2020年广东省河源市中考数学试卷答案版
广东省2020年中考数学试题(word版,含答案)二四

2020年广东省初中毕业生学业考试数 学学校: 班级: 姓名: 得分:说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )题7图A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。
河源市2020版中考数学试卷C卷

河源市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的相反数是()A .B .C .D .2. (2分)如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是()A .B .C .D .3. (2分) (2017八下·府谷期末) 把多项式x2﹣8x+16分解因式,结果正确的是()A . (x﹣4)2B . (x﹣8)2C . (x+4)(x﹣4)D . (x+8)(x﹣8)4. (2分)一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克.A . 155D . 1605. (2分) (2019七下·南海期末) 如图,若直线a∥b,AC⊥AB,∠1=34°,则∠2的度数为()A . 34°B . 56°C . 66°D . 146°6. (2分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,样本中,身高在160≤x<170之间的女学生人数为()A . 8B . 6C . 14D . 167. (2分)计算的结果为()A .B . -C . -1D . 28. (2分)不等式组的解集是()C .D .9. (2分)如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC 的长是()A . 4B . 3C . 5D . 4.510. (2分) (2019八下·东莞期中) 如图,AD=1,点M表示的实数是()A .B .C . 3D .二、填空题 (共6题;共15分)11. (1分) (2020七下·溧阳期末) 一个长方体的高是10cm,它的底面是边长为4cm的正方形,如果底面正方形的边长增加acm,则它的体积增加了________ .12. (1分) (2017八上·潮阳月考) 已知等腰三角形的两边长分别为x和y,且x和y满足|x﹣5|+(y﹣2)2=0,则这个等腰三角形的周长为________.13. (1分)(2019·云南) 某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D等级这一组人数较多的班是________14. (1分) (2016·平房模拟) 有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为________.15. (1分)(2020·邵阳) 如图,线段,用尺规作图法按如下步骤作图.①过点B作的垂线,并在垂线上取;②连接,以点C为圆心,为半径画弧,交于点E;③以点A为圆心,为半径画弧,交于点D .即点D为线段的黄金分割点.则线段的长度约为________ (结果保留两位小数,参考数据:)16. (10分)如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.三、解答题 (共8题;共82分)17. (10分) (2019八上·福田期末) 计算下列各题:(1) ;(2) .18. (10分) (2019九下·锡山期中) 计算:(1) .(2)化简:(a+1)2-a(a+1)-1.19. (5分)(2017·濮阳模拟) 如图,在坡顶B处的同一水平面上有一座纪念碑CD垂直于水平面,小明在斜坡底A处测得该纪念碑顶部D的仰角为45°,然后他沿着坡比i=5:12的斜坡AB攀行了39米到达坡顶,在坡顶B 处又测得该纪念碑顶部的仰角为68°.求坡顶B到地面AE的距离和纪念碑CD的高度.(结果精确到1米,参考数据:sin68°=0.9,cos68°=0.4,tan68°=2.5)20. (16分)(2017·路南模拟) 从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出 =83分, =82分,绘制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表①②③④⑤甲成绩/分798682a83乙成绩/分8879908172根据以上信息,回答下列问题:(1) a=________(2)请完成图中表示甲成绩变化情况的折线.(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于8221. (12分) (2018八上·龙岗期中) 如图,在平面直角坐标系中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,OA=12,OC=9,连接AC.(1)填空:点A的坐标:________;点B的坐标:________;(2)若CD平分∠ACO,交x轴于D,求点D的坐标;(3)在(2)的条件下,经过点D的直线交直线BC于E,当△CDE为以CD为底的等腰三角形时,求点E的坐标.22. (9分) (2019八上·吴江期末) 初二班同学从学校出发去某自然保护区研学旅行,一部分乘坐大客车先出发,余下的几人20分钟后乘坐小轿车沿同一路线出行大客车中途停车等候,小轿车赶上来之后,大客车以出发时速度的继续行驶,小轿车保持原速度不变小轿车司机因路线不熟错过了景点入口,再原路提速返回,恰好与大客车同时到达景点入口两车距学校的路程单位:千米和行驶时间单位:分钟之间的函数关系如图所示.请结合图象解决下面问题:(1)学校到景点的路程为________千米,大客车途中停留了________分钟, ________千米;(2)在小轿车司机驶过景点入口时,大客车离景点入口还有多远?(3)若大客车一直以出发时的速度行驶,中途不再停车,那么小轿车折返后到达景点入口,需等待________分钟,大客车才能到达景点入口.23. (10分)解下列方程组(1)(2).于E ,交AC延长线于F .求证:(1)△ADF∽△EDB;(2) CD2=DE•DF .参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共15分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题 (共8题;共82分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
广东省河源市2019-2020学年中考数学第三次调研试卷含解析

广东省河源市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为( )A .33πB .32πC .πD .32π 2.下列计算结果等于0的是( )A .11-+B .11--C .11-⨯D .11-÷3.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22 圆,则⊙O 的“整点直线”共有( )条A .7B .8C .9D .104.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )A .12B .14C .15D .255.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .456.如图,在射线OA ,OB 上分别截取OA 1=OB 1,连接A 1B 1,在B 1A 1,B 1B 上分别截取B 1A 2=B 1B 2,连接A 2B 2,…按此规律作下去,若∠A 1B 1O=α,则∠A 10B 10O=( )A .102αB .92αC .20αD .18α7.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是()A.(6,4)B.(4,6)C.(5,4)D.(4,5)8.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)9.下列各数中是有理数的是()A.πB.0 C.2D.3510.平面直角坐标系中的点P(2﹣m,12m)在第一象限,则m的取值范围在数轴上可表示为()A.B.C.D.11.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、3012.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.15二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.14.在△ABC中,AB=AC,把△ABC折叠,使点B与点A重合,折痕交AB于点M,交BC于点N.如果△CAN是等腰三角形,则∠B的度数为___________.15.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为______.16.函数y=213xx+-的自变量x的取值范围是_____.17.不等式42x->4﹣x的解集为_____.18.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.(6分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.(1)测试不合格人数的中位数是.(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;(3)在(2)的条件下补全条形统计图和扇形统计图.21.(6分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=15.22.(8分)如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求该二次函数的表达式;(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,请解答下列问题:①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒13个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.23.(8分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x 轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.(1)求抛物线的解析式;(2)若PN :PM =1:4,求m 的值;(3)如图2,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+232BP 的最小值. 24.(10分)小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B 、C 两点的俯角分别为45°、35°.已知大桥BC 与地面在同一水平面上,其长度为100m ,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)25.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A ,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A 型车与B 型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A ,B 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?26.(12分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.27.(12分)无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p (桶)与销售单价x (元)。
广东省河源市2020版中考数学试卷D卷

广东省河源市2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) 2015的绝对值是()A . 2015B . ﹣2015C .D . -2. (2分)(2020·云梦模拟) 若关于x的不等式组的所有整数解的和为5,且使关于y 的分式方程的解大于1,则满足条件的所有整数a的和是()A . 6B . 11C . 12D . 153. (2分) (2019八上·余杭月考) 下列图形中是轴对称图形的是()A .B .C .D .4. (2分) (2017七下·晋中期末) 下列各式不能成立的是()A . (x2)3=x6B . x2•x3=x5C . (x﹣y)2=(x+y)2﹣4xyD . x2÷(﹣x)2=﹣15. (2分)(2020·鹿城模拟) 一组数据2、X,4,3,3的平均数是3,则这组数据的中位数,众数,方差分别是()A . 3、3、0.4B . 2、3、2C . 3、2,0.4,D . 3、3、26. (2分) (2018九上·开封期中) 如图所示,⊙O的半径为10,弦AB的长度是16,ON垂直AB,垂足为N,则ON的长度为()A . 5B . 6C . 8D . 107. (2分) (2019八下·方城期末) 如图,在中,对角线与交于点,添加下列条件不能判定为矩形的只有()A .B . ,,C .D .8. (2分) (2017七上·和县期末) 一列数:0,1,2,3,6,7,14,15,30,____,_____,____这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的()A . 31,32,64B . 31,62,63C . 31,32,33D . 31,45,46二、填空题 (共6题;共6分)9. (1分)(2017·平塘模拟) 分解因式:x2+4+4x﹣y2=________.10. (1分)(2019·海门模拟) 国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.000002米,将数字0.000002用科学记数法表示________.11. (1分)从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是:________ 。
2020年广东省中考数学试卷以及答案

2020年广东省中考数学试卷以及答案2020年广东省初中学业水平考试数学本试卷共4页,满分120分,考试时间90分钟。
在答题卡上填写准考证号、姓名、考场号、座位号,并用2B铅笔涂黑对应号码的标号。
选择题答案用2B铅笔涂黑,非选择题用黑色字迹钢笔或签字笔作答,写在答题卡指定区域内,如需改动,先划掉原来的答案,再写上新的答案,不准使用铅笔和涂改液。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)1.9的相反数是()A。
-9.B。
9.C。
D。
-2.一组数据2、4、3、5、2的中位数是()A。
5.B。
3.5.C。
3.D。
2.53.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A。
(-3,2)。
B。
(-2,3)。
C。
(2,-3)。
D。
(3,-2)4.若一个多边形的内角和是540°,则该多边形的边数为()A。
4.B。
5.C。
6.D。
75.若式子2x-4在实数范围内有意义,则x的取值范围是()A。
x≠2.B。
x≥2.C。
x≤2.D。
x≠-26.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF的周长为()A。
8.B。
22.C。
16.D。
47.把函数y=(x-1)²+2的图象向右平移1个单位长度,平移后图象的函数解析式为()A。
y=x²+2.B。
y=(x-1)²+1.C。
y=(x-2)²+2.D。
y=(x-1)²+38.不等式组{2-3x≥-1,x-1≥-2}的解集为()A。
无解。
B。
x≤1.C。
x≥-1.D。
-1≤x≤19.如题9图,在正方形ABCD中,AB=3,点E、F分别在边AB、CD上,△EFD=60°。
若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A。
1.B。
2.C。
3.D。
2√310.如题10图,抛物线y=ax²+bx+c的对称轴是直线x=1.下列结论:△ABC>0,其中A、B、C分别为抛物线与x轴、y轴、顶点的交点。
广东省2020年中考数学试题(WORD版,有答案)二四

2020年广东中考数学试题 学校: 班级: 姓名: 得分:一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .22.据有关部门统计,2020年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 . 12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一) 17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
2020年广东省中考数学试卷和答案解析

2020 年广东省中考数学试卷和答案解析一、选择题(本大题10小题,每小题3 分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9 的相反数是()A.﹣9 B.9 C.D.﹣解析:】根据相反数的定义即可求解.参考答案:解:9 的相反数是﹣9,故选:A .点拨:此题主要考查相反数的定义,比较简单.2.(3 分)一组数据2,4,3,5,2 的中位数是()A .5 B.3.5 C.3 D.2.5解析:】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.参考答案:解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.点拨:本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.(3分)在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)解析:】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.参考答案:解:点(3,2)关于x 轴对称的点的坐标为(3,﹣2).故选:D.点拨:本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3 分)若一个多边形的内角和是540°则,该多边形的边数为()A .4 B.5 C.6 D.7解析:】根据多边形的内角和公式(n﹣2)?180°列式进行计算即可求解.参考答案:解:设多边形的边数是n,则(n﹣2)?180°=540°,解得n=5.故选:B.点拨:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)若式子 在实数范围内有意义,则 x 的取值范围是( )A .x ≠2B .x ≥2C . x ≤2D .x ≠﹣2解析:】根据二次根式中的被开方数是非负数,即可确定二次根式 被开方数中字母的取值范围.参考答案:解:∵ 在实数范围内有意义,∴2x ﹣4≥0,解得: x ≥2,∴x 的取值范围是: x ≥2.故选: B .点拨:此题主要考查了二次根式有意义的条件, 即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.(3 分)已知△ABC 的周长为 16,点 D , E ,F 分别为△ABC 三条边的中点,则△ DEF 的周长为( )解析:】根据中位线定理可得 DF = AC ,DE = 继而结合△ABC 的周长为 16,可得出△DEF 的周长.参考答案:解:∵ D 、E 、 F 分别为△ABC 三边的中点,∴DE 、 DF 、EF 都是△ABC 的中位线,∴DF = AC ,DE = BC ,EF = AC ,故△DEF 的周长= DE+DF+EF = ( BC+AB+AC )=16=8.A .8B .2C .16D .4 BC ,EF = AC ,故选:A .点拨:此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.(3分)把函数y=(x﹣1)2+2图象向右平移1 个单位长度,平移后图象的函数解析式为()A.y=x2+2 B.y=(x﹣1)2+1 C.y=(x﹣2)2+2 D.y=(x﹣1)2﹣3解析:】先求出y=(x﹣1)2+2 的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.参考答案:解:二次函数y=(x﹣1)2+2 的图象的顶点坐标为(1,2),∴向右平移1 个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.点拨:本题主要考查的是函数图象的平移,求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.(3 分)不等式组的解集为()A.无解B.x≤1 C.x≥﹣1 D.﹣1≤x≤1解析:】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.参考答案:解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(3 分)如图,在正方形ABCD 中,AB =3,点E,F 分别在边AB,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B恰好落在AD 边上,则BE 的长度为()A .1 B.C.D.2解析:】由正方形的性质得出∠ EFD =∠BEF =60°,由折叠的性质得出∠BEF =∠FEB' =60°,BE=B'E,设BE=x,则B'E =x,AE =3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x 即可得出答案.∴∠EFD =∠BEF =60参考答案:解:∵四边形ABCD 是正方形,∴AB ∥CD ,∠A =90°,∵将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,∴∠BEF=∠FEB' =60°,BE=B'E ,∴∠AEB' =180°﹣∠BEF ﹣∠FEB' =60°,∴B'E =2AE,设BE=x,则B'E =x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.点拨:本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.(3 分)如图,抛物线y=ax2+bx+c 的对称轴是x=1,下列结论:① abc>0;② b2﹣4ac>0;③ 8a+c< 0;④ 5a+b+2c>0,A.4 个B.3 个C.2 个D.1 个解析:】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.参考答案:解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y 轴右边可得:a,b 异号,所以b> 0,根据抛物线与y 轴的交点在正半轴可得:c>0,∴abc< 0,故① 错误;∵抛物线与x 轴有两个交点,∴b2﹣4ac>0,故② 正确;∵直线x=1 是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③ 正确;由图象可知,当x=2 时,y=4a+2b+c>0;当x=﹣1 时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④ 正确;∴结论正确的是②③④ 3 个,故选:B.点拨:本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.二、填空题(本大题7 小题,每小题4分,共28 分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4 分)分解因式:xy﹣x=x(y﹣1).解析:】直接提取公因式x,进而分解因式得出答案.参考答案:解:xy ﹣x=x(y﹣1).故答案为:x(y﹣1).点拨:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.(4 分)如果单项式3x m y 与﹣5x3y n是同类项,那么m+n=4 .解析:】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m =3,n=1,再代入代数式计算即可.参考答案:解:∵单项式3x m y 与﹣5x3y n是同类项,∴m=3,n=1,∴m+n =3+1=4.故答案为:4.点拨:本题考查同类项的定义,正确根据同类项的定义得到m,n 的值是解题的关键.13.(4 分)若+|b+1|=0,则(a+b)2020=1 .解析:】根据非负数的意义,求出a、b 的值,代入计算即可.参考答案:解:∵+|b+1|=0,∴a﹣2=0 且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.点拨:本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b 的值是解决问题的关键.14.(4 分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy 的值为7 .解析:】由x=5﹣y 得出x+y=5,再将x+y=5、xy=2 代入原式=3(x+y )﹣4xy 计算可得.参考答案:解:∵ x=5﹣y,∴x+y=5,当x+y=5,xy=2 时,原式=3(x+y )﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.点拨:本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含式子x+y、xy 及整体代入思想的运用.15.(4分)如图,在菱形ABCD 中,∠A=30°,取大于AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为45° .解析:】根据∠EBD =∠ABD ﹣∠ABE ,求出∠ABD ,∠ABE 即可解决问题.参考答案:解:∵四边形ABCD 是菱形,∴AD =AB ,∴∠ABD =∠ADB =(180°﹣∠A )=75°,由作图可知,EA =EB,∴∠ABE =∠A=30°,∴∠EBD =∠ABD ﹣∠ABE =75°﹣30°=45°,故答案为45°.点拨:本题考查作图﹣基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(4分)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.解析:】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.参考答案:解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=解得,r=故答案为:.点拨:本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.(4 分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N 分别在射线BA,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA,BC 的距离分别为4 和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为2 ﹣2 .解析:】如图,连接BE ,BD.求出BE,BD,根据DE≥BD﹣BE 求解即可.参考答案:解:如图,连接BE ,BD.由题意BD ==2 ,∵∠MBN =90°,MN =4,EM =NE,∴BE=MN =2∴点E的运动轨迹是以B 为圆心,2为半径的弧,∴当点E落在线段BD 上时,DE 的值最小,∴DE 的最小值为2 ﹣2.故答案为2 ﹣2.点拨:本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6 分,共18分)18.(6 分)先化简,再求值:(x+y )2+(x+y )(x﹣y)﹣2x2,其中x=,y=.解析:】根据整式的混合运算过程,先化简,再代入值求解即可.参考答案:解:(x+y )2+(x+y )(x﹣y )﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2× × =2 .点拨:本题考查了整式的混合运算﹣化简求值,解决本题的关键是先化简,再代入值求解.19.(6 分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解” 、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120 名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)24 72 18 x(1)求x 的值;(2)若该校有学生1800 人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?解析:】(1)根据四个等级的人数之和为120求出x 的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.参考答案:解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440 人.点拨:本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.(6分)如图,在△ABC 中,点D,E 分别是AB、AC 边上的点,BD=CE,∠ABE=∠ACD,BE 与CD 相交于点F.求证:△ABC 是等腰三角形.解析:】先证△BDF ≌△CEF (AAS ),得出BF=CF,DF=EF,则BE =CD ,再证△ABE ≌△ACD (AAS ),得出AB=AC 即可.参考答案:证明:∵∠ABE =∠ACD ,∴∠DBF =∠ECF ,在△BDF 和△CEF 中,,∴△BDF ≌△CEF (AAS ),∴BF=CF,DF=EF,∴BF+EF =CF+DF ,即BE=CD ,在△ABE 和△ACD 中,,∴△ABE ≌△ACD (AAS ),∴AB =AC ,∴△ABC 是等腰三角形.点拨:本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.四、解答题(二)(本大题3小题,每小题8 分,共24分)21.(8分)已知关于x,y 的方程组与的解相同.(1)求a,b 的值;(2)若一个三角形的一条边的长为2 ,另外两条边的长是关于x 的方程x2+ax+b=0 的解.试判断该三角形的形状,并说明理由.解析:】(1)关于x,y 的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b 的值;(2)将a、b 的值代入关于x 的方程x2+ax+b =0,求出方程的解,再根据方程的两个解与2 为边长,判断三角形的形状.参考答案:解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组的解,解得,,代入原方程组得,a=﹣4 ,b=12;(2)当a=﹣4 ,b=12 时,关于x 的方程x2+ax+b=0 就变为x2﹣4 x+12=0,解得,x1=x2=2 ,又∵(2 )2+(2 )2=(2 )2,∴以2 、2 、2 为边的三角形是等腰直角三角形.点拨:本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.(8 分)如图1,在四边形ABCD 中,AD ∥BC,∠DAB =90°,AB 是⊙O的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC =2.求tan∠APE 的值.解析:】(1)证明:作OE⊥CD 于E,证△OCE ≌△OCB(AAS ),得出OE =OB,即可得出结论;(2)作DF ⊥ BC 于F,连接BE ,则四边形ABFD 是矩形,得AB =DF,BF=AD=1,则CF=1,证AD、BC 是⊙O 的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC =3,由勾股定理得DF=2 ,则OB=,证∠ABE =∠BCH ,由圆周角定理得∠APE =∠ABE ,则∠APE =∠BCH ,由三角函数定义即可得出答案.参考答案:(1)证明:作OE⊥CD于E,如图1所示:则∠OEC =90°,∵AD ∥BC ,∠DAB =90°,∴∠OBC=180°﹣∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,,∴△OCE ≌△OCB (AAS ),∴OE=OB,又∵OE⊥CD,∴直线CD 与⊙O 相切;(2)解:作DF⊥BC 于F,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD ∥BC ,∠DAB =90°,∴AD ⊥ AB ,BC ⊥ AB ,∴AD 、BC 是⊙O 的切线,由(1)得:CD 是⊙O的切线,∴ED =AD=1,EC=BC=2,∴CD=ED+EC =3,∴DF ===2 ,∴AB =DF=2 ,∴OB =,∵CO 平分∠BCD ,∴CO⊥BE,∴∠BCH+ ∠CBH =∠CBH+ ∠ABE =90°,∴∠ABE =∠BCH ,∵∠APE =∠ABE ,∴∠APE =∠,点拨:本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.(8分)某社区拟建A,B 两类摊位以搞活“地摊经济” ,每个A类摊位的占地面积比每个B 类摊位的占地面积多2 平方米.建A类摊位每平方米的费用为40 元,建B 类摊位每平方米的费用为30 元.用60 平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的(1)求每个A,B 类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.解析:】(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米,根据用60 平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的这个等量关系列出方程即可.(2)设建A 摊位a 个,则建B 摊位(90﹣a)个,结合“ B 类摊位的数量不少于A 类摊位数量的3 倍”列出不等式并解答.参考答案:解:(1)设每个B类摊位的占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3 是原方程的解,所以3+2=5,答:每个A 类摊位占地面积为5 平方米,每个B 类摊位的占地面积为3 平方米;(2)设建A 摊位a个,则建B 摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A 类摊位每平方米的费用为40 元,建B 类摊位每平方米的费用为30 元,∴要想使建造这90 个摊位有最大费用,所以要多建造A 类摊位,即a 取最大值22 时,费用最大,此时最大费用22×40×5+30×(90﹣22)×3=10520,答:建造这90 个摊位的最大费用是10520元.点拨:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.五、解答题(三)(本大题2小题,每小题10 分,共20分)24.(10 分)如图,点B 是反比例函数y=(x>0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x >0)的图象经过OB 的中点M ,与AB,BC 分别相交于点D,E.连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF,BG.1)填空:k=2 ;2)求△BDF 的面积;3)求证:四边形BDFG 为平行四边形.解析:】(1)设点B(s,t ),st=8,则点M s,t),则k =sst=2;(2)△BDF 的面积=△OBD 的面积=S△BOA ﹣S△OAD ,即可求解;(3)确定直线DE 的表达式为:y =﹣,令y=0,则x =5m,故点F(5m,0),即可求解.参考答案:解:(1)设点B(s,t),st=8,则点M (s,t),则k =s? t=st=2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S△BOA ﹣S△OAD =×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,),设直线DE 的表达式为:y=sx+n,将点D、E 的坐标代入上式得故直线DE 的表达式为:y=﹣,令y=0,则点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG ∥BD ,故四边形BDFG 为平行四边形.点拨:本题考查的是反比例函数综合运用,涉及到一次函数的性质、x=5m,故平行四边形的性质、面积的计算等,综合性强,难度适中.25.(10 分)如图,抛物线y=x2+bx+c 与x 轴交于A ,B 两点,点A,B 分别位于原点的左、右两侧,BO=3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C,D,BC =CD.(1)求b,c 的值;(2)求直线BD 的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.解析:】(1)先求出点A,点B 坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB 于E,由平行线分线段成比例可求OE=,可求点D 坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB ,BD 的长,利用锐角三角函数和直角三角形的性质可求∠ ABD =30°,∠ADB =45°,分∠ABP =30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.参考答案:解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),2 x ﹣∴抛物线解析式为: y = ,,∴b =﹣ ,c =﹣ ;(2)如图 1,过点 D 作DE ⊥AB 于E ,∴,∴, ∵BC = CD , BO = 3,∴ = ,∴ = ,∴OE = , ∴点 D 横坐标为﹣ , ∴点 D 坐标(﹣ ,+1),设直线 BD 的函数解析式为: y =kx+b , 由题意可得:,∴直线 BD 的函数解析式为 y =﹣ x+ ;(3)∵点 B (3,0),点 A (﹣1,0),点 D (﹣ ,+1), 解得: x+1)(x ﹣3)=∴AB =4,AD =2 ,BD =2 +2,对称轴为直线 x =1,∵直线 BD :y =﹣ x+ 与 y 轴交于点 C ,∴点C (0, ), ∴OC = ,∴∠CBO =30°, 如图 2,过点 A 作 AK ⊥BD 于 K ,∴AK = AB =2,∴DK == =2,∴DK = AK ,= = ∵tan ∠CBO∴∠ADB = 45 N ,即点 N (1,0),若∠CBO =∠PBO=30°,当△BAD ∽△BPQ,=2+ ,∴点Q(1﹣,0);当△BAD ∽△BQP,∴BQ=∴点Q(﹣1+ ,0);若∠PBO =∠ADB =45°,∴BN =PN=2,BP=BN =2 ,当△BAD ∽△BPQ,∴BQ=2 +2∴点Q(1﹣2 ,0);当△BAD ∽△PQB,∴BQ ==2 ﹣2,∴BN=PN=2,BP=2PN,∴PN=,BP=∴BQ==4﹣∴点Q(5﹣2 ,0);综上所述:满足条件的点Q 的坐标为(1﹣,0)或(﹣1+ ,0)或(1﹣2 ,0)或(5﹣2 ,0).点拨:本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
广东省2020年中考数学试题(Word版,含解析)

2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是A .﹣9B .9C .91D .﹣912.一组数据2、4、3、5、2的中位数是A .5B .3.5C .3D .2.5 3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为A .(﹣3 ,2)B .(﹣2 ,3)C .(2 ,﹣3)D .(3 ,﹣2) 4.若一个多边形的内角和是540°,则该多边形的边数为A .4B .5C .6D .7 5.若式子4-x 2在实数范围内有意义,则x 的取值范围是A .x≠2B .x≥2C .x≤2D .x≠﹣2 6.已知△ABC 的周长为16,点D 、E 、F 分别为△ABC 三条边的中点,则△DEF的周长为A .8B .22C .16D .4 7.把函数y=(x ﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A .y=x 2+2B .y=(x ﹣1)2+1C .y=(x ﹣2)2+2D .y=(x ﹣1)2+38.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1 9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,△EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .210.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:△abc>0;△b2﹣4ac>0;△8a+c<0;△5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:xy ﹣x=____________.12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m+n=________. 13.若2-a +|b+1|=0,则(a+b )2020=_________.14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________. 15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,△ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,△ABE=△ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.22.如题22图,在四边形ABCD 中,AD△BC ,△DAB=90°,AB 是△O 的直径,CO 平分△BCD .(1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan△APE 的值.23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=________;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD .(1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.2020年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是A .﹣9B .9C .91D .﹣91 【答案】A【解析】正数的相反数是负数.【考点】相反数2.一组数据2、4、3、5、2的中位数是A.5B.3.5C.3D.2.5【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【答案】D【解析】关于x轴对称:横坐标不变,纵坐标互为相反数.【考点】对称性4.若一个多边形的内角和是540°,则该多边形的边数为A.4B.5C.6D.7【答案】B【解析】(n-2)×180°=540°,解得n=5.【考点】n边形的内角和5.若式子4-x2在实数范围内有意义,则x的取值范围是A.x≠2B.x≥2 C.x≤2 D.x≠﹣2【答案】B【解析】偶数次方根的被开方数是非负数.【考点】二次根式6.已知△ABC的周长为16,点D、E、F分别为△ABC三条边的中点,则△DEF 的周长为2C.16D.4 A.8B.2【答案】A【解析】三角形的中位线等于第三边的一半.【考点】三角形中位线的性质.7.把函数y=(x﹣1)2+2的图象向右平移1个单位长度,平移后图象的函数解析式为A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【答案】C【解析】左加右减,向右x变为x-1,y=(x﹣1﹣1)2+2y=(x﹣2)2+2.【考点】函数的平移问题.8.不等式组()⎩⎨⎧+≥≥2x 2-1-x 1-x 3-2的解集为A .无解B .x≤1C .x≥﹣1D .﹣1≤x≤1【答案】D【解析】解不等式.【考点】不等式组的解集表示.9.如题9图,在正方形ABCD 中,AB=3,点E 、F 分别在边AB 、CD 上,△EFD=60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为A .1B .2C .3D .2【答案】D【解析】解法一:排除法过点F 作FG ∥BC 交BE 与点G ,可得∠EFG=30°,∵FG=3,由三角函数可得EG=3,∴BE >3.解法二:角平分线的性质延长EF 、BC 、B’C’交于点O ,可知∠EOB=∠EOB’=30°,可得∠BEO=∠B’EO=60°, ∴∠AEB’=60°.设BE=B ’E=2x ,由三角函数可得AE=x ,由AE+BE=3,可得x=1,∴BE=2.【考点】特殊平行四边形的折叠问题、辅助线的作法、三角函数.10.如题10图,抛物线y=ax2+bx+c的对称轴是直线x=1.下列结论:△abc>0;△b2﹣4ac>0;△8a+c<0;△5a+b+2c>0.其中正确的结论有A.4个B.3个C.2个D.1【答案】B【解析】由a<0,b>0,c>0可得△错误;由△>0可得△正确;由x=-2时,y <0可得△正确.当x=1时,a+b+c>0,当x=-2时,4a-2b+c>0即-4a+2b-c >0,两式相减得5a-b+2c>0,即5a+2c>b,∵b>0,∴5a+b+2c>0可得△正确.【考点】二次函数的图象性质.二、填空题(本大题7小题,每小题4分,共27分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy﹣x=____________.【答案】x(y-1)【解析】提公因式【考点】因式分解12.如果单项式3x m y与﹣5x3y n是同类项,那么m+n=________.【答案】4【解析】m=3,n=1【考点】同类项的概念13.若2-a +|b+1|=0,则(a+b )2020=_________.【答案】1【解析】算术平方根、绝对值都是非负数,∴a=2,b=-1,-1的偶数次幂为正【考点】非负数、幂的运算14.已知x=5﹣y ,xy=2,计算3x+3y ﹣4xy 的值为___________.【答案】7【解析】x+y=5,原式=3(x+y )-4xy ,15-8=7【考点】代数式运算15.如题15图,在菱形ABCD 中,∠A=30°,取大于21AB 的长为半径,分别以点A 、B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE 、BD ,则∠EBD 的度数为___________.【答案】45°【解析】菱形的对角线平分对角,∠ABC=150°,∠ABD=75°【考点】垂直平分线的性质、菱形的性质16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m .【答案】31 【解析】连接BO 、AO 可得△ABO 为等边,可知AB=1,l=32π,2πr=32π得r=31 【考点】弧长公式、圆锥17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,△ABC=90°,点M 、N 分别在射线BA 、BC 上,MN 长度始终不变,MN=4,E 为MN 的中点,点D 到BA 、BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为_________________.【答案】2-52【解析】 点B 到点E 的距离不变,点E 在以B 为圆心的圆上,线段BD 与圆的交点即为所求最短距离的E 点,BD=52,BE=2【考点】直角三角形的性质、数学建模思想、最短距离问题三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:(x+y)2+(x+y)(x﹣y) ﹣2x2,其中x=2,y=3.【答案】解:原式=x2+2xy+y2+x2-y2-2x2=2xy把x=2,y=3代入,原式=2×2×3=26【解析】完全平方公式、平方差公式,合并同类项【考点】整式乘除,二次根式19.某中学展开主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】解:(1)由题意得24+72+18+x=120,解得x=6(2)1800×1207224 =1440(人) 答:估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】统计表的分析【考点】概率统计20.如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD=CE ,△ABE=△ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.【答案】证明:△BD=CE ,△ABE=△ACD ,△DFB=△CFE△△BFDF△△CFE (AAS )△△DBF=△ECF△△DBF+△ABE=△ECF+△ACD△△ABC=△ACB△AB=AC△△ABC 是等腰三角形【解析】等式的性质、等角对等边【考点】全等三角形的判定方法、等腰三角形的判定方法四、解答题(二)(本大题3小题,毎小题8分,共24分)21.已知关于x 、y 的方程组⎩⎨⎧=+=+4y x 310-y 32ax 与⎩⎨⎧=+=15by x 2y -x 的解相同.(1)求a 、b 的值;(2)若一个三角形的一条边的长为26,另外两条边的长是关于x 的方程x 2+ax+b=0的解,试判断该三角形的形状,并说明理由.【答案】解:(1)由题意得⎩⎨⎧==+2y -x 4y x ,解得⎩⎨⎧==1y 3x 由⎩⎨⎧=+=+15b 3310-32a 3,解得⎩⎨⎧==12b 34-a(2)该三角形的形状是等腰直角三角形,理由如下:由(1)得x 2﹣43x+12=0(x -32)2=0x 1=x 2=32△该三角形的形状是等腰三角形△(26)2=24,(32)2=12△(26)2=(32)2+(32)2△该三角形的形状是等腰直角三角形【解析】理解方程组同解的概念,一元二次方程的解法、三角形形状的判断【考点】二元一次方程组、一元二次方程、勾股定理逆定理22.如题22图,在四边形ABCD 中,AD△BC ,△DAB=90°,AB 是△O 的直径,CO 平分△BCD .(1)求证:直线CD 与△O 相切;(2)如题22﹣2图,记(1)中的切点为E ,P 为优弧AE △上一点,AD=1,BC=2,求tan△APE 的值.【答案】 (1)证明:过点O 作OE△CD 交于点E△AD△BC ,△DAB=90°△△OBC=90°即OB△BC△OE△CD ,OB△BC ,CO 平分△BCD△OB=OE△AB 是△O 的直径△OE 是△O 的半径△直线CD 与△O 相切E(2)连接OD 、OE△由(1)得,直线CD 、AD 、BC 与△O 相切△由切线长定理可得AD=DE=1,BC=CE=3,△ADO=△EDO ,△BCO=△ECO△△AOD=△EOD ,CD=3△AE △=AE △△△APE=21△AOE=△AOD △AD△BC △△ADE+△BCE=180° △△EDO+△ECO=90°即△DOC=90°△OE△DC ,△ODE=△CDO△△ODE△△CDO△CD OD OD DE =即3OD OD 1= △OD=3△在Rt△AOD 中,AO=2△tan△AOD=AO AD =22 △tan△APE=22 【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法【考点】切线的判定、切线长定理、圆周角定理、相似三角形、三角函数23.某社区拟建A 、B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的53. (1)求每个A 、B 类摊位占地面积各为多少平方米?(2)该社区拟建A 、B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】解:(1)设每个B 类摊位占地面积为x 平方米,则每个A 类摊位占地面积为(x+2)平方米.53x 602x 60•=+ 解得x=3经检验x=3是原方程的解△x+2=5(平方米)答:每个A 、B 类摊位占地面积各为5平方米和3平方米.(2)设A 类摊位数量为a 个,则B 类摊位数量为(90-a )个,最大费用为y 元. 由90-a≥3a ,解得a≤22.5△a 为正整数△a 的最大值为22y=40a+30(90-a )=10a+2700△10>0△y 随a 的增大而增大△当a=22时,y=10×22+2700=2920(元)答:这90个摊位的最大费用为2920元.【解析】分式方程的应用题注意检验,等量关系的确定是关键【考点】分式方程的应用,不等式的应用,一次函数应用五、解答题(三)(本大题2小题,毎小题10分,共20分)24.如题24图,点B 是反比例函数y=x 8(x >0)图象上一点,过点B 分别向坐标轴作垂线,垂足为A 、C .反比例函数y=xk (x >0)的图象经过OB 的中点M ,与AB 、BC 分别交于点D 、E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF 、BG .(1)填空:k=_2_______;(2)求△BDF 的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(2)解:过点D 作DP ⊥x 轴交于点P由题意得,S 矩形OBC=AB •AO=k=8,S 矩形ADPO=AD •AO=k=2 ∴AB AD =41即BD=43AB ∵S △BDF=21BD •AO=83AB •AO=3 (3)连接OE由题意得S △OEC=21OC •CE=1,S △OBC=21OC •CB=4∴41CB CE =即CE=31BE ∵∠DEB=∠CEF ,∠DBE=∠FCE∴△DEB ∽△FEC∴CF=31BD ∵OC=GC ,AB=OC∴FG=AB -CF=34BD -31BD=BD ∵AB ∥OG∴BD ∥FG∴四边形BDFG 为平行四边形【解析】反比例函数k 的几何意义,三角形面积的表示,清楚相似比与线段比的关【考点】反比例函数、相似三角形、三角形的面积比、平行四边形的判定25.如题25图,抛物线y=c bx x 6332+++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO=3AO=3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC=3CD . (1)求b 、c 的值;(2)求直线BD 的直线解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出....所有满足条件的点Q 的坐标.【答案】解:(1)由题意得A (-1,0),B (3,0),代入抛物线解析式得⎪⎪⎩⎪⎪⎨⎧=++⨯+=++0c b 396330c b -633,解得⎪⎪⎩⎪⎪⎨⎧==23-23-c 33-1-b (2)过点D 作DE ⊥x 轴交于点E∵OC ∥OC ,BC=3CD ,OB=3 ∴3DCBC OE OB == ∴OE=3∴点D 的横坐标为x D =-3∵点D 是射线BC 与抛物线的交点∴把x D =-3代入抛物线解析式得y D =3+1∴D(-3,3+1)设直线BD 解析式为y=kx+m ,将B (3,0)、D(-3,3+1)代入⎩⎨⎧+=++=m k 3-13m k 30,解得⎪⎩⎪⎨⎧==3m 33-k ∴直线BD 的直线解析式为y=3x 33-+ (3)由题意得tan ∠ABD=33,tan ∠ADB=1 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n <0,Q (x ,0)且x <3①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQB=tan ∠ADB ,即x-1n -=1,解得x=332-1②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1,解得-n=2 tan ∠QPB=tan ∠ABD ,即x -1n -=33,解得x=32-1 ③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -=33,解得-n=332 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=1-334 ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1,解得-n=2 tan ∠PQM=tan ∠DAE ,即1-x n -=31-13++,解得x=32-5 综上所述,Q 1(332-1,0)、Q 2(32-1,0)、Q 3(1-334,0)、Q 4(32-5,0) 【解析】分类讨论不重不漏,计算能力要求高【考点】一次函数、二次函数、平面直角坐标系、相似三角形、三角函数、分类讨论、二次根式计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①abc>0;②b2-4ac>0;③8a+c<0;④5a+b+2c> 0,
正确的有( )
A. 4 个
B. 3 个
C. 2 个
二、填空题(本大题共 7 小题,共 28.0 分)
11. 分解因式:xy-x=
.
12. 如果单项式 3xmy 与-5x3yn 是同类项,那么 m+n=
.
13. 若
+|b+1|=0,则(a+b)2020=
模型如图,∠ABC=90°,点 M,N 分别在射线 BA,BC 上
,MN 长度始终保持不变,MN=4,E 为 MN 的中点,点 D
到 BA,BC 的距离分别为 4 和 2.在此滑动过程中,猫与
老鼠的距离 DE 的最小值为
.
三、计算题(本大题共 1 小题,共 6.0 分)
18. 先化简,再求值:(x+y)2+(x+y)(x-y)-2x2,其中 x= ,y= .
不太了解
人数(人) 24
72
18
x
1 求 x 的值; 2若该校有学生 1800 人,请根据抽样调查结果估算该校“非常了解”和“比 较了 解”垃圾分类知识的学生共有多少人?
20. 如图,在△ABC 中,点 D,E 分别是 AB、AC 边上的点, BD=CE,∠ABE=∠ACD,BE 与 CD 相交于点 F.求证: △ABC 是等腰三角形.
B 类摊位个数的 .
1 求每个 A,B 类摊位占地面积各为多少平方米? 2该社区拟建 A,B 两类摊位共 90 个,且 B 类摊位的数量不少于 A 类摊位数 量的 3 倍.求建造这 90 个摊位的最大费用.
24. 如图,点 B 是反比例函数 y= (x>0)图象上一点,过点 B 分别向坐标轴作垂线,
数为
.
16. 如图,从一块半径为 1m 的圆形铁皮上剪出一个圆周角为 120°的扇形 ABC,如果将剪下来的扇形围成一个圆锥,则
该圆锥的底面圆的半径为
m.
17. 有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯 住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把
墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,
,点 A,B 分别位于原点的左、右两侧,BO=3AO=3, 过点 B 的直线与 y 轴正半轴和抛物线的交点分别为 C,D,BC= CD. 1 求 b,c 的值; 2 求直线 BD 的函数解析式; 3 点 P 在抛物线的对称轴上且在 x 轴下方,点
第 4 页,共 16 页
Q 在射线 BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点 Q 的 坐标.
四、解答题(本大题共 7 小题,共 56.0 分) 19. 某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”
、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能
选其中一个等级,随机抽取了 120 名学生的有效问卷,数据整理如下:
等级
非常了解
比较了解
基本了解
D. -1≤x≤1
9. 如图,在正方形 ABCD 中,AB=3,点 E,F 分别在边 AB,CD
上,∠EFD=60°.若将四边形 EBCF 沿 EF 折叠,点 B 恰好落
在 AD 边上,则 BE 的长度为( )
A. 1
B.
C.
10. 如图,抛物线 y=ax2+bx+c 的对称轴是 x=1,下列结
论:
垂足为 A,C.反比例函数 y= (x>0)的图象经过 OB 的中点 M,与 AB,BC 分别
相交于点 D,E.连接 DE 并延长交 x 轴于点 F,点 G 与点 O 关于点 C 对称,连接
BF,BG.
(1)填空:k=
;
2 求△BDF 的面积;
3 求证:四边形 BDFG 为平行四边形.
25. 如图,抛物线 y= x2+bx+c 与 x 轴交于 A,B 两点
第 2 页,共 16 页
21. 已知关于 x,y 的方程组
与
的解相同.
1 求 a,b 的值;
2若一个三Leabharlann 形的一条边的长为 2,另外两条边的长是关于 x 的方程
x2+ax+b=0 的解.试判断该三角形的形状,并说明理由.
22. 如图 1,在四边形 ABCD 中,AD∥BC,∠DAB=90°,AB 是⊙O 的直径,CO 平分∠BCD . 1 求证:直线 CD 与⊙O 相切;
2 如图 2,记(1)中的切点为 E,P 为优弧 上一点,AD=1,BC=2.求 tan∠APE
的值.
第 3 页,共 16 页
23. 某社区拟建 A,B 两类摊位以搞活“地摊经济”,每个 A 类摊位的占地面积比每个 B 类摊位的占地面积多 2 平方米.建 A 类摊位每平方米的费用为 40 元,建 B 类 摊 位每平方米的费用为 30 元.用 60 平方米建 A 类摊位的个数恰好是用同样面积 建
2020 年广东省河源市中考数学试卷
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分) 1. 9 的相反数是( )
A. -9
B. 9
C.
D.
2. 一组数据 2,4,3,5,2 的中位数是( )
A. 5
B. 3.5
C. 3
D. 2.5
3. 在平面直角坐标系中,点(3,2)关于 x 轴对称的点的坐标为( )
.
14. 已知 x=5-y,xy=2,计算 3x+3y-4xy 的值为
.
15. 如图,在菱形 ABCD 中,∠A=30°,取大于 AB 的长
为半径,分别以点 A,B为圆心作弧相交于两点,过
D. 2 D. 1 个
第 1 页,共 16 页
此两点的直线交 AD 边于点 E(作图痕迹如图所示),连接 BE,BD.则∠EBD 的度
长为( )
A. 8
B. 2
C. 16
D. 4
7. 把函数 y=(x-1)2+2 图象向右平移 1 个单位长度,平移后图象的的数解析式为(
)
A. y=x2+2
B. y=(x-1)2+1 C. y=(x-2)2+2 D. y=(x-1)2-3
8. 不等式组
的解集为( )
A. 无解
B. x≤1
C. x≥-1
A. (-3,2)
B. (-2,3)
C. (2,-3)
D. (3,-2)
4. 一个多边形的内角和是 540°,那么这个多边形的边数为( )
A. 4
5. 若式子
B. 5
C. 6
在实数范围内有意义,则 x 的取值范围是(
D. 7
)
A. x≠2
B. x≥2
C. x≤2
D. x≠-2
6. 已知△ABC 的周长为 16,点 D,E,F 分别为△ABC 三条边的中点,则△DEF 的周