第二章 传输线理论

合集下载

第2章传输线理论

第2章传输线理论

j z
1 2Z0
(U1
I1Z0 )e
j z
(2―2―14)
同样可以写成三角函数表达式
U (z)
U1 cos z
jZ0
sin z
I
(
z)
j
U1 Z0
sin
z
I1
cos
z
(2―2―15)
第2章 传输线理论
三、入射波和反射波的叠加 由式(2―2―5)和式(2―2―6)两式可以看出,传输线 上任意位置的复数电压和电流均有两部分组成,即有
U (z)
A1e j z
A2e j z
Ui(z) Ur(z)
I
(z)ຫໍສະໝຸດ 1 Z0A1e j z
1 Z0
A2e j z
Ii(z)
Ir(z)
(2―2―16)
第2章 传输线理论
根据复数值与瞬时值的关系,并假设A1、A2为实数, 则沿线电压的瞬时值为
u(z,t) Re[U (Z )e ji ] A1 cos(t z) A2 cos(t z)
式中v0为光速。由此可见,双线和同轴线上行波电
压和行波电流的相速度等于传输线周围介质中的光速,
它和频率无关,只决定周围介质特性参量ε,这种波称为
无色散波。
第2章 传输线理论
(三) 相波长λp
相波长λp是指同一个时刻传输线上电磁波的相位相 差2π的距离,即有
p
2
vp f
vpT
0 r
(2―3―5)
第2章 传输线理论
这种路的分析方法,又称为长线理论。事实上,“场” 的理论和“路”的理论既是紧密相关的,又是相互补充 的。有些传输线宜用“场”的理论去处理,而有些传输 线在满足一定条件下可以归结为“路”的问题来处理, 这样就可借用熟知的电路理论和现成方法,使问题的处 理大为简化。

第二章-传输线理论

第二章-传输线理论

第二章 传输线理论
根据传输线上的分布参数是否均匀分布,可将其分为 均匀传输线和不均匀传输线。我们可以把均匀传输线分割
成许多小的微元段dz (dz<<λ),这样每个微元段可看作集 中参数电路,用一个Γ型网络来等效。于是整个传输线可
等效成无穷多个Γ型网络的级联
第二章 传输线理论
2 - 2 无耗传输线方程及其解 一、传输线方程
即:
( ) I (z) = Ii2e jβ z + Ir2e- jβ z = Ii2 e jβ z + e- jβ z = 2Ii2 cos β z
( ) u(z,t) =
2Ui2
sin
β
z cos ω t
+
φ 2

2
i(z,t) =
2
Ii2
cos β
z cos(ω t
+
φ) 2
第二章 传输线理论
=
-
Ur (z) Ir (z)
=
R0 + jωL1 G0 + jωC1
对于无耗传输线( R0 = 0, G0 = 0 ),则
Z0 =
L1 C1
对于微波传输线 ,也符合。
平行双线 同轴线 特性阻抗
在无耗或低耗情况下,传输线的特性阻抗为一实数, 它仅决定于分布参数L1和C1,与频率无关。
第二章 传输线理论
l = (2n +1) λ (n = 0,1,2,)
4
1.传输线上距负载为半波长整数倍的各点的输入阻抗等于负载阻抗;
2.距负载为四分之一波长奇数倍的各点的输入阻抗等于特性阻抗的
平方与负载阻抗的比值;
3.当Z0为实数,ZL为复数负载时,四分之一波长的传输线具有变换阻 抗性质的作用。

第二章 传输线理论总结

第二章 传输线理论总结

当Z0为实数时,电压入射波与电流入射波的相位 相同;电压反射波与电流反射波相位相反。
三、 传输线的特性参数
1、特性阻抗Z0
将传输线上导行波的电压与电流之比定义为传输线的 特性阻抗, 用Z0来表示, 其倒数称为特性导纳, 用Y0来表
示。
由定义得 Z 0
R1 jL1 G1 jC1
可见特性阻抗Z0通常是个复数, 且与工作频率有关。 它由传输 线自身分布参数决定而与负载及信源无关, 故称为特性阻抗。
或者
二、传输线方程
2. 时谐均匀传输线方程
a. 时谐传输线方程
对于时谐电压和电流, 可用复振幅表示为 v(z, t)=Re[V(z)e jωt] i(z, t)=Re[I(z)e jωt] 将上式代入(2.1-1)式, 即得时谐传输线方程:
dV ( z ) ( R1 jL1 ) I ( z ) Z1 I ( z ) dz (2.1-3) dI ( z ) (G1 jC1 )V ( z ) Y1V ( z ) dz Z1 R1 jL1 传输线单位长度的串联阻抗 式中 传输线单位长度的并联导纳 Y1 G1 jC1
(2.1-11)
二、传输线方程
2. 时谐均匀传输线方程
c. 电压、电流的定解
V (d ) VL chd I L Z 0 shd VL I (d ) shd I L chd Z0
写成矩阵形式:
(2.1-12)
chd V (d ) I (d ) shd Z0
无耗线 j L1C1
低耗线

0, L1C1
(2.1-22)
R1 G1Z 0 c d 2Z 0 2
(2.1-23)

微波技术基础 第2章 传输线理论

微波技术基础 第2章 传输线理论
第2章 传输线理论
内容提要
一、传输线基本概念
1、传输线的种类
2、分布参数及分布参数电路
二、传输线方程的解
1、传输线方程的解
2、入射波和反射波
三、传输线的特性参量
传播常数、特性阻抗、相速和相波长、输入阻抗、反
射系数、驻波比(行波系数)和传输功率
2020/1/23
1
西安电子科技大学
四、均匀无耗传输线工作状态的分析
,
a b
ad
D
a
W
, d
L1(H / m)
ln b 2 a
D D2 d2
ln

d
d
W
C1(F / m)
2 / ln b
a
/ ln D D2 d 2
d
W
d
R1( / m)
Rs
2

1 a

1 b

2Rs
d
2Rs W
G1(S / m)
数电路,用一个 型网络来等效。于是整个传输线可等效成 无穷多个 型网络的级联.
2020/1/23
6
西安电子科技大学
二、传输线方程
i(z,t)
L1 z
(z, t) R1 z
G1z
i(z z,t)
C1z (z z,t)
z
1) 一般传输线方程或电报方程
z,t z z,t z,t z
2
2
I (d ) VL ILZ0 e d VL ILZ0 e d I (d ) I (d )
2Z0
2Z0
V (d) ch d

I
(d

第二章 传输线理论2.1 2.2(2011完成)1

第二章  传输线理论2.1  2.2(2011完成)1

处处相同的,所以它的V(I)仅仅是时间t的函数,而与空间位置z 处处相同的,所以它的V 仅仅是时间t的函数,而与空间位置z 无关,可以认为,短线与工作波长相比较可以认为是一点。 无关,可以认为,短线与工作波长相比较可以认为是一点。 这样 , 波在传输过程中的相位滞后效应可以忽略 , 而且 , 一般地 电压和电流也都有确定的定义。 也不计趋肤效应和辐射效应的影响 ; 电压和电流也都有确定的定义。 因 此 , 在稳态下 , 系统内各处的电压或电流可近似地认为是同时地 只随时间变化的量 , 而与空 间位置无关 ; 总之,一段线,低频时可以不考虑它的长度(或位置) 、 总之,一段线,低频时可以不考虑它的长度(或位置)对I、V 的影响,微波时要考虑它的长度,因为线上每点有很多效应, 的影响,微波时要考虑它的长度,因为线上每点有很多效应,如有 电感、电容、损耗、辐射效应、趋肤效应等, 电感、电容、损耗、辐射效应、趋肤效应等,这些都会引起信号的 变化。 变化。 3、分布参数效应(以平行双线为例) 分布参数效应(以平行双线为例) 低频时,分布参数效应:(前面的课程曾经给出) :(前面的课程曾经给出 (1)低频时,分布参数效应:(前面的课程曾经给出) 平行双线单位长度的分布电感( 平行双线单位长度的分布电感(无论低频高频都存在)为 L = 2 µH / m 无论低频高频都存在) 平行双线单位长度的分布电容(无论低频高频都存在)为 C = 5 pF / m 工作频率f=500Hz, f=500Hz,则它所产生的串联阻抗 工作频率f=500Hz,则它所产生的串联阻抗 X L = ωL = 6.28 × 10 −3 Ω / M 很小, 很小,并联阻抗 X C =
2.2 传输线波动方程和它的解
2.2.1 传输线波动方程
以平行双线为例讨论传输线方程及其解,如图示传输线系统。 以平行双线为例讨论传输线方程及其解,如图示传输线系统。

第2.1章 传输线理论

第2.1章  传输线理论

——→与低频状态完全不同。
第二章 传输线理论
传输线理论 长线理论
传输线是以TEM导模方式传 输电磁波能量。 其截面尺寸远小于线的长度, 而其轴向尺寸远比工作波长大 时,此时线上电压只沿传输线 方向变化。
一维分布参数电路理论
第二章 传输线理论
1)长线理论
传输线的电长度:传输线的几何长度 l 与其上 工作波长l的比值(l/l)。
当f =2GHz时
wLl = 2.3碬 3 / m > > Rl 10 wCl = 1.89S / m > > Gl
可忽略R和G的影响。——低耗线
第二章 传输线理论
P17表2.1-1给出了双导线、同轴线和平行板传输线的 分布参数与材料及尺寸的关系。
同轴线 a:内导体半径 b:外导体半径 m,e:填充介质 L(H/m)
①终端条件解:
边界条件: V (l ) = VL , I (l ) = I L
第二章 传输线理论
将上式代入解中: V = A e- g l + A e g l L 1 2
IL = 1 ( A1eZ0
gl
V ( z ) = A1e- g z + A2 eg z I ( z) = 1 ( A1e- g z - A2eg z ) Z0
第二章 传输线理论
2)时谐均匀传输线方程
a)时谐传输线方程 电压和电流随时间作正弦变化或时谐变化,则
电压电流的瞬时值可用复数来表示:
v ( z , t ) = V0 cos(wt + y v ( z )) = Re 轾 e jwt e jy v ( z ) = Re 轾( z )e j wt V0 V 犏 犏 臌 臌 i ( z , t ) = I 0 cos(wt + y I ( z )) = Re 轾e jwt e jy I ( z ) = Re 轾 z )e j wt I0 I( 犏 犏 臌 臌

第二章 传输线理论

第二章 传输线理论
a
b
b
d
a
b h( z ) ln (2.27a) a
I ( z ) H ( , z)d 2g ( z)(2.27b)
0
2
从式(2.27)消去式(2.26)中的h(z)和g(z),并代入同轴线的L、 C和G,则得到同轴线电报方程:
V ( z ) jLI ( z ) (2.28a) z I ( z ) (G jC )V ( z ) (2.28b) z
注意: 在传输线上提到的波长,往往是指的是传输线的波
导波长,它与自由空间的波长不一定相同,因此对应的相
速也不相同。
2.1.2 无耗传输线
无耗传输线,有
0

j j LC (2.12a)
由此可知传输线的特征阻抗有
L v Z0 Lv (2.13) C C
上式说明,只要求出传输线的单位长度电感、电容和相 速三者中的两个,就可以求出传输线的特征阻抗。
2.2.3 无耗同轴线的传播常数、特征阻抗和 功率流
由无耗传输线的条件
R0 G0
则电场和磁场的波动方程:
2 E z 2 H
2
E 0
2
z 2
2 H 0
传播常数、波阻抗和特征阻抗和功率流
LC ZW
V0 1 Z0 I 0 2
由: 可知:
V ( 0) ZL I ( 0)
负载阻抗的特性直接关系到传输线上反射波和入射波的
变化,从而影响到传输线参考面上总电压和总电流。 当端接负载等于传输线特征阻抗时,传输线上无反射。
微波技术基础
(2007版) 教材 《微波工程》第三版 (DAVID M.POZAR)

电磁场课件第二章传输线的基本理论

电磁场课件第二章传输线的基本理论

1正弦时变条件下传输线方程
令信源角频率已知 ,线上的电压、电流皆为正弦时变规律(或称为谐变),这样具有普遍性意义。
2 方程的通解
典型波动方程的解 传播常数和波阻抗
3 已知信源端电压和电流时的解
求待定系数
边界条件
解的具体形式
用到的数学公式
4 已知负载端电压和电流时的解
边界条件 求待定系数
信号各频率成分的幅值传输过程中无变化(衰减常数)。
均匀无损耗传输线无频率失真,即为无色散系统。
一般情况,衰减常数及相移常数与频率关系复杂,是色散系统。
均匀无损耗传输特性
行波,没有反射波
驻波,反射波和入射波振幅相同
混合波
相向两列行波叠加结果
3 传输线上任一位置处的输入阻抗
传输线上任一位置处的输入阻抗定义为该点电压和电流的比值。
传输线是用以传输电磁波信息和能量的各种形式的传输系统的总称。
微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称,它的作用是引导电磁波沿一定方向传输, 因此又称为导波系统, 其所导引的电磁波被称为导行波。
一、传输线的概念
1
一般将截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统称为规则导波系统, 又称为均匀传输线。
考察点位置,实际上和传输线长度有关,
在线电磁波的频率,
外接负载阻抗的阻抗,
传输线的波阻抗(特征阻抗)。
输入阻抗决定因素
输入阻抗和传输线相对长度关系
四分之一波长线:阻抗变换性 二分之一波长线:阻抗不变性 是无损耗传输线的一个重要特性
例2–1 均匀无损耗传输线的波阻抗75Ω,终端接50Ω纯阻负载,求距负载端0.25λ、0.5λ位置处的输入阻抗。若信源频率分别为50MHz、100MHz,求计算输入阻抗点的具体位置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Microwave Technique
2、低频大损耗情况(工频传输线) j R jLG jC
L R,C G
RG ,
0,
Z0
R G
传输线上不呈现波动过程,只带来一定衰减,衰减α为常数。
3、高频小损耗情况:
L R, C G
2 1
图2.1 传输线的一个长度增量(a)电压电流(b)等效电路
在1处使用KVL:
v( z ,t ) Rzi(
z
,
t
)

Lz
i
z
,
t


v(
z

z
,
t
)

0
t
在2处使用KCL:
i( z ,t ) Gzv( z z,t ) Cz vz z,t i( z z,t ) 0

(2.10)
相速
vP


f
(2.11)
Microwave Technique
电报方程解的讨论
1、一般情况:(有耗)
V ( z) V (0)ez V_ (0)ez
I ( z) V (0) ez V (0) ez
Z0
Z0
YZ j R jLG jC
引言
Microwave Technique
基本概念
长线(long line):传输线几何长度与工作波长λ可比拟,需用分布参数 电路描述。 短线(short line):传输线几何长度与工作波长λ相比可忽略不计,可 用集总参数分析。 二者分界:l/λ > 0.05 分布参数(distributed parameter):R、L、C和G 。
上述方程,对于简谐稳态ejωt而言,可以简化为相量的形式:

dV ( z ) ( R jL )I ( z ) ZI ( z ) (2.3a)

dz
方 程
dI( z ) ( G jC )V ( z ) YV ( z ) (2.3b)
dz
物理意义: 传输线上的电压是由于串联阻抗降压作用造成的,
同轴线 带状线 微带线(准TEM模) 广义传输线:各种传输TE模TM模或其混合模的波导都可以认 为是广义传输线。
Microwave Technique
微波技术中常用的传输线是同轴线和微带线。 同轴线:由同轴的管状外导体和柱状内导体构成。
分为硬同轴线和软同轴线两种。 硬同轴线又称同轴管,软同轴线又称同轴电缆。
亥姆
霍兹
复数传播系数,是频率的函数。
பைடு நூலகம்方程
Microwave Technique
电报方程的行波解
V ( z ) V0 e z V0 e z
(2.6a)
I(
z
)

I
0
e
z

I
0
e
z
(2.6b)
电报方程解的意义
均匀传输线上电压、电流都呈现为朝+z方向和朝-z方向传 播的两个行波,可称为入射波和反射波;在无损传输线 上,它们是等幅行波;电压行波与同方向的电流行波的 振幅之比为特性阻抗,其正负号取决于 z 坐标正方向的选 定。
数字局用同轴射频电缆
普通主干网络电缆
Microwave Technique
传输线分析中的基本概念
传输线
集总 元件模型
传输线 方程
波动解
原理 反射系数
输入阻抗 驻波比
Smith 圆图
传输线问题
图解
电路元件
谐振器
Microwave Technique
2.1 传输线的集总元件电路模型
传输线方程 传输线上无穷小长度Δz的一段线2.1(a)可等效为2.1(b)
Microwave Technique
而电流变化则是由于并联导纳的分流作用造成的。
2.1.1 传输线上的波传播
电报方程可变为独立二阶齐次线性常微分方程形式
d
2V (z) dz 2


2V
(
z)

0
d
2I (z) dz 2


2I
(z)

0
(2.4a) (2.4b)
类比
式中 j ( R jL )(G jC ) ZY
Microwave Technique
根据式(2.3a)和(2.6a)可得线上电流:
I( z )
R jL
V0 e z
V0 e z
与式(2.6b)相比较,得到特性阻抗为:
Z0

R
jL

R jL G jC
(2.7)
特性阻抗与传输线上电压、电流的关系
微带线:带状导体、介质和底板构成。
Microwave Technique
严格说,由于介质(有耗、色散)的引入,微带 线中传输的不是真正的TEM波,而是准TEM波。
Microwave Technique
电梯电缆
普通支路网络电缆
数字局用对称射频电缆
机房等场合用阻燃软电缆
Microwave Technique
分布在传输线上,随频率改变; 单位长度上:分布电阻、分布电感、分布电容和分布电导(均匀、非均 匀)。
Microwave Technique
传输线概述
传输线(transmission line)是以TEM导模的方式传送电磁波能 量或信号的导行系统。 特点:横向尺寸<< 工作波长λ。 结构:平行双导线
Microwave Technique
V0
I
0
Z0
V0
I
0
瞬时电压波形
v( z ,t ) V0 cos( t z )ez
(2.9)
V0 cos( t z )ez
这时, 是复数电压 V0 的相位角。
波长
2
1 R2 2L2 (G2 2C2 ) 2LC RG 2
1 R2 2L2 (G2 2C 2 ) 2LC RG 2
Z0
R jL

G jC
L C
1 j R
L
1 j G
C
传输线上衰 减α,相位 常数β,阻 抗Z0均与频 率有关
t
Microwave Technique
移项,并取Δz→0时的极限:
v( z ,t ) Ri( z ,t ) L i( z ,t )
z
t
(2.2a)
i( z ,t ) Gv( z ,t ) C v( z ,t )
z
t
(2.2b)
这些方程就是传输线方程或电报方程的时域形式。
相关文档
最新文档