,将使定子绕组的绝缘和定子铁芯烧坏,也容易发展成危害更大的定子绕组相间或匝间短路。

第一部分是基波零序电压式定子接地保护:
保护接入的3Uo电压,取自发电机机端电压互感器开口三角绕组两端和发电机中性点单相电压互感器的二次。

零序电压式定子接地保护的交流输入回路如图1所示。

第二部分是利用发电机三次谐波电动势构成的定子接地保护
由于发电机气隙磁通密度的非正旋分布和受铁芯饱和的影响,其定子中的感应电动势除基波外,还含有三、五、七次等高次谐波。

因为三次谐波具有零序分量的性质,在线电动势中它们虽然不存在,但在相电动势中亦然存在。

正常运行时,发电机中性点的三次谐波电压总是大于发电机机端的三次谐波电压。

而当发电机靠中性点侧0~50%范围内有接地故障时,发电机机端的三次谐波电压大于发电机中性点的三次谐波电压。

根据发电机定子绕组中性点附近接地故障的三次谐波分布特性,保护装置取发电机中性点及机端三次谐波电压,并对其进行大小和相位的矢量比较。

三次谐波定子接地保护交流接入回路如图6所示。

该保护的动作逻辑图如图7所示。

发电机启停机和误上电保护
1、300MW及以上发电机组,一般都要装设误上电保护,以防止发电机起停机时的误操作。

当发电机盘车或转子静止时发生误合闸操作,定子的电流(正序电流)在气隙产生的旋转磁场会在转子本体中感应工频或接近工频的电流,会引起转子过热而损失。

误上电保护原理是将误上电分成两个阶段。

以开机为例,第一阶段:从开机到合磁场开关。

在这期间,由于无励磁,发电机不可能进行并网操作,因此要求发电机断路器合闸和定子有电流,则必然为误上电,瞬时跳闸;第二阶段:从合磁场开关到并网。

在这期间,用阻抗元件来区分并网和误上电,误上电一般可做到0.5s内跳闸,并且误上电情况越严重,跳闸也越快。

误上电保护在发电机并网后自动退出运行,解列后自动投入运行。

保护引入发电机三相电流和主变高压侧或者发电机侧两相电流和两相电压
2、误上电保护:发电机盘车时,未加励磁,断路器误合,造成发电机异步起动。

(2)发电机起停过程中,已加励磁,但频率低于一定值,断路器误合。

3)发电机起停过程中,已加励磁,但频率大于一定值,断路器误合或非同期。

启停机保护: 发电机启动或停机过程中,配置反应相间故障的保护和定子接地故障的保护。

由于发电机启动或停机过程中,定子电压频率很低,因此保护采用了不受频率影响的算法,保证了启停机过程中对发电机的保护。

以上的启停机保护的投入可经低频元件闭锁,也可经断路器位置辅助接点闭锁。

发电机起停过程中,已加励磁,但频率大于定值,断路器误合或非同期。

采用断路器位置接点,经控制字可以投退。

判据延时0.2s投入(考虑断路器分闸时间),延时t1退出其时间应保证跳闸过程的完成。

当发电机非同期合闸时,如果发电机断路器两侧电势相差180°附近,非同期合闸电流太大,跳闸易造成断路器损坏,此时闭锁跳断路器出口,先跳灭磁开关,当断路器电流小于定值时再动作于跳出口开关。

发电机起停过程中,已加励磁,但频率低于定值,断路器误合。

采用低频判据延时0.2s投入,频率判据延时t1返回,其时间应保证跳闸过程的完成。

1、启停机保护;
有些情况下,由于操作上的失误或其它原因使发电机在启动或停机过程中有励磁电流,而此时发电机正好存在短路或其它故障,由于此时发电机的频率低,许多保护继电器的动作特性受频率影响较大,在这样低的频率下,不能正确工作,有的灵敏度大大降低,有的则根本不能动作。

鉴于上述情况,对于在低转速下可能加励磁电压的发电机通常要装设反应定子接地故障和反应相间短路故障的保护装置。

这种保护,一般称为启停机保护。

现在一些微机保护装置都有频率自适应(跟踪)功能,保证偏离工频时,特别在发电机在开停机过程(5~65HZ),不影响保护的灵敏度。

因此没有必要再装设启停机保护,海盐力源引进美国GE公司的G60微机保护正是如此。

2、误上电保护(盘车状态下误合闸)
发电机在盘车过程中,由于出口开关误合闸,突然加上三相电压,而使发电机异步启动的情况,在国外曾多次出现过,它能在几秒钟内给机组造成损伤。

盘车中的发电机突然加电压后,电抗接近Xd'',并在启动过程中基本上不变。

计及升压变压器的电抗Xd和系统联接电抗Xs,并且在较小时,流过发电机定绕组的电流可达3~4倍额定值,定子电流所建立的旋转磁场,将在转子中产生差频电流,如果不及时切除电源,流过电流的持续时间过长,则在转子上产生的热效应I22t将超过允许值,引起转子过热而遭到损坏。

此外,突然加速,还可能因润滑油压低而使轴瓦遭受损坏。

因此,对这种突然加电压的异常运行状况,应当有相应的保护装置,以迅速切除电源。

对于这种工况,逆功率保护、失磁保护、机端全阻抗保护也能反应,但由于需要设置无延时元件;盘车状态,电压互感器和电流互感器都已退出,限制了其兼作突加电压保护的使用。

一般来说,设置专用的误合闸保护比较好,不易出现差错,维护方便。

误上电保护实现的原理多种多样,其原理大同小异,主要区别在于发电机停机状态的鉴别元件,有的用低频元件,有的用低电压元件,均辅以开关的辅助触点。

3、突加电压保护
下面仅介绍GE公司G60保护(以低电压元件作为停机鉴别元件)的突加电压保护逻辑。

该保护主要用于保护发电机在盘车或减速时发生误合闸,还可以用来作为“同期失败”保护。

低压元件和发电机离线状态的逻辑配合有“与”和“或”的逻辑可供选择(由控制字“UV or Offline”选择)。

当选择“或”逻辑时,同期失败保护投入。

相关文档
最新文档