分子轨道理论课件
合集下载
第二节分子轨道理论ppt课件

例如,对于 H2(在此并不研究 H2 )而言,如果我们忽略 Vei项(略去 排斥势能项,不影响电子的波函数),并在方程两端添加一项1/R(添加
的排斥势能项1/R 可作为常数看待,并吸收到能量 E 中),则,H2 的波 动方程就可改写为:
<
Hψ =[-
1 2
▽2
-
1 r1
-
1 r2
+
1 R
]ψ
=
Eψ
可见,当忽略了电子间的排斥势能后,H2 的波动方程就变成H2+ 的波
令: 2h = [(αa-αb)2 + 4β2]1/2 - (αa-αb)
即:
E2 =
(αa +αb) + [(αa -αb)2 + 4β2]1/2 2
= 2αa -(αa -αb) + [(αa -αb)2 + 4 β2]1/2
2
=
2αa + 2h 2
= αa + h
同理:
E1 = αb - h 即:
例如:
++
ns
ns
σh
+
- 反对称 记为:σu 或 σ*
(antibonding σ orbital)
+
对称 记为:σg 或 σ
(bonding σ orbital)
± ±
-+
np
+-
np
- + - + 反对称
记为:σu 或 σ*
-+
对称
- 记为:σg 或 σ
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
分子轨道理论和双原子分子的结构课件

高精度计算 对于一些复杂的双原子分子,需要更高精度的计算方法来 准确描述其结构和电子分布,这是当前研究的热点之一。
分子设计和合成 基于分子轨道理论,人们可以预测分子的结构和性质,从 而设计并合成出具有特定功能的分子,这将有助于材料科 学、药物研发等领域的发展。
06
结论和展望
分子轨道理论和双原子分子结构的重要性和影响
电子云重叠
两个原子之间的电子云重 叠,形成分子轨道。
原子轨道线性组合
原子轨道线性组合成分子 轨道,分子的电子分布取 决于原子轨道的叠加方式。
键合轨道
通过原子轨道的叠加,形 成键合轨道,这种轨道可 以稳定地容纳电子。
分子轨道的对称性和守恒原理
对称性
分子轨道的对称性决定了分子的空间构型和稳定性。
守恒原理
转动光谱
双原子分子的转动光谱是由于分子绕其质心旋转引起的,转动光谱的频率和强度与分子的转动惯量和 偶极矩有关。
双原子分子的化学反应活性
化学反应活性
双原子分子的化学反应活性受到其键能、 电负性、立体构型等因素的影响。
VS
反应机理
双原子分子参与的化学反应通常包括键的 断裂和形成,反应机理通常包括离子对、 自由基和协同机理等。
分子轨道理论和从头算方法的应用
分子轨道理论
从头算方法
是一种研究多电子分子的电子结构和性质的 量子力学方法。它通过求解一组线性方程来 描述电子的波函数和能量。分子轨道理论广 泛应用于化学、材料科学和生物学等领域。
是一种基于量子力学原理的计算方法,用于 计算分子的电子结构和性质。从头算方法通 过直接求解薛定谔方程来描述分子的波函数 和能量,避免了经验参数的使用,因此具有
未来研究方向和挑战的应对策略建议
分子设计和合成 基于分子轨道理论,人们可以预测分子的结构和性质,从 而设计并合成出具有特定功能的分子,这将有助于材料科 学、药物研发等领域的发展。
06
结论和展望
分子轨道理论和双原子分子结构的重要性和影响
电子云重叠
两个原子之间的电子云重 叠,形成分子轨道。
原子轨道线性组合
原子轨道线性组合成分子 轨道,分子的电子分布取 决于原子轨道的叠加方式。
键合轨道
通过原子轨道的叠加,形 成键合轨道,这种轨道可 以稳定地容纳电子。
分子轨道的对称性和守恒原理
对称性
分子轨道的对称性决定了分子的空间构型和稳定性。
守恒原理
转动光谱
双原子分子的转动光谱是由于分子绕其质心旋转引起的,转动光谱的频率和强度与分子的转动惯量和 偶极矩有关。
双原子分子的化学反应活性
化学反应活性
双原子分子的化学反应活性受到其键能、 电负性、立体构型等因素的影响。
VS
反应机理
双原子分子参与的化学反应通常包括键的 断裂和形成,反应机理通常包括离子对、 自由基和协同机理等。
分子轨道理论和从头算方法的应用
分子轨道理论
从头算方法
是一种研究多电子分子的电子结构和性质的 量子力学方法。它通过求解一组线性方程来 描述电子的波函数和能量。分子轨道理论广 泛应用于化学、材料科学和生物学等领域。
是一种基于量子力学原理的计算方法,用于 计算分子的电子结构和性质。从头算方法通 过直接求解薛定谔方程来描述分子的波函数 和能量,避免了经验参数的使用,因此具有
未来研究方向和挑战的应对策略建议
《分子轨道理论》课件

1 分子轨道能级的定义 2 分子轨道能级的计算 3 电子在分子轨道中的
我们将学习分子轨道能级
方法
分布
的概念和定义。了解它们
我们将探讨计算分子轨道
我们将研究分子轨道中电
是如何描述分子中电子的
能级的方法,如分子轨道
子的分布规律和性质。了
能量和分布。
的线性组合和量子化学计
解电子在不同分子中的行
算方法。
为。
原子轨道的定义
我们将学习原子轨道的基本概念和定义。了解它们是如何描述原子中电子的运动状态和能量 分布。
原子轨道的分类
我们将讨论原子轨道的不同类型,例如s轨道,p轨道,d轨道和f轨道。每种轨道有不同的形 状和能量。
原子轨道的数量
我们将研究不同原子中轨道的数量。了解不同原子的电子排布和轨道填充规则。
第三章:分子轨道
结论
通过这个课件,我们总结了分子轨道理论的主要内容和意义。理解了它对化 学领域的重要作用,并学习了如何应用这一理论解释分子的行为和性质。
《分子轨道理论》PPT课 件
在这个课件中,我们将学习分子轨道理论的基本概念和应用。我们将了解它 对化学领域的重要性以及如何使用这一理论来解释分子的性质和行为。
第一章:引言
本章将介绍分子轨道理论的背景和意义。我们将探讨为什么要发展这一理论 以及它对我们理解化学反应和分子结构的重要性。
第二章:原子轨道
1
分子轨道的定义
我们将学习分子轨道的概念和定义。了解它们是如何描述分子中电子的运动和分布。
2
分子轨道的分类
我们将讨论分子轨道的不同类型,如σ轨道和π轨道。每种轨道对分子的性质和化学反应起着 不同的作用。
3
分子轨道的数量
分子轨道(课堂PPT)

43
44
45
46
47Leabharlann 33CF和CF+的键能分别为 548kJ/mol和753kJ/mol。试用 MOT解释。
CF的键级为2.5、CF+的键级为3 键级越大,键能越大。
34
分子极性 偶极矩
在任何一个分子中都可以找到一个正电荷中心和一个负电荷中心。 正、负电荷中心不重合的分子为极性分子。 正、负电荷中心重合的分子为非极性分子
iii) O2 分子有两个成单电子,所以氧分子有顺磁性。
21
F2 分子,含18个电子
[(1s)2 (1s*)2 (2s)2 (2s*)2 (2px)2 (2py)2 =(2pz)2 (2py*)2 =(2pz*)2]
KK 能量抵消
能量抵消 能量抵消
i) F2 分子中有一个 键。
ii)
F2 分子键级=
13
(b) 适用于 1~7 号元素形成的分子或离子
对于 N,B,C原子,2s 和 2p 轨道间能量差小, 相互间排斥作用大,形成分子轨道后,σ2s和σ2Px之间 的排斥也大,结果,出现 B图中σ2Px 的能级反比 π2Py, π2Pz 的能级高的现象。
(Be2)(2py)(2pz) (2px) (2py*)(2pz*) (2px*) KK(2s)(2s*) (2py)(2pz) (2px) (2py*)(2pz*) (2px*) (1s)(1s*) (2s)(2s*) (2py)(2pz) (2px) (2py*)(2pz*) (2px*)14
偶极矩还可帮助判断分子可能的空间构型。例如NH3和BCl3 都是由四个原子组成的分子,可能的空间构型有两种,一种是平 面三角形,一种是三角锥形,根据
(NH3)=5.001030 Cm (BCl3)= 0.00 Cm
分子轨道ppt课件

=qd
偶极矩是个矢量,它的方向规定为从正电荷中心指向负电荷 中心。其单位是库仑米 (Cm),实验中常用德拜(D)来表示:
1D = 3.336 1030Cm
例如 (H2O) = 6.171030 Cm = 1.85 D
实际上,偶极矩是通过实验测得的
精选
偶极矩大小可以判断分子有无极性,比较分子极性的大小。 = 0,为非极性分子;值愈大,分子的极性愈大。
例如,SO2和CO2都是三原子分子,都是由极性键组成,但CO2的空间结构 是直线型,键的极性相互抵消,分子的正、负电荷中心重合,分子为非 极性分子。而SO2的空间构型是角型,正、负电荷重心不重合,分子为极 性分子
精选
分子极性的大小用偶极矩(dipole moment)来量度。在极性
分子中,正、负电荷中心的距离称偶极长,用符号d表示,单 位为米(m);正、负电荷所带电量为q和q,单位库仑(C);
精选
(b) 适用于 1~7 号元素形成的分子或离子
对于 N,B,C原子,2s 和 2p 轨道间能量差小, 相互间排斥作用大,形成分子轨道后,σ2s和σ2Px之间 的排斥也大,结果,出现 B图中σ2Px 的能级反比 π2Py, π2Pz 的能级高的现象。
(Be2)(2py)(2pz) (2px) (2py*)(2pz*) (2px*) KK(2s)(2s*) (2py)(2pz) (2px) (2py*)(2pz*) (2px*) (1s)(1s*) (2s)(2s*) (2py)(2精p选z) (2px) (2py*)(2pz*) (2px*)
2. 在分子轨道中电子填充次序所遵循的原则和在原子轨道中 填充电子的原则相同。即按能量最低原理,泡利不相容原理和 洪特规则进行填充。
3. 原子轨道有效地组成分子轨道必须符合能量近似、轨道最 大重叠和对称性匹配这三个成键原则。
偶极矩是个矢量,它的方向规定为从正电荷中心指向负电荷 中心。其单位是库仑米 (Cm),实验中常用德拜(D)来表示:
1D = 3.336 1030Cm
例如 (H2O) = 6.171030 Cm = 1.85 D
实际上,偶极矩是通过实验测得的
精选
偶极矩大小可以判断分子有无极性,比较分子极性的大小。 = 0,为非极性分子;值愈大,分子的极性愈大。
例如,SO2和CO2都是三原子分子,都是由极性键组成,但CO2的空间结构 是直线型,键的极性相互抵消,分子的正、负电荷中心重合,分子为非 极性分子。而SO2的空间构型是角型,正、负电荷重心不重合,分子为极 性分子
精选
分子极性的大小用偶极矩(dipole moment)来量度。在极性
分子中,正、负电荷中心的距离称偶极长,用符号d表示,单 位为米(m);正、负电荷所带电量为q和q,单位库仑(C);
精选
(b) 适用于 1~7 号元素形成的分子或离子
对于 N,B,C原子,2s 和 2p 轨道间能量差小, 相互间排斥作用大,形成分子轨道后,σ2s和σ2Px之间 的排斥也大,结果,出现 B图中σ2Px 的能级反比 π2Py, π2Pz 的能级高的现象。
(Be2)(2py)(2pz) (2px) (2py*)(2pz*) (2px*) KK(2s)(2s*) (2py)(2pz) (2px) (2py*)(2pz*) (2px*) (1s)(1s*) (2s)(2s*) (2py)(2精p选z) (2px) (2py*)(2pz*) (2px*)
2. 在分子轨道中电子填充次序所遵循的原则和在原子轨道中 填充电子的原则相同。即按能量最低原理,泡利不相容原理和 洪特规则进行填充。
3. 原子轨道有效地组成分子轨道必须符合能量近似、轨道最 大重叠和对称性匹配这三个成键原则。
分子轨道理论教学课件

密度泛函理论
01
密度泛函理论是一种更高效的计算方法,它将多电子系统的薛 定谔方程简化为单电子系统的方程。
02
它通过电子密度而不是波函数来描述多电子系统,从而大大减
少了计算量。
密度泛函理论在计算化学中得到了广泛应用,可以用于预测分
03
子的电子结构和性质。
分子力学方法
1
分子力学方法是一种基于经典力学原理的计算方 法,它通过势能面来描述分子的运动。
分子轨道理论认为分子中的电子是在一系列的分子轨道上运 动,每个分子轨道都由一个波函数表示,描述了电子在分子 中的运动状态。
分子轨道理论的发展历程
分子轨道理论的起源可以追溯到20世纪初,当时科学家开始尝试用量子力学来描述 分子中的电子行为。
在20世纪30年代,德国物理学家马克思·玻恩和英国化学家罗伯特·玻恩等人发展了 分子轨道理论的基本框架,为后续的研究奠定了基础。
或能级表。
分子轨道能级与化学反应的关系
03
分子轨道能级与化学反应的活化能、反应速率和反应机理等密
切相关,是理解和预测化学反应的重要依据。
03
分子轨道的计算方法
哈特里-福克方法
01
哈特里-福克方法是分子轨道理论 中最早的数值计算方法,它基于 变分原理,通过求解薛定谔方程 来计算分子轨道。
02
该方法适用于较小的分子,但对 于较大的分子和复杂的化学环境 ,计算量会变得非常大。
原子轨道有特定的形状和取向,如球 形、哑铃形、纺锤形等,这些形状和 取向决定了原子中电子云的分布。
分子轨道的形成
1 2 3
分子轨道的概念
分子轨道是指由两个或多个原子轨道相互作用形 成的能量状态,是分子整体的运动状态。
分子轨道理论介绍课件

未来研究方向
01
量子化学 计算方法 的发展
02
电子结构 理论的完 善
03
化学反应 机理的研 究
04
生物大分 子结构的 研究
分子轨道理论在无 机化学中的地位
● 原子结构:原子的电子排布和化学键的形成 ● 化学平衡:化学反应的平衡条件和平衡常数 ● 热力学:化学反应的热力学数据和热力学函数 ● 动力学:化学反应的速率和机理 ● 电化学:电化学反应的机理和电极电势 ● 结构化学:分子和晶体的结构和性质 ● 配位化学:配位化合物的形成和性质 ● 光谱学:原子和分子的光谱分析和结构鉴定 ● 量子化学:量子力学在化学中的应用和计算化学 ● 分子轨道理论:分子轨道理论的基本概念和原理,以及其在无机化学中的应用
04
预测分子稳定性和 反应活性
化学反应机理分析
分子轨道理论 可以解释化学 反应的机理
01
分子轨道理论 可以解释化学 反应的立体选 择性
03
02
通过分子轨道 理论可以预测 化学反应的产 物和速率
04
分子轨道理论 可以解释化学 反应的电子效 应
光谱学解释
分子轨道理论可以解释分 子的电子能级和光谱性质
分子轨道:原 子轨道的组合, 形成分子轨道
3
排布方式:根 据原子轨道的 能级和形状进
行排布
2
填充规则:遵 循能量最低原 理和保里不相
容原理
4
影响因素:分 子轨道的能级、 形状和重叠程
度
分子轨道理论的 应用
分子结构预测
01
利用分子轨道理论预 测分子的几何构型
02
预测分子轨道能级 和电子排布
03
预测分子光谱性质 和化学反应性质
04 指导无机材料设计和合成: 分子轨道理论可以指导无机 材料的设计和合成,为无机 化学研究和应用提供新的材 料和方法。
(精品课件)7.分子轨道理论-new

H2:
1
ψ H2 = σ1s (1) + σ1s (2) = 2 ⎡⎣ϕ A,1s (1) + ϕ B,1s (1)⎤⎦ ⎡⎣ϕ A,1s (2) − ϕ B,1s (2)⎤⎦
S-S轨道 LCAO
5. 分子轨道理论:
p-p轨道LCAO σ键 σ* 键
π 键 π* 键
5. 分子轨道理论:
BO = 1 BO = 0.5 (三电子σ键 ) BO = 0 (不形成稳定分子)
He2分子不能稳定存在,但是He2+或He22+可以稳定存在
5. 分子轨道理论:
Li2
Be2
气体 r = 267.3 pm D= 101kJ/mol
不存在
5. 分子轨道理论:
顺 磁 性 成 单 电 子
B2只存在 π 键无 σ 键
2s AO of O
σs
MO of NO
00 NO
NO
5. 分子轨道理论:
5. 分子轨道理论:
5. 分子轨道理论:
5. 分子轨道理论:
共轭π键 离域π键 大 π键
Π
6 6
5. 分子轨道理论:
形成π键的电子不局限于两个原子的区域,而是在参加成键
的多个原子形成的分子骨架中运动,这种化学键称为离域π键。
若满足以下两个条件,就可形成离域π键:
(1) 成键的原子共面(或共曲面),每个原子可提供一个垂直
于平面的p轨道 。
(2) π电子数小于参加成键原子的p轨道总数的二倍。
离域π键一般用
Π
m n
表示,n为参与成键的原子轨道数,m为电
子数。
5. 分子轨道理论:
非键轨道 n : nonbonding molecular orbital 能量较之原子轨道基本不变的分子轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子轨道理论
分子轨道理论
分子轨道电子云密度分布:
分子轨道理论
分子轨道电子填充,服从鲍里原理,能量最低原理, 洪特规则
分子轨道理论
2、由原子轨道组成分子轨道时,必须符合三个条件: a、对称匹配(就是对称性相同)
b、原子轨道重叠部分要最大。
分子轨道理论
1858年,库帕(Couper,A·S)提出:“有机化合物分 子中碳原子都是四价的,而且互相结合成碳链。 1861年,布特列洛夫提出了化学结构的观点,指出 分子中各原子以一定化学力按照一定次序结合,这 称为分子结构;一个有机化合物具有一定的结构, 其结构决定了它的性质;分子中各原子之间存在着 互相影响。 1865年,凯库勒提出了苯的构造式。
第二节 研究有机化合物的一般步骤
1、分离提纯 分离提纯的方法:重结晶、升华、蒸馏、层析法以
及离子交换法等。 2、纯度的检验
纯的有机物有固定的物理常数,如:熔点、沸点、 比重、折射率等。
分子轨道理论
3、实验式和分子式的确定 a、进行元素定性分析,找出分子中存在哪几种原子。 b、进行元素定量分析,找出各种原子的相对数目,即 决定经验式(实验式)。 c、测定分子量,确定各种原子的确实数目,给出分子 式。 4、结构式的确定
分子轨道理论
20世纪30年代,量子力学原理和方法引入化学领 域以后,建立了量子化学。 20世纪60年代,合成了维生素B12,发现了 分子轨道守恒原理。 20世纪90年代初,合成了海葵毒素。
分子轨道理论
有机化学重要性 (1)在有机合成方法学上,有可能出现我国独立发 展的有价值的高选择性的新反应,在有机化学工业中 特别是精细有机合成工业中出现我国发展的新流程。 (2)在天然产物研究和传统医学的基础上以及在对生 化过程深入了解后合理设计的基础上,将会出现一批 我国独立(或合作)发展的新医药、新农药。
分子轨道理论
2、有机化合物的特性 ◆对热不稳定,容易燃烧 ◆熔点较低 ◆难溶于水,易溶于有机溶剂 ◆反应速度比较慢 ◆发生副反应 ◆同分异构体的存在很普遍
分子轨道理论
二、有机化学的产生和发展
1773年 首次由尿内取得纯的尿素。 1805年 由鸦片内取得第一个生物碱——吗啡。 1828年,德国化学家,维勒(wohler,F)首次人工用 氰酸铵合成了尿素。 从19世纪初至中期有机化学成为一门学科,建立了 经典的有机结构理论。 1857年凯库勒提出了碳是四价的学说。
分子轨道理论
(3)在生物催化体系,寡糖及其缀合物的分离,结构 测定和合成,生物信息的识别和传递等方面将出现有 意义的结果。 (4)有机功能材料,有机电子材料和分子器件等方面 有可能得到有创见性的工作。
分子轨道理论
三、有机化合物的来源
1、动、植物 2、煤 3、石油 4、甲烷水合物--可燃冰
分子轨道理论
分子轨道理论
为了使SP3轨道,彼此达到最大的距离及最小的干扰,以碳原子为中 心,四个轨道分别指向正四面体的每一个顶点,所以碳原子的四个轨 道都有一定的方向性,轨道彼此间保持一定的角度,按照计算,这个 角度应该是109.5度,这样可以使每个轨道达到最低干扰的程度。 如:甲烷
分子轨道理论
2、SP2杂化
根据红外光谱、紫外光谱、核磁共振谱、质谱等确定 结构式。
分子轨道理论
第三节 共价键的一些基本概念及分子结构与其物理性质的关系
一、价键理论 1、价键的形成可看作是原子轨道的重叠或电子配对的结果。 2、共价键的饱和性 3、共价键的方向性 如:
分子轨道理论
二、杂化轨道 能量相近的原子轨道,可进行杂化,组成能量相等 的杂化轨道。 1、SP3杂化
分子轨道理论
一个S轨道与两个P 轨道形成三个SP2轨道。三个SP2的轨道,对称地分 布在碳原子的周围,处于同一个平面上,三者之间的夹角是120度。
分子轨道理论
π键的形成
分子轨道理论
3、SP杂化
分子轨道理论
一个S轨道和一个P 轨道形成两个SP 杂化轨道,如乙炔
分子轨道理论
三、分子轨道理论 分子目前最广泛应用的是原子轨道线性组合法 例如:两个原子轨道组成两个分子轨道,其中一个分子轨道是 由两原子轨道的波函数相加组成:ψ1=φ1+φ2 另一个分子轨道 是由两个原子轨道的波函数相加组成:ψ2=φ1 -φ2
分子轨道理论
葛美林(Gmelin.L)凯库勒(KeKule .A)认为碳是有机 化合物的基本元素,把“碳化合物称为有机化合物”, “有机化学定义为碳化合物的化学”。
肖莱马(Schorlemmer,c.)在此基础上发展了这个观 点,认为碳的四个价键除自己相连之外,其余与氢结 合,于是就形成了各种各样的碳氢化合物--烃,其他 有机化合物都是由别的元素取代烃中的氢衍生出来的。 把有机化学定义为研究烃及其衍生物的化学。
第一章 绪论
分子轨道理论
主要参考书
❖邢其毅等《基础有机化学》(第二版),高等教育出版社 ❖莫里森等 [美]《有机化学》(第二版),科学出版社 ❖胡宏纹等,《有机化学》(第二版),人民教学出版社 ❖荣国斌等 《大学有机化学基础》,华东理工大学出版社 ❖魏荣宝等 《有机化学》,天津大学出版社 ❖初玉霞等 《有机化学》,化学工业出版社
分子轨道理论
1874年,范特霍夫(Vant Hoff.J.H)和勒贝尔(Le Bel,J.A) 分别提出碳四面体构型学说,建立了分子的立体概念, 说明了旋光异构现象。 1885年,拜尔(Von Baeyer.A)提出张力学说。 20世纪建立了现代有机结构理论。 1916年,路易斯(Lewis,G.N)提出了共价键电子理论。
分子轨道理论
第一节 有机化学的研究对象
一、有机化合物和有机化学
1、有机化学、有机化合物的定义 有机化学(organic chemistry)是研究有机化合物
的来源、制备、结构、性能、应用以及有关理论和方 法学的科学。
自从拉瓦锡(Lavoisier.A.L)和李比希(Von Liebig.J.F) 创造有机化合物的分析方法之后,发现有机化合物均含 有碳元素,绝大多数的含氢元素,此外,很多的有机化 合物还含氧、硫、氮等元素。
分子轨道理论
分子轨道电子云密度分布:
分子轨道理论
分子轨道电子填充,服从鲍里原理,能量最低原理, 洪特规则
分子轨道理论
2、由原子轨道组成分子轨道时,必须符合三个条件: a、对称匹配(就是对称性相同)
b、原子轨道重叠部分要最大。
分子轨道理论
1858年,库帕(Couper,A·S)提出:“有机化合物分 子中碳原子都是四价的,而且互相结合成碳链。 1861年,布特列洛夫提出了化学结构的观点,指出 分子中各原子以一定化学力按照一定次序结合,这 称为分子结构;一个有机化合物具有一定的结构, 其结构决定了它的性质;分子中各原子之间存在着 互相影响。 1865年,凯库勒提出了苯的构造式。
第二节 研究有机化合物的一般步骤
1、分离提纯 分离提纯的方法:重结晶、升华、蒸馏、层析法以
及离子交换法等。 2、纯度的检验
纯的有机物有固定的物理常数,如:熔点、沸点、 比重、折射率等。
分子轨道理论
3、实验式和分子式的确定 a、进行元素定性分析,找出分子中存在哪几种原子。 b、进行元素定量分析,找出各种原子的相对数目,即 决定经验式(实验式)。 c、测定分子量,确定各种原子的确实数目,给出分子 式。 4、结构式的确定
分子轨道理论
20世纪30年代,量子力学原理和方法引入化学领 域以后,建立了量子化学。 20世纪60年代,合成了维生素B12,发现了 分子轨道守恒原理。 20世纪90年代初,合成了海葵毒素。
分子轨道理论
有机化学重要性 (1)在有机合成方法学上,有可能出现我国独立发 展的有价值的高选择性的新反应,在有机化学工业中 特别是精细有机合成工业中出现我国发展的新流程。 (2)在天然产物研究和传统医学的基础上以及在对生 化过程深入了解后合理设计的基础上,将会出现一批 我国独立(或合作)发展的新医药、新农药。
分子轨道理论
2、有机化合物的特性 ◆对热不稳定,容易燃烧 ◆熔点较低 ◆难溶于水,易溶于有机溶剂 ◆反应速度比较慢 ◆发生副反应 ◆同分异构体的存在很普遍
分子轨道理论
二、有机化学的产生和发展
1773年 首次由尿内取得纯的尿素。 1805年 由鸦片内取得第一个生物碱——吗啡。 1828年,德国化学家,维勒(wohler,F)首次人工用 氰酸铵合成了尿素。 从19世纪初至中期有机化学成为一门学科,建立了 经典的有机结构理论。 1857年凯库勒提出了碳是四价的学说。
分子轨道理论
(3)在生物催化体系,寡糖及其缀合物的分离,结构 测定和合成,生物信息的识别和传递等方面将出现有 意义的结果。 (4)有机功能材料,有机电子材料和分子器件等方面 有可能得到有创见性的工作。
分子轨道理论
三、有机化合物的来源
1、动、植物 2、煤 3、石油 4、甲烷水合物--可燃冰
分子轨道理论
分子轨道理论
为了使SP3轨道,彼此达到最大的距离及最小的干扰,以碳原子为中 心,四个轨道分别指向正四面体的每一个顶点,所以碳原子的四个轨 道都有一定的方向性,轨道彼此间保持一定的角度,按照计算,这个 角度应该是109.5度,这样可以使每个轨道达到最低干扰的程度。 如:甲烷
分子轨道理论
2、SP2杂化
根据红外光谱、紫外光谱、核磁共振谱、质谱等确定 结构式。
分子轨道理论
第三节 共价键的一些基本概念及分子结构与其物理性质的关系
一、价键理论 1、价键的形成可看作是原子轨道的重叠或电子配对的结果。 2、共价键的饱和性 3、共价键的方向性 如:
分子轨道理论
二、杂化轨道 能量相近的原子轨道,可进行杂化,组成能量相等 的杂化轨道。 1、SP3杂化
分子轨道理论
一个S轨道与两个P 轨道形成三个SP2轨道。三个SP2的轨道,对称地分 布在碳原子的周围,处于同一个平面上,三者之间的夹角是120度。
分子轨道理论
π键的形成
分子轨道理论
3、SP杂化
分子轨道理论
一个S轨道和一个P 轨道形成两个SP 杂化轨道,如乙炔
分子轨道理论
三、分子轨道理论 分子目前最广泛应用的是原子轨道线性组合法 例如:两个原子轨道组成两个分子轨道,其中一个分子轨道是 由两原子轨道的波函数相加组成:ψ1=φ1+φ2 另一个分子轨道 是由两个原子轨道的波函数相加组成:ψ2=φ1 -φ2
分子轨道理论
葛美林(Gmelin.L)凯库勒(KeKule .A)认为碳是有机 化合物的基本元素,把“碳化合物称为有机化合物”, “有机化学定义为碳化合物的化学”。
肖莱马(Schorlemmer,c.)在此基础上发展了这个观 点,认为碳的四个价键除自己相连之外,其余与氢结 合,于是就形成了各种各样的碳氢化合物--烃,其他 有机化合物都是由别的元素取代烃中的氢衍生出来的。 把有机化学定义为研究烃及其衍生物的化学。
第一章 绪论
分子轨道理论
主要参考书
❖邢其毅等《基础有机化学》(第二版),高等教育出版社 ❖莫里森等 [美]《有机化学》(第二版),科学出版社 ❖胡宏纹等,《有机化学》(第二版),人民教学出版社 ❖荣国斌等 《大学有机化学基础》,华东理工大学出版社 ❖魏荣宝等 《有机化学》,天津大学出版社 ❖初玉霞等 《有机化学》,化学工业出版社
分子轨道理论
1874年,范特霍夫(Vant Hoff.J.H)和勒贝尔(Le Bel,J.A) 分别提出碳四面体构型学说,建立了分子的立体概念, 说明了旋光异构现象。 1885年,拜尔(Von Baeyer.A)提出张力学说。 20世纪建立了现代有机结构理论。 1916年,路易斯(Lewis,G.N)提出了共价键电子理论。
分子轨道理论
第一节 有机化学的研究对象
一、有机化合物和有机化学
1、有机化学、有机化合物的定义 有机化学(organic chemistry)是研究有机化合物
的来源、制备、结构、性能、应用以及有关理论和方 法学的科学。
自从拉瓦锡(Lavoisier.A.L)和李比希(Von Liebig.J.F) 创造有机化合物的分析方法之后,发现有机化合物均含 有碳元素,绝大多数的含氢元素,此外,很多的有机化 合物还含氧、硫、氮等元素。