热电联产分析

合集下载

热电联成本分析-30kw

热电联成本分析-30kw

北京皓海实创国际商贸有限公司热电联产经济成本分析1.单价:目前天然气的热值范围:38250~44570KJ/m³;微燃机C30每千瓦电能需要的天然气热值:13800 KJ;发30kW电所需要的总热值为:13800×30=414000 KJ;每小时所需要的天然气为:414000 KJ/38250~44570KJ/m³=10.82~9.29m³;每小时天然气的价钱(按2元计算):10.82~9.29m³×2.0元=21.65~18.58元;微燃机发每度电的单价成本:21.65~18.58元/30度=0.72~0.62元/度(平均0.67)2.热水的单价:燃气轮机热交换器的交换能量为:129kWh(27~39℃=12℃)流量:4.42/sX3600s=15912l假如我们还是按照这个算:27~59℃=32℃温差为12的2.3倍,相应制热水量减少2.3倍15912/2.3=6918l加上我们再减去管线的散热消耗一部分能量。

10-25%左右。

每小时产生的热水量6.918升×75%=5.19m³每立方米的水的价钱为:21.65~18.58元-30×0.67=1.53元~-1.08元;1.53/5.19=0.3元/m³按照最贵的热水的成本:3.9+0.3=4.2元,现在热水价钱:12元,每吨赚7.8元,3.成本计算每小时的消耗天然气:21.65~18.58元水钱:3.9×5.19=20.24元总消费:31.06~29.52元每小时电收益:0.67×30=20.11每小时热水收益:12×5.19=62.26元总收益:82.38元净收益:51.32~52.85元每天工作12小时收益:615.81~634.22元一年收益:615.81~634.22×365=224769~231492元如果按照夏天计算:夏天热水会更多一些,收益能够达到18万到20万左右。

热电联产报告

热电联产报告

热电联产报告
一、概述
热电联产是同时生产电力和热能的一种高效能源利用方式。

本报告将会对我公司的热电联产情况进行分析和总结,并提出改善建议。

二、热电联产现状
我公司采用天然气作为燃料,通过燃气轮机和余热锅炉发电和供热。

具体情况如下:
1. 发电能力:100MW
2. 热能产出:
宿舍区供热能力:50万平方米
工业区供热能力:80万平方米
3. 降低温室气体排放:每年可减少二氧化碳排放约60万吨
4. 安全生产:自开展热电联产以来,未发生任何重大安全事故。

三、热电联产优势
1. 高效能源利用:热电联产使热能不再浪费,提高了能源利用
效率,降低了能源消耗成本。

2. 减排节能:热电联产不仅节能环保,而且能减少大气污染和
温室气体排放。

3. 兼顾环保效益和经济效益:热电联产利用清洁能源,使环境
不受污染,同时也能为企业提供经济效益。

四、建议
虽然我们在热电联产方面的现状是不错的,但是为了更好地充
分利用清洁能源,我们提出了以下建议:
1. 更新设备,提高效率。

2. 与周边的企业进行合作,实现能源共享。

3. 开展热网升级改造,进一步提高能源利用率。

4. 发展新能源,如风能、光能等,实现能源多元化。

五、结论
通过对我公司的热电联产情况进行分析,我们可以看到这种利
用方式的巨大优势。

同时,我们需要意识到改进和发展的必要性,以在未来更好地面对能源和环境等方面的挑战。

在这方面,我们
将继续努力提高效率,为企业带来更大的经济效益和社会效益。

热电联产系统技术经济分析

热电联产系统技术经济分析

热电联产系统技术经济分析本文简要介绍了热电联产生产的技术方案,并结合北京某燃气—蒸汽联合循环热电联产机组数据,分析经济运行的重点。

标签:热电联产;技术;经济运行0 引言在能源供应结构中,煤、天然气属于一次能源,而热、电属于二次能源。

热电联产,即为既生产电能又对用户供热的生产方式,这种发电厂称为热电厂。

在所有供热形式中,热电联产的能源利用效率是最高的。

1 热电联产系统的技术优势一套火力发电机组包括锅炉、蒸汽轮机、发电机等主要设备,燃料在锅炉中燃烧,将水加热成高温、高压的过热蒸汽,蒸汽在汽轮机中做功带动发电机发电,形成化学能向电能的转变。

从汽轮机排出失去做功能力的低压蒸汽,必须通过凝汽器散热凝结为水后才能回到锅炉中重新循环,称为“纯凝式汽轮机”。

由于排气被冷却的过程是热量散失的过程,系统热效率并不高,仅有不到45%的燃料热能被转化为电能。

单纯的凝汽式汽轮发电机组只生产电能,并不具备供热的功能,其他型式的汽轮机才具备热电联产功能。

1.1 背压式汽轮机背压式汽轮机,即排汽压力高于大气压力的汽轮机。

与凝汽式汽轮机相区别的是,将从汽轮机发电做功后的蒸汽压力保持在大气压力以上,可以通过管道直接输送给工业蒸汽用户使用,或者通过加热器加热热水,以热水作为媒介向外供热,汽轮机组就具备了热电联产的功能。

由于热量绝大部分被热用户利用,不存在凝结散热损失,所以背压机的热效率较高,一般能达到70%~85%。

主要缺点是发电量取决于供热量,不能同时满足热用户和电用户的需要,多用于热负荷稳定的热电厂。

1.2 抽汽凝汽式汽轮机抽汽凝汽式汽轮机是从汽轮机中间抽出一部分已经做过功、具有适合压力的蒸汽供给热用户,其余蒸汽进入低压部分继续膨胀做功,最后排入凝汽器的汽轮机。

抽汽压力根据热用户需要确定,发电功率为高、低压部分所生产功率之和,由进汽量和流经低压部分蒸汽量所决定。

抽汽凝汽式汽轮机可同时满足热、电负荷需要,在供热抽汽量为零时相当于一台凝汽式汽轮机,若将进入高压缸的蒸汽全部抽出供给热用户,则相当于一台背压式汽轮机,适用于负荷变化幅度较大的区域性热电厂中。

第三章热电联产分析

第三章热电联产分析

3.2 热电联产的基本形式(续)
燃气-蒸汽联合循环热电联供应用的作用: 1.提高城市居民生活品质。 2.天然气管线调峰。 3.热力调峰。 4.电力调峰。 燃气—蒸汽联合循环热电厂是典型的能量梯级利用装置,具有很高的热效率,可 达70%~85%左右,接近燃气锅炉。提高能源利用率,不但节约了燃料成本,更重要的 是在人口稠密地区少用能源,间接的减少了污染。 燃气—蒸汽联合循环供热系统的规划建设必须考虑城市的天然气的供应、供热经 济范围等方面,同时兼顾燃气轮机、供热设备效率及投资等。从目前我国城市的建设 考虑,一般认为燃气—蒸汽联合循环供热系统发电功率为40~70MW,供热面积为 100~200万m2的小区最为合适。
3.2 热电联产的基本形式(续)
5 25.0% 24.5% 7.5
图 3-5 内燃机联产系统能量平衡图
3.2 热电联产的基本形式(续)
不同的热电联产方式性能参数见表3-2。
表3-2 不同热电联产方式性能参数
热电联产方式 背压式蒸汽轮机 抽汽冷凝式蒸汽轮机 燃气轮机 燃汽轮机联合循环 内燃机 热电比,kW/kW 4.0~14.3 2.0~10.0 1.3~2.0 1.0~1.7 1.1~2.5 发电效率,% 14~28 22~40 24~35 34~40 33~53 热效率,% 84~92 60~80 70~85 69~83 75~85
图3-1国产200MW凝汽-采暖两用机示意图
3.2 热电联产的基本形式(续)
四、低真空供热的凝汽机组 该机组在冬季采暖期时,提高机组背压,用循环水供热。由于提高了排汽压力也会 使电功率减少。
3.2.2燃气轮机热电联产
燃气轮机热电联产系统是利用燃气轮机的排气提供热能,来对外界供热或制冷, 其系统图见图3-2。燃气轮机的排气在余热锅炉中加热水,产生的蒸汽直接作为生产 用汽或居民生活供热。 燃气—蒸汽联合循环热电联产,将余热锅炉产生的高温、高压蒸汽在供热式汽轮 机中做功发电,压力降到0.8~1.2MPa左右的蒸汽作工艺用热和生活用热,也可以将 余热锅炉设计成双压式,低压蒸汽主要用作供热。 燃气—蒸汽联合循环被用于热电联产目的时,它可以分为几大类型,即: ① 向工厂提供工业用汽的工业动力站; ② 向工厂提供工业用汽和热水的热电站; ③ 向地区供热系统提供热能的热电站; ④ 与海水淡化设备配套的动力装置。

太阳能光伏热电联产系统的性能分析

太阳能光伏热电联产系统的性能分析

太阳能光伏热电联产系统的性能分析第一章引言随着环境污染和化石燃料资源的逐渐枯竭,寻找清洁能源已经成为全球关注的热门话题。

太阳能光伏热电联产系统技术就是应对这一问题的重要手段。

本文旨在对该技术进行性能分析,为其在实际应用中发挥更好的效果提供参考。

第二章太阳能光伏热电联产系统概述太阳能光伏热电联产系统是指在光伏发电的同时,收集太阳能热能进行多能源联产的一种系统。

其主要由光伏组件、热能收集和转换系统、多能转换装置、风冷设备和控制系统等组成。

太阳能光伏热电联产系统的主要优点在于可以同时收获光伏和热能,提高能效,减轻对环境的影响。

此外,该系统还具有良好的自适应性能,在不同地域和环境条件下都能够有效运行。

第三章性能分析指标性能分析是评价太阳能光伏热电联产系统运行效果的关键。

下面介绍几个常用的性能指标。

1.发电能力发电能力是指光伏组件在单位时间内发电的电量,通常以千瓦时/平方米(kWh/m2)为单位。

评估光伏组件发电能力时需要考虑大气状况和组件的位置、角度等因素。

2.热能收集效率热能收集效率是指太阳能热能被利用的效率,通常以%表示。

评估热能收集效率时需要考虑太阳辐射、热导率等因素。

3.总能量转换效率总能量转换效率是指太阳能转化为电能和热能的总效率,通常以%表示。

4.系统运行稳定性系统运行稳定性是指太阳能光伏热电联产系统在运行中的稳定性能,包括系统的容错能力、适应性能和鲁棒性。

第四章性能分析方法太阳能光伏热电联产系统的性能分析需要结合实际情况进行。

下面介绍一些常用的分析方法。

1.模拟分析模拟分析是指利用计算机模拟系统在不同环境下的运行情况。

通过建立系统的数学模型,可以预测系统在不同环境下的性能表现,如发电能力、热能收集效率等方面。

2.实测分析实测分析是指通过现场实测系统的运行情况,来评估系统的性能表现。

通过实测可以了解到系统在实际工作中的运行情况,提高分析的准确性。

3.比较分析比较分析是指将太阳能光伏热电联产系统与其他系统进行比较,从而评估其性能表现。

热电联产供热热源调峰技术分析

热电联产供热热源调峰技术分析

11
Tianjin University
国内研究现状
北京建筑工程学院的张迪以网络图论为基础理论建立管网拓扑结构, 来解决多热源联网时环状管网的水力及热力平衡计算问题。通过对几种 不同热源形式的模拟计算,分析了不同热源形式对热网各用户的影响, 调峰热源的启停以及热源的不同调度都将会引起系统工况的变化,因此 应合理设计供热系统结构,并根据热源的特点合理地分配热源之间的负 荷,使供热系统处于最佳运行工况,达到高效节能的运行。
河北工业大学的孙春华,齐承英等以供热系统全寿命周期内经济费 用年值和社会成本费用年值最小为目标,对某一单热源供热系统燃气调 峰热源的设置进行了优化,得出了与调峰热源特性相匹配的最佳基础热 源容量和调峰运行时间。分析出设置燃气调峰热源具有良好的经济效益、 环保效益和社会效益。 天津大学郑雪晶以运行能耗费用经济为目标,建立了单变量有约束 非线性数学模型,以实际供热系统为例,确定了计算最佳基础负荷比例、 燃气调峰锅炉的最佳启动温度及调峰运行时间的方法。

实现简单有效的调节 应以供暖负荷为主的调节方法或以供暖、生活热水供应负荷为主的综合调节 方法为依据,辅以局部量调。 多热源的联合运行,必须要在供热量、循环流量平衡的基础上,制定最佳运 行方案。这是一个比较复杂的寻优过程,得到最佳值比较困难。
Tianjin University
国内研究现状
关njin University
参考文献
[1] 马琳.我国多热源大型供热管网的研究现状.长安大学,2010 [2] 张迪.带有调峰热源的集中供热系统的热力工况研究.北京建筑工程学 院,2010.1 [3] 秦绪忠,江亿.多热源并网供热的水力优化调度研究.清华大学,2000 [4] 张群力.集中供热系统不同调峰供热方式的技术经济性分析.北京建筑 工程学院,2012 [5] 孙春华等.单热源供热系统燃气调峰热源设置的优化分析.河北工业大 学,2010 [6] 黄娇等.集中锅炉房调峰供暖系统的分析.北京建筑工程学院,2008 [7] 陈朋.多热源联网供热的运行调节.大庆石油学院,2009 [8] 赵岩.多热源联网供热运行调节技术研究.东北石油大学,2011

热电联产成本分析

热电联产成本分析

热电联产成本分析提要热电联产是根据能源梯级利用的原理,将一次能源燃烧后,既生产电能也可以对用户供热,可以节约能源,改善环境,在我国具有非常重要的作用。

本文分析了热电联产的几个主要流程,剖析其成本项目,再综合考虑热电联产的热电分摊计算,对热电联产的成本进行研究,为热电联产的定价提供参考依据。

关键词:热电联产;成本;热电比中图分类号:F27文献标识码:A中国是一个能源生产和消费大国,一次能源的生产居世界第二位,但人均能源占有量仅为世界人均能源占有量的45%左右。

同时,中国的能源利用效率也很低,目前仅为33%,与发达国家的能源利用效率相比存在较大的差距。

电力行业是国民经济的支柱行业,同时也是能源消费量巨大的行业,仅煤炭消费量就占我国煤炭消费总量的50%以上。

因此,提高电力行业的能源利用效率,将会在很大程度上改善我国的一次能源利用效率。

热电联产,是根据能源梯级利用的原理,将一次能源燃烧后,既生产电能,又利用在汽轮发电机中作过功的蒸汽对用户供热的生产方式。

热电联产的蒸汽没有冷源损失,所以能将热效率提高到85%,比大型凝汽式机组(热效率40%)还要高很多。

热电联产不仅可以大量节约能源,而且可以改善环境条件,提高居民生活水平,缓解供电紧张局面。

近年来,随着我国电力市场的逐步开放,“厂网分开,竞价上网”政策全面推行,绝大多数发电企业都要通过竞价的方式才能将电能输送到电网中,而竞价的基础就是要做好成本分析,成本决定了企业的竞价,也决定了企业未来的发展趋势。

一、热电联产的工作流程热电联产是一个复杂的系统,简单来说主要包括了四大流程:燃料煤的流程、空气及燃气流程、水及蒸汽流程和电气系统流程。

1、燃料煤的流程。

自煤场送至原料煤斗后,经过输煤皮带,由给煤器控制给煤量。

进入锅炉之前在磨煤机或碎煤机内被磨成煤粉,与一部分热空气混合,经燃烧器进入炉膛中,燃烧后的烟道气流经锅炉—省煤器—空气预热器等热交换器将热量传给其中的水或空气,最后从烟囱排到大气中去。

热电联产可行性研究报告

热电联产可行性研究报告

热电联产可行性研究报告一、热电联产技术概述热电联产技术是指通过一台设备同时生产电力和热能的技术。

热电联产技术可以分为内部燃烧机热电联产、外部燃烧机热电联产、燃气轮机废热联发、燃气轮机废热供热和废热发电等几种类型。

这些技术都是通过利用余热或废热来生产热能,提高能源利用效率,减少对环境的影响。

二、热电联产的经济性分析1. 成本分析:热电联产系统的建设成本包括设备购置费、安装费用、运行维护费用等。

与传统的单一能源生产系统相比,热电联产系统需要投入更多的资金,但由于能源利用效率提高,长期运行下来可以节省大量能源成本。

2. 收益分析:热电联产系统可以实现热能和电能的双重收益,同时还可以通过余电上网和余热供热等方式获得额外收入。

随着能源需求的增加和电力市场的发展,热电联产系统的收益也会逐渐增加。

3. 投资回收期分析:热电联产系统的投资回收期通常在5-10年左右,具体取决于项目的规模、技术成熟度、运行效率等因素。

在目前的能源环境下,热电联产系统的投资回收期一般都在可接受的范围内。

三、热电联产的环境效益分析1. 减少二氧化碳排放:热电联产系统通过提高能源利用效率,减少二氧化碳的排放量,对环境保护具有显著的作用。

尤其是在大气污染日益严重的情况下,热电联产系统可以有效缓解环境污染问题。

2. 节约资源:热电联产系统可以充分利用余热和废热资源,有效节约能源资源的开采和使用成本。

在资源短缺的情况下,热电联产系统的环保效益尤为重要。

3. 促进清洁能源发展:热电联产系统属于清洁能源利用方式,可以为清洁能源产业的发展提供技术支持和市场需求,促进清洁能源的普及和推广。

四、热电联产的社会效益分析1. 提高能源供应保障:热电联产系统可以提高能源供应的可靠性和稳定性,减少能源供应中断的风险,对社会经济的发展和民生需求保障具有积极作用。

2. 促进城市发展:热电联产系统可以为城市提供清洁、高效的能源供应方式,促进城市的经济发展和生态环境改善,提高城市的综合竞争力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃气—蒸汽联合循环热电联产,将余热锅炉产生的高温、高压蒸汽在供热式汽轮 机中做功发电,压力降到0.8~1.2MPa左右的蒸汽作工艺用热和生活用热,也可以将 余热锅炉设计成双压式,低压蒸汽主要用作供热。 燃气—蒸汽联合循环被用于热电联产目的时,它可以分为几大类型,即: ① 向工厂提供工业用汽的工业动力站; ② 向工厂提供工业用汽和热水的热电站; ③ 向地区供热系统提供热能的热电站;
第三章 热电联产
3.1 热电联产的意义
电能和热能联合生产称为热电联产 ,如利用汽轮机中作过功的蒸汽对外供热,它 是将燃料的化学能转化为高品位的热能用以发电,同时将已经在汽轮机中作了部分功 (即发了电或热化发电)后的低品位热能,对外供热。电能是在供热的基础上进行生 产的。
热电联合能量生产符合按质利用热能原则,达到了“热尽其用”之目的 。 实现热电联产必须具备的基本条件是: 1、有热用户,而且要保证热用户所需要的参数(压力和温度)和流量; 2、在供热的同时还要保证必须数量的电能。
14-发电机 15-背压式蒸汽轮机
图3-3 供给工业用汽的热电联产的联合循环
3.2 热电联产的基本形式(续)
表3-1 联合循环热电联产的主要技术参数
燃料 燃气轮机功率 背压式汽轮机功率 厂用电率 机组净功率输出 燃气轮机输入热能(LHV) 余热锅炉补燃输入热能 工业用汽流量 工业用汽压力 工业用汽热功率 燃料的利用率 功率系数 发电效率
最小凝气流量,以保证低压缸有通风冷却蒸汽。③凝汽汽流存在着节流损失,凝汽流 的绝对内效率比同参数的凝汽机组低 。 三、凝汽采暖两用机组(简称两用机)
该机组在采暖期供热,在非采暖期或暂无热负荷时仍以凝汽机组运行。 两用机的特点是:①它的高压缸通流容积是按凝汽流设计,当抽汽供热时,电功 率减少。②由于在导汽管上蝶阀压损的影响,在非采暖期虽为凝汽机组,热经济性仍 会下降约0.1%~0.5%。③在抽汽运行时具有抽汽式汽轮机的特点,但它的设计、制 造简单,成本低 。
进行热电联产的主要优点有: 1.节约能源 2.减轻大气污染,改善环境 3.提高供热质量,改善劳动条件 4.其它经济效益
3.2 热电联产的基本形式
根据热电联产所用的能源及热力原动机型式的不同,热电联产可以分为下列几种 基本形式:蒸汽轮机热电联产、燃气轮机热电联产、核电热电联产、内燃机热电联产。
3.2.1蒸汽轮机热电联产
④ 与海水淡化设备配套的动力装置。
3.2 热电联产的基本形式(续)
电能
燃料空气
废热150摄氏度 排烟500摄氏度
蒸汽
水 锅炉
发电机 气轮机
图 3-2 燃气轮机热电联产系统图
3.2 热电联产的基本形式(续)
在燃气—蒸汽联合循环型的热电联产机组中,燃气轮机的作功能量占主导地位, 因而功率系数(机组的供电量与供热量的比值)比较高,这种类型的热电联产机组比较 适宜于在相对需要较多电能的场合使用,蒸汽循环中所用的供热式汽轮机为供热式汽 轮机,可以是背压式或抽汽式。
图3-1国产200MW凝汽-采暖两用机示意图
3.2 热电联产的基本形式(续)
四、低真空供热的凝汽机组 该机组在冬季采暖期时,提高机组背压,用循环水供热。由于提高了排汽压力也会
使电功率减少。
3.2.2燃气轮机热电联产
燃气轮机热电联产系统是利用燃气轮机的排气提供热能,来对外界供热或制冷, 其系统图见图3-2。燃气轮机的排气在余热锅炉中加热水,产生的蒸汽直接作为生产 用汽或居民生活供热。
在运行中,如果热负荷不足,可以在余热锅炉中补燃 ;如果要提高整个联产系统 的发电量,则可以采用注蒸汽的方式(将余热锅炉中产生的部分蒸汽回注到燃气轮机 的燃烧室 ),就能摆脱常规的热电联产机组中“以热定电”的负荷调节模式 。
燃气轮机联产系统的主要特点是启动块、运行灵活。目前的发展方向是降低成本、 进一步减少环境污染。
蒸汽轮机热电联产是联产集中供热的最主要形式 。对外同时供热和发电的蒸汽轮 机称为供热式汽轮机,装有供热式汽轮机的发电厂称为热电厂。
供热式汽轮机的型式有:背压式汽轮机、抽汽式汽轮机、凝汽采暖两用机、低真 空供热的凝汽机组。 一、背压式汽轮机(B型,CB型)
背压式汽轮机利用排汽向外供热,热用户作为它的冷源,其优点是热能利用率高, 结构简单,不需要凝汽器,投资省。但它的运行特点是:按“以热定电”的运行方式, 热和电不能独立调节;另外背压高,整机的焓降小,偏离设计工况时,机组的相对热 效率ηri显著下降。一般必须有稳定可靠的热负荷时才采用背压式汽轮机。
抽汽背压式汽轮机,即CB型,其特点是在背压排汽供热的同时,还有一级较高压 力的调节抽汽供热。
3.2 热电联产的基本形式(续)
二、抽汽式汽轮机(C型,CC型) C型表示汽轮机带有一级调整抽汽:抽汽可供工业用汽,压力调整范围一般为 0.78~
1.23MPa;可供采暖用汽,压力调整范围一般为0.118~0.245MPa。 抽汽式汽轮机的特点是:①热电负荷可独立调节,运行灵活。②抽汽式汽轮机有
图3-3中给出了一个供给工业用汽的联合循环热电联产的实例 。该热电联产联合循 环的主要技术参数如表3-1所示。
3.2 热电联产的基本形式(续)
MPa
MPa
MPa MPa
MPa/525
1-发电机 2-压气机 3-燃烧室 4-燃气透平 5-烟气旁通阀 6-余热锅炉的补燃室 7-余热锅炉 8-汽包 9-水泵 10-除氧器 11-给水泵 12-蒸汽用户 13-蒸汽旁路阀
总能量转换效率
天然气 69.1MW 44.7MW 1.23 112.4MW 230.0MW 79.6MW 65.3kg/s 0.35MPa 152MW 85.4% 0.74 36.8%
79.9%
3.2 热电联产的基本形式(续)
燃气-蒸汽联合循环热电联供应用的作用: 1.提高城市居民生活品质。 2.天然气管线调峰。 3.热力调峰。 4.电力调峰。
燃气—蒸汽联合循环热电厂是典型的能量梯级利用装置,具有很高的热效率,可 达70%~85%左右,接近燃气锅炉。提高能源利用率,不但节约了燃料成本,更重要的 是在人口稠密地区少用能源,间接的减少了污染。
燃气—蒸汽联合循环供热系统的规划建设必须考虑城市的天然气的供应、供热经 济范围等方面,同时兼顾燃气轮机、供热设备效率及投资等。从目前我国城市的建设 考虑,一般认为燃气—蒸汽联合循环供热系统发电功率为40~70MW,供热面积为 100~200万m2的小区最为合适。
相关文档
最新文档