电火花加工技术论文

合集下载

先进制造—微细电火花加工技术

先进制造—微细电火花加工技术

微机械和微制造的基础——微细电火花加工技术摘要:作为一种实用的微细加工技术,微细电火花加工在加工微细轴、微小孔等小尺度的零件时具有独特的优越性。

本文简略地介绍了微细电火花加工技术的原理,分析了微细电火花加工的特点和优点,研究了微细电火花加工的关键技术,并详细介绍了一种微细电火花加工装置及其应用。

关键词:微细电火花加工原理特点关键技术装置应用0.引言微细加工技术是先进制造技术的重要组成部分,是实现微机械产品的最基本技术,不仅直接影响着尖端技术和国防工业的发展,而且还影响到机械产品的加工精度和加工表面质量,影响产品的国际竞争力。

目前,世界各国都非常重视微细加工技术,将其作为发展先进制造技术中的优先发展内容。

作为微细加工技术的一个重要分支,微细电火花加工技术因其具有设备简单、可控性好、无切削力、适用性强等一系列优点,在微小尺度零件的加工中获得大量应用,受到国内外学者的广泛关注。

1.微细电火花加工的原理及特点1.1微细电火花加工原理电火花加工(Electrical Discharge Machining)是指在绝缘介质中,通过工具电极和工件之间脉冲性火花放电时的电蚀现象对工件材料进行蚀出,以达到一定的形状尺寸和表面粗糙度要求的一种加工方法。

微细电火花加工(micro Electro Discharge Machining,简称micro-EDM)的原理与普通电火花加工并无本质区别。

电火花加工中电极材料的蚀除过程是火花放电时的电场力、磁力、热力、流体动力、电化学及胶体化学等综合作用的过程。

当脉冲电压施加到工具与工件电极之间时,极间介质被击穿并形成一个极为细小的放电通道。

放电通道是由数量大体相等的带正电粒子(正离子)和带负电粒子(电子)以及中性粒子(原子或分子)组成的等离子体。

在极间电场作用下,通道中的正离子与电子高速地向阴极和阳极运动并发生剧烈碰撞,从而在放电通道中产生大量的热;同时,阳极和阴极表面分别受到电子流和离子流的高速冲击,动能也转换为热能,在电极放电点表面产生大量的热,整个放电通道形成一个瞬时热源,其温度可达℃以上。

电火花成形加工技术的研究现状和发展趋势

电火花成形加工技术的研究现状和发展趋势

电火花成形加工技术的研究现状和发展趋势电火花成形加工技术是一种利用电火花在工件表面放电形成微小孔洞的加工方法,广泛应用于制造业的精密加工领域。

本文将对电火花成形加工技术的研究现状和发展趋势进行分析。

电火花成形加工技术最早于19世纪末提出,并在20世纪50年代进行了实践应用。

随着电气放电技术的不断发展,此技术得以推动,并在精密模具、航空航天零部件、汽车制造和生物医疗器械等领域得到广泛应用。

电火花成形加工技术的研究现状主要集中在以下几个方面:第一,放电参数研究。

通过调整电压、电流、脉冲宽度和频率等参数,可以控制电火花放电的能量和形态,从而实现对工件表面的精细加工。

研究者通过实验和仿真等方法,探索最优的放电参数组合,以提高加工效率和加工质量。

第二,电极材料研究。

电极是电火花成形加工中的重要组成部分,其材料的选择直接影响到放电效果和加工质量。

研究者通过对不同材料的电极进行比较试验,确定最适合不同工件材料和加工需求的电极材料,并研究其表面处理技术,以提高耐磨性和放电稳定性。

第三,放电脉冲控制技术研究。

电火花成形加工中,放电脉冲的控制对于形成精细的加工效果至关重要。

研究者通过改变脉冲参数的波形、幅值和频率等,可以实现微细加工和纳米加工,进一步提高加工的精度和表面质量。

第四,放电液的优化研究。

电火花成形加工中常常使用放电液来冷却工件和电极,并清除放电过程中产生的氧化物和熔融物。

研究者通过改变放电液的成分和性能,可以改善放电的稳定性和加工质量。

电火花成形加工技术的未来发展趋势主要体现在以下几个方面:第一,提高加工效率和精度。

随着工件精度要求的不断提高,电火花成形加工技术需要进一步改进,以实现更高的加工效率和更好的加工精度。

研究者将继续优化放电参数和脉冲控制技术,以提高加工速度和形成更精细的加工效果。

第二,拓展加工材料范围。

目前电火花成形加工主要应用于金属和合金材料,但随着复合材料、陶瓷材料和高性能材料的不断发展,对于电火花成形加工技术的要求也越来越高。

电火花切割加工工艺概述

电火花切割加工工艺概述

电火花切割加工工艺概述1.概念:随着在我国国民经济的飞速发展,特别是工业技术飞速发展的新形势下,急需发展模具加工技术,而数控电火花切割技术正是模具加工工艺领域中的一-种关键技术。

目前在电机,仪表等行业新产品的研制开发过程中,常采用数控电火花线切割方法直接切割出零件,大大缩短了研制周期,并降低了成本。

在众多工业产品的生产过程中,都用到了数控电火花切割机床,如~ 飞机制造、汽车模具制造、手机零部件的生产等,因此电火花机床的研究与改进是我国国内市场的需要,也能为我国的工业的发展起一-定的作用。

电火花线切割,其基本工作原理是利用连续移动细金属丝(成为电极丝)作电极,对工件进行脉冲火花放电蚀除金属、切割成型。

本次论文以电火花线切割为主线,综合了线切割的发展,电火花线切割机床,电火花线切割加工质量及其影响因素,电火花线切割加工程序编制等。

1.原理和加工过程:1.脉冲电源电火花线切割的加工用的脉冲电源的作用是把工频交流电源转换成一定频率的单向脉冲电流,以供给电极放点间隙所需要的能量来蚀除金属。

脉冲电源对电火花加工的生产率、表面质量、加工精度、加工过程的稳定性和工具电极损耗等技术经济指标有很大影响。

电火花线切割脉冲电源的形式品种很多,如晶体管矩形波脉冲电源、高频分组脉冲电源、节能型脉冲电源等。

对电火花线切割加工用脉冲总的要求是:有较高的加工速度,不但在粗加工时要有较高的加工速度,而且在精加工时也应具有较高的加工速度;工具电极损耗低;加工过程稳定性好,在给定的各种脉冲参数下能保持稳定加工,抗干扰能力强、不易产生电弧放电、可靠性强、操作方便;工艺范围广,不仅能适应粗、中、精加工的要求,而且要适应不同工件材料的加工。

脉冲电源要都满足.上述要求是困难的,- -般来说,为了满足这些总的要求,对电火花线切割加工脉冲电源的具体要求是:所产生的脉冲应该是单向的,没有负半波或负半波很小,这样才能最大限度的利用极性效应,不过受工件表面粗糙度和电极丝允许承载电流的限制,线切割加工脉冲电源的脉宽较窄(2~60us), 单个脉冲能量、平均电流(1~5A) -般较小,所以线切割加工总是采用正极性加工。

电火花加工技术的原理与应用

电火花加工技术的原理与应用

电火花加工技术的原理与应用电火花加工,又称放电加工、电火花冲击加工,是一种非传统的加工方法。

它通过在工件与电极之间产生电弧放电的现象,利用放电的能量来加工工件,从而实现对工件进行高精度、高质量加工的目的。

电火花加工技术广泛应用于模具制造、航空航天、汽车制造、精密仪器等领域。

电火花加工的原理十分复杂,但可以简单地概括为以下几个步骤。

首先,将工件与电极之间的间隙充满介质,一般使用脱脂机油或去离子水。

然后,在加工过程中,施加一定的电压,使电极与工件之间产生电弧放电。

电弧放电时,工件的表面会被高能量的电火花冲击,导致小颗粒的剥离、熔融和蒸发,从而形成所需的加工形状。

在电火花加工中,有几个关键的参数需要控制。

首先是放电电压,它直接影响到电火花的能量和强度。

通常情况下,放电电压越高,加工速度越快,但也容易造成表面粗糙度的增加。

同时,电极与工件之间的间隙大小也十分重要。

间隙过大会导致放电能量不足,影响加工效果;而间隙过小则容易引起过热和电极损坏。

此外,放电脉冲的宽度和频率、电极形状等参数也需要进行合理的选择和控制。

电火花加工技术的应用非常广泛。

首先,它常用于制造模具。

传统的机械加工方法往往难以加工出复杂、精密的模具形状,而电火花加工则能够轻松应对这一难题。

其次,电火花加工在航空航天领域也有广泛应用。

航空发动机的涡轮叶片、复杂曲面件等零部件常常通过电火花加工来进行成形。

此外,电火花加工还可以用于制造精密仪器的零件、切割工件、修复断裂的齿轮等。

虽然电火花加工技术具有很多优点,但也存在一些局限性。

首先,加工速度较慢,对于大批量生产不适用。

其次,加工表面粗糙度较高,需要进行后续的抛光、磨削等处理。

此外,电火花加工还需要较高的设备成本和专业的操作技术。

总的来说,电火花加工技术作为一种非传统的加工方法,在工业生产中有着重要的地位。

凭借其高精度、高质量的加工效果,它被广泛应用于模具制造、航空航天、汽车制造、精密仪器等领域。

电火花线切割加工工艺优缺点的研究与分析(推荐五篇)

电火花线切割加工工艺优缺点的研究与分析(推荐五篇)

电火花线切割加工工艺优缺点的研究与分析(推荐五篇)第一篇:电火花线切割加工工艺优缺点的研究与分析电火花线切割加工工艺优缺点的研究与分析1.摘要本文对电火花线切割加工工艺的优缺点进行了研究、总结与分析,并对未来发展趋势进行了总结。

2.概述电火花加工工艺,主要是利用具有特定几何形状的放电电极(EDM 电极)在金属(导电)部件上利用火靠工具和工件之间不断的脉冲性火花放电产生局部、瞬时的高温把金属材料逐步蚀除掉形成电极的形状的加工工艺,并广泛应用于冲裁模和铸模的生产,特别是在模具的复杂、精密小型腔、窄缝、沟槽、拐角、小孔、深度切削上有重要的应用。

线切割加工是电火花加工的重要分支,它是一种以线状电极、利用火花放电腐蚀原理对工件进行切割加工的加工工艺。

它不仅具有电火花类加工工艺的通有的加工特点,也有它独有的技术特色与缺点。

研究电火花线切割加工的优缺点对于提高其加工性能、扩展其适用范围有重要的意义。

因此,我列举并分析了线切割加工的优点与不足,并对不同的机型、发展趋势进行了研究。

3.内容一、电火花加工工艺通有的加工特点① 电火花属于不接触加工。

工具电极和工件之间并不直接接触,而是有一个火花放电间隙(0.1-0.01mm),间隙充满了工作液。

② 在加工过程中没有宏观的切削力。

在火花放电时,局部、瞬时爆炸力平均值很小,因此工件的变形和位移很小。

③ 可以加工任何难加工的金属材料和导电材料。

由于加工中材料的去除是靠火花放电时的腐蚀作用实现的,材料的可加工性主要取决于材料的导电性及热学特性,如熔点、沸点、比热容、导热系数、电阻率等,而几乎与其力学性能(硬度、强度等)无关。

这样可以突破传统切削加工对刀具的限制,可以实现用软的工具加工硬、韧的工件甚至可以加工聚晶金刚行、立方氮化硼一类的超硬材料。

目前电极材料多采用紫铜或石墨,因此工具电极较容易加工。

④ 可以加工特殊要求的零件。

由于工具电极于工件在加工过程中没有接触,没有宏观切削力,因此适宜加工低刚度工件或精密加工。

电火花加工技术研究的发展趋势预测

电火花加工技术研究的发展趋势预测

四、结论
电火花成形加工技术作为一种重要的制造工艺,在机械、航空、航天、汽车等 领域得到了广泛应用。本次演示介绍了该技术的现状和发展趋势,指出存在的 不足和发展方向。未来的研究应智能化、绿色制造、超硬材料加工等方面的发 展,以实现电火花成形加工技术的可持续发展。
谢谢观看
例如,利用机器视觉技术对工件进行精确的定位和识别,实现自动化的加工过 程。 (3)绿色化:通过加强环保措施和技术创新,减少电火花加工过程中的环 境污染和资源浪费。例如,研究环保型的电火花加工液和可回收利用的电极材 料,减少对环境的负面影响。
3、模具行业:模具行业是电火 花加工技术的重要应用领域之一
电火花加工技术的研究现状
电火花加工的基本原理是利用电火花放电时产生的瞬间高温来熔化、气化或燃 烧材料,从而达到加工的目的。电火花加工过程中,工具和工件之间产生放电 现象,产生大量的热能,使工件表面材料熔化、汽化,随着工具的移动,在工 件表面形成切削层,从而达到加工的目的。
电火花加工技术在不同领域的应 用
1、航空航天领域:由于航空航天领域的零件材料具有高强度、高硬度、耐高 温等特点,电火花加工技术在制造这些零件中发挥了重要作用。通过电火花加 工,可以有效地提高零件的加工效率和精度。
2、汽车制造业:汽车制造业中,许多关键零部件的制造都依赖于电火花加工 技术。例如,发动机缸体、缸盖等复杂结构的加工,电火花加工技术可以高效 地完成。
参考内容
电火花成形加工技术是一种重要的制造工艺,被广泛应用于机械、航空、航天、 汽车等领域。本次演示将介绍电火花成形加工技术的现状和发展趋势,以期为 相关领域的研究和实践提供参考。
一、电火花成形加工技术的背景
电火花成形加工是一种基于电火花放电原理的加工方法。在加工过程中,工具 和工件之间产生的高速高温放电会熔化、气化或燃烧材料,从而达到加工的目 的。这种加工方法具有加工难度低、工具损耗小、适用材料范围广等优点,但 同时也存在加工效率低下、加工精度难以控制等不足。

电火花夹具毕业论文

电火花夹具毕业论文

电火花夹具毕业论文电火花夹具是一种高效、精密的电火花加工工具,广泛应用于模具制造、机械加工和航空航天等领域。

本论文旨在介绍电火花夹具的基本原理、结构特点、应用范围,以及其在模具制造中的应用研究。

一、电火花夹具的基本原理和结构特点1.基本原理电火花夹具是一种利用电火花加工原理,通过高频脉冲电流使电极上放电,从而在工件上产生钝化分解产物,进而实现加工的夹具。

其基本原理是:将电极放置于工件表面并施加一定的工作电压,使电极和工件之间产生放电现象,经过反复的电脉冲产生的能量消耗,使工件的表面产生少量的消弧加工,从而达到实际的工作目的。

2.结构特点电火花夹具主要由电极、电极夹持器、电源、轨道和控制器等部分组成。

电极是制造高频电场的必要组成部分,电极夹持器是连接电极和电源的部分,电源提供工作电压和电流,轨道是振动输送夹具的部分,控制器则是实现自动控制、计算和记录的部分。

总的来说,电火花夹具是一种复杂的电器传动设备,其参数及性能要求也比较严格,主要依靠优质材料和高精度加工进行制造。

二、电火花夹具的应用范围电火花夹具广泛应用于各类复杂工件的制造、加工和模具等领域。

在模具制造中,电火花夹具是一种高效的加工工具,可大幅提升模具的加工精度和生产效率。

同时,电火花夹具也被应用于其他各个领域中,在磨削、复杂曲面加工、及细微部件加工等方面都有着卓越的表现。

三、电火花夹具在模具制造中的应用研究模具制造是一种对加工精度和效率要求极为严格的工业领域,并且模具的加工难度较高,对于工件的要求尤为严格。

在这种背景下,电火花夹具的应用研究显得尤为重要。

电火花夹具的应用可以大幅提高模具的加工精度和生产效率,同时也可以降低加工成本和加工时间。

通过对电火花夹具运行参数、工艺流程和电阻等参数分析,可以大幅提高模具制造的效率和精度。

在未来的研究中,应进一步优化电火花夹具的结构和性能,实现更高效、更精确的模具制造。

总结:电火花夹具是一种高效、精密的加工工具,广泛应用于各类复杂工件和模具制造中。

电火花线切割在模具中的实际应用论文

电火花线切割在模具中的实际应用论文

毕业设计说明书题目:电火花线切割在模具产品加工中的实际应用学生:学号:系部:机电工程系专业:数控技术指导教师:于海玲年月日毕业论文任务书机电工程系数控技术专业班级学生:题目:电火花线切割在模具产品加工中的实际应用毕业论文从年月日起到年月日课题的意义与培养目标:通过对电火花线切割在模具产品加工中的实际应用,了解当前电火花线切割模具中的发展,巩固所学知识,培养具有一定动手操作能力. 和自我学习能力.论文所需收集的原始数据与资料:根据数控加工原理,数控加工编程和模具设技基础中的电火花加工原理与应用编写成”电火花线切割在模具产品加工中的实际应用”论文课题的主要任务(需附有技术指标分析)通过对电火花线切割在模具产品加工中的实际应用,了解当前电火花线切割在模具中的发展,巩固所学知识,要求有一定的自我学习能力,熟悉基本概念.有一定语言组织能力,电脑操作能力.论文进度安排与完成的相关任务(以教学周为单位):周次论文任务与要求第一周收集,整理资料,熟悉本次设计课题- 1 - / 16指导教师:于海玲日期:教研室主任:日期:学生签名:日期:目录1引言- 3 -2数控电火花线切割原理- 4 -3数控电为花线切割的特点- 5 -4数控电火花线切割在塑料模加工中的应用场合- 6 -4.1.数控电火花线切割在动模和定模加工中的应用-6-4.2.数控电火花线切割在工具电极加工中的应用-7-4.3.数控电火花线切割在零配件加工中的应用-8-5数控电火花线切割在塑料模加工中的几种特殊应用方法- 8 -5.1数控电火花线切割在顶针孔加工中的应用方法-9-5.2数电火花控线切割在斜顶孔加工中的应用方法-9-5.3数控电火花线切割在上下异形件加工中的应用方法-10-5.4数控电火花线切割在斜导柱孔加工中的应用方法-12-6线切割加工工艺分析- 12 -6.1凸模加工工艺-12-6.2凹模板加工中的变形分析-13-6.3凹模板型孔小拐角的加工工艺-14-7总结- 14 -致- 14 -参考文献- 15 -电火花线切割在模具产品加工中的实际应用摘要电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- -- - . -考试资料- 电火花加工的历史

1943年,联学者拉扎连科夫妇研究发明电火花加工,之后随着脉冲电源和控制系统的改进,而迅速发展起来。最初使用的脉冲电源是简单的电阻-电容回路。

50年代初,改进为电阻-电感-电容等回路。同时,还采用脉冲发电机之类的所谓长脉冲电源,使蚀除效率提高,工具电极相对损耗降低。 随后又出现了大功率电子管、闸流管等高频脉冲电源,使在同样表面粗糙度条件下的生产率得以提高。

60年代中期,出现了晶体管和可控硅脉冲电源,提高了能源利用效率和降低了工具电极损耗,并扩大了粗精加工的可调围。

到70年代,出现了高低压复合脉冲、多回路脉冲、等幅脉冲和可调波形脉冲等电源,在加工表面粗糙度、加工精度和降低工具电极损耗等方面又有了新的进展。在控制系统方面,从最初简单地保持放电间隙,控制工具电极的进退,逐步发展到利用微型计算机,对电参数和非电参数等各种因素进行适时控制。

电火花加工 电火花加工是在加工过程中,使工具和工件之间不断产生脉冲性的火花放电,靠放电时局部、瞬间产生的高温把金属蚀除下来。又称放电加工和电蚀加工,英文称(Electrical Discharge Machining,简称EMD)。

按照工具电极的形式及其与工件之间相对运动的特征,可将电火花加工方式分为五类:

①利用成型工具电极,相对工件作简单进给运动的电火花成形加工; ②利用轴向移动的金属丝作工具电极,工件按所需形状和尺寸作轨迹运动,以切割导电材料的电火花线切割加工; - -- - . -考试资料- ③利用金属丝或成形导电磨轮作工具电极,进行小孔磨削或成形磨削的电火花磨削;

④用于加工螺纹环规、螺纹塞规、齿轮等的电火花共轭回转加工; ⑤小孔加工、刻印、表面合金化、表面强化等其他种类的加工。 电火花加工的基本原理

(1)极间介质的电离、击穿,形成放电通道 放电通道是有大量带正电和负电的粒子以及中型粒子组成,带电粒子高速运动,相互碰撞,产生大量热能,使通道温度相当高,通道中心温度可达到10000摄氏度以上。由于放电时电流产生磁场,磁场又反过来对电子流动产生向心的磁压缩效应和周围介质惯性力压缩效应的作用,通道扩展受到很大阻力,故放电开始阶段通道截面很小,而通道有高温热膨胀形成的压力高达几百万帕,高温高压的放电通道以及随后瞬间气化形成的气体急速扩展,产生一个强烈的冲击波向四周传播。在放电的同时还伴随着光效应、声效应和热效应等,这就形成了肉眼所能看到的电火花。

(2)介质热分解、电极材料的融化,汽化热膨胀 极间介质被电离、击穿,形成放电通道后,脉冲电源使通道间的电子高速奔向正极,正离子奔向负极。电能转化为动能,动能通过相互碰撞转化为热能。正极和负极表面形成瞬间热源,使通道瞬间达到很高的温度。通道高温首先使工作液介质气化,进而进行热分解。并且使两电极表面的金属材料开始融化直至沸腾气化。气化后的工作液和金属蒸汽瞬间体积猛增,形成了爆炸的特性。所以在观察电火花加工时,可以看到工件与工具电极间有小气泡冒出,工作液逐渐变黑并听到轻微的爆炸声。

(3)电极材料的抛出 通道和正负级表面放电点瞬间时使高温使工作液气化和金属材料融化、气化,热膨胀产生很高的瞬间压力。通道中心的压力最高,使气化的其体体积不断向外膨胀,形成一个扩的冲击围形似“气泡”,在该围外、上下压强不相同,压力高的地方的熔融金属液体和蒸汽就被排挤、抛出而进入工作液。在放电过程中冲击气泡不断扩大,当放电结束后,气泡温度不再升高,但由于液体介质的惯性作用,气泡会继续向外扩,使气泡压力急剧降低,甚至降低到大气压一下,形成局部真空,使在高压下溶解在熔化和过热液态金属材料中的气体析出,以及液态金属本身在低压下再沸腾。由于压力的骤降,是熔融金属材料以及其蒸气在加工形成的小坑中再次爆沸飞溅而被抛出。

(4)极间介质的消电离 - -- - . -考试资料- 在电火花放电加工过程中产生的电蚀产物如果来不及排除和扩散,就会改变间隙介质的成分和降低绝缘强度。那么产生的热量将不能及时传出,带电粒子自由能不易降低,将大大减少复合几率,是电离过程不充分,将使下一个脉冲放电通道不能顺利的转移到其他部位,而始终集中在某一部分,使该处介质局部过热而破坏消电离过程,脉冲火花放电将恶循环的转变为有害的稳定电弧放电,此外还使该处介质局部过热,局部过热的工作液高温分解,结碳,使加工无法进行,并烧坏电极。因此为了保证电火花加工过程的正常进行,在两次放电之间必须有足够的时间间隔让电蚀产物充分排除,恢复放电通道的绝缘性,使工作液介质消电离。

电火花加工的条件 为了达到利用电腐蚀现象对金属材料进行尺寸加工,需创造创造以下条件: 1. 必须使工具电极和工件被加工表面之间保持一定的放电间隙,这一间隙加工条件而定,通常为0.02~0.1mm。如果间隙过大,极间电压不能击穿极间工作液介质,因而不能产生火花放电;如果间隙过小,很容易造成短路接触,同样不能产生火花放电。为此,火花加工过程中不许具有工具电极的自动进给和调节装置,使其和工件的加工表面保持某一放电间隙。

2. 火花放电必须是瞬时的脉冲性放电放电间隙加上电压后,延续一段时间t1,需停歇一段时间t0,延续时间ti, 一般为1~1000μs,停歇时间t0一般需要20~100μs,这样才能使放电所产生的热量传导扩散到其余部分,把每一次的放电蚀点分别局限在很小的围,否则,像持续电弧放电那样,会使表面烧伤而无法用作尺寸加工。为此电火花加工必须采用脉冲电源。

3. 火花放电必须在有一定绝缘性能的液体介质中进行,例如没有、皂化液或去离子水等。液体介质又称工作液,他们必须有较高的绝缘强度(电阻率为10^3~10^7Ω·cm),有利于产生脉冲性火花放电。同时,液体还能把电火花加工过程中产生的金属小屑、碳黑、小气泡等电蚀产物从放电间隙中悬浮排除出去,并且对电极和工件表面有较好的冷却作用。

电火花加工的优点以及缺点 - --

- . -考试资料- 优点: 1、能加工硬质合金和淬火的压铸模具镶块; 2、能加工复杂的型腔的模具如形状复杂的深孔、细孔、加强筋、窄槽; 3、加工时有很小的受力 4、主要加工塑料模具和压铸模具和热锻模具 5、使用的电极材料多为比加工工件比较软的石墨和紫铜;采用石墨和紫铜的特点是采用电加工的形状都比较复杂加工电极比较烦琐,采用容易加工的石墨会产生事半功倍的效果; 6、直接使用电能加工,改变的传统的加工方法,操作简单,易于掌握,容易

实现电气自动化。电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。

缺点: 1、加工速度较慢。 2、往往在加工比较大的型腔时需要其他的加工方法配合比如为了高效率需要铣去型腔部分,然后用电极再去加工。 3、采用电火花加工的工件通常都是盲孔不便于观察,到精加工时放电间隙调

小,特别容易产生积碳,严重时甚至产生烧损的现象。 4、加工时工件装卡在电极卡头的垂直下方,找正时需要长时间附下身去找

正,对不正的情况,操作者的腰部特别容易疲劳。 5、采用的工作液作为放电介质,在加工过程中还起着冷却、排屑等作用。常

用的工作液是粘度较低、闪点较高、性能稳定的介质,如煤油,装卡时遇到怕卡出痕迹的工件不能垫纸板和织物只能垫铜皮。工作环境要求防火,工作时要求排烟,操作者要求戴防毒面具,排烟不倡导致室的烟雾增多,严重影响操作者的身体健康。在来回装卡工件时,手上势必会粘上煤油,对手上的皮肤伤害很大。 6、装卡电极时,同一工件粗加工和精加工,工件不动,只要换电极就要重新

找正,哪怕把电极拆下来简单处理一下,给操作者带来很大的工作量。 7、电火花加工测量尺寸非常复杂往往要借助辅助工具,所以对尺寸的要求相

对较低。

影响材料放电腐蚀的因素

1. 极性效应对电蚀量的影响 极性效应:单纯由于正负极性不同而彼此电蚀量不一样的现象 1) 产生极性效应的原因: - -- - . -考试资料- 在电火花放电过程中,正、负两极表面分别受到负电子和正离子的轰击和瞬时热源的作用,在两极表面所分配到的能量不一样,因而融化、气化抛出的电蚀量也不一样。

2) 影响极性效应的因素: 脉宽、脉间、脉冲峰值电流、放电电压、工作液以及电极对的材料等。 2. 电参数的影响(电参数主要指的是电压脉冲宽度t1、电流脉冲宽度te、脉冲间隔to、脉冲频率f、峰值电流 e、峰值电压 和极性等。)

单个脉冲放电所释放的能量取决于极间放电电压、放电电流和放电持续时间,所以单个脉冲放电能量为

Wm=∫0teu(t)i(t)dt 火花放电精细的电阻的非线性特性,击穿后间隙上的火花维持电压是一个与电极对材料及工作液种类有关的数值。

由上述可得,提高电蚀量和生产率的途径在于:提高脉冲频率f;增加单个脉冲能量Wm(可增加平均放电电流e和脉冲宽度ti,减少脉冲间隙t0,提高系数ka、ke)

3. 金属材料热学常数对电蚀量的影响 金属材料的热学常数包括熔点,沸点,热导率,比热容,融化热,气化热等。

而正负极产生的热量主要消耗在: a) 由于热传导散失在电极其他部分和工作液中 b) 使局部金属材料温度升高至熔点 c) 熔化金属材料 d) 使熔化的金属材料继续升温至沸点 e) 使熔融金属气化 f) 使金属蒸汽继续加热成过热蒸汽 所以可得脉冲放电能量相同时,金属的热学常数越高,电蚀量越小,越难加工。此外热导率越大的金属,由于传热快导致瞬间传达的热量越多,因而降低了自身的电蚀量。

4. 工作液对电蚀量的影响 a) 形成火花击穿放电通道,并在放电结束后迅速恢复间隙绝缘状态,防止破坏性电弧放电;

相关文档
最新文档