七年级下三角形的认识资料讲解
七年级认识三角形知识点

七年级认识三角形知识点在初中数学学科中,三角形是一个重要的几何图形。
在七年级,学生开始学习关于三角形的知识。
本文将对七年级学生应该了解的三角形知识点进行详细介绍。
三角形的定义三角形是由三条线段(边)所组成的一个几何图形,在三角形中,这三条边的任意两边之和大于第三边。
三角形的分类三角形可以按照三个角的大小来进行分类。
根据角度的大小,有以下三种类型:1.锐角三角形:三角形的三个角都小于90度。
2.直角三角形:三角形有一个角是90度。
3.钝角三角形:三角形有一个角大于90度。
三角形的命名当我们在问及一个特定的三角形时,我们通常会使用其中一个角作为这个三角形的名字。
接下来是一些常见的三角形名称:1.等边三角形:三边长度相等,并且每个角都是60度。
2.等腰三角形:两边长度相等,并且两个顶角都是相等的。
3.直角三角形:拥有一个90度角的三角形。
4.不等边三角形:三边长度都不相等。
5.等角三角形:三个角都相等的三角形。
勾股定理在直角三角形中,勾股定理是指:直角边上的两个平方和等于斜边上的平方。
勾股定理可以表示为:a² + b² = c²,其中a和b是直角三角形的两条直角边而c是斜边。
勾股定理是在数学研究中最基本和重要的领域之一。
三角形的周长和面积当我们谈论一个三角形时,我们可以针对其周长和面积来进行讨论。
三角形的周长是指其所有边长之和,周长可以表示为:周长 = a + b + c,其中a、b和c分别代表三角形的三个边长。
三角形的面积是指其内部的区域。
在七年级数学中,我们可以使用海伦公式来计算三角形的面积,海伦公式可以表示为:p = (a+b+c) ÷ 2其中,p是三角形半周长的值。
当确定了三角形的半周长后,可以使用以下公式来计算它的面积:面积= √(p × (p-a) × (p-b) × (p-c))结论以上是七年级关于三角形的知识点。
学生应该了解三角形的定义、分类、命名、勾股定理、周长和面积,并且具备使用海伦公式来计算三角形面积的能力。
七年级三角形知识点

七年级三角形知识点在初中数学中,三角形作为一个重要的基础概念,被广泛地应用于其它学习内容中。
在七年级的数学中,三角形以其简单易懂、易于计算的特点成为了不可或缺的一部分。
本文将针对七年级学生所需要掌握的三角形知识点进行详尽讲解。
一、三角形的定义及分类三角形是由三条边和三个顶点组成的图形。
我们可以根据三角形的边长及角度来分类:1.根据边的长度分类,三角形可以分为等边三角形、等腰三角形和普通三角形。
2.根据角的大小分类,三角形可以分为锐角三角形、钝角三角形和直角三角形。
二、等边三角形等边三角形是指三边相等的三角形,其特点是每个角都相等。
举个栗子,我们可以想到最常见的等边三角形——正三角形,它有以下特点:1.三条边相等。
2.三个角都是60度。
3.正三角形的每个内角都小于180度。
三、等腰三角形等腰三角形是指两边相等的三角形,其特点是其两个角也相等。
以下为等腰三角形的一些特征:1.两边相等,第三边长度不同。
2.两个角度相等。
3.等腰三角形的底边上角度为锐角或钝角。
四、普通三角形普通三角形是指三边都不相等的三角形。
它的特点是它的三个角度都不相等。
以下为普通三角形的一些特征:1.三边长度各不相同。
2.三个角度都不相等。
3.普通三角形的内角和等于180°。
五、直角三角形直角三角形是指其中一个内角为90度的三角形。
其它两个角则分别为锐角和钝角,以下为直角三角形的一些特点:1.一个角为90度。
2.另外两个角,一个是锐角一个是钝角。
3.斜边是直角三角形中最长的一条边。
六、三角形的性质在学习三角形的过程中,我们不仅要知道不同种类的三角形,还要了解它们的性质。
以下是三角形的一些性质:1.任意两边之和大于第三边。
2.任意两边之差小于第三边。
3.三角形的内角和为180度。
4.直角三角形中,斜边平方等于两腰平方之和。
七、小结三角形是初中数学课程中不可或缺的基础内容,因此学生需要认真学习并掌握其中的知识点。
除了以上的定义、分类和性质,还有许多与三角形相关的命题需要学生进一步掌握,例如勾股定理、正弦定理和余弦定理等。
七年级数学三角形知识点总结

七年级数学三角形知识点总结一、三角形的概念1. 定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形有三条边、三个顶点和三个内角。
2. 三角形的表示方法三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
二、三角形的分类1. 按角分类锐角三角形:三个角都是锐角的三角形。
直角三角形:有一个角是直角的三角形。
直角三角形可以用“Rt△”表示,直角所对的边叫做斜边,夹直角的两条边叫做直角边。
钝角三角形:有一个角是钝角的三角形。
2. 按边分类不等边三角形:三边都不相等的三角形。
等腰三角形:有两边相等的三角形。
相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。
等边三角形:三边都相等的三角形。
等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。
三、三角形的三边关系1. 定理三角形两边之和大于第三边。
三角形两边之差小于第三边。
2. 应用判断三条线段能否组成三角形:只需判断较短的两条线段之和是否大于最长的线段。
已知三角形的两边长,求第三边的取值范围:设三角形的两边长分别为a、b (a>b),则第三边c的取值范围是a b < c < a + b。
四、三角形的内角和1. 三角形内角和定理三角形三个内角的和等于180°。
2. 证明方法可以通过作平行线将三角形的三个内角转化为一个平角来证明。
3. 直角三角形的两个锐角关系直角三角形的两个锐角互余。
五、三角形的外角1. 定义三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
2. 三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。
三角形的一个外角大于任何一个与它不相邻的内角。
六、多边形1. 多边形的概念在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
如果一个多边形由n条线段组成,那么这个多边形就叫做n边形。
专题4.1认识三角形(与三角形有关的线段)(知识讲解)-七年级数学下册基础知识专项讲练(北师大版)

专题4.1 认识三角形(与三角形有关的线段)(知识讲解)【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并会应用三角形三边间的关系;3. 理解三角形的高、中线、角平分线及重心的概念,学会它们的画法及简单应用;4. 对三角形的稳定性有所认识,知道这个性质有广泛的应用.【要点梳理】要点一、三角形的定义及分类1. 定义: 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.特别说明:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A 、B 、C 的三角形记作“△ABC ”,读作“三角形ABC ”,注意单独的△没有意义;△ABC 的三边可以用大写字母AB 、BC 、AC 来表示,也可以用小写字母a 、b 、c 来表示,边BC 用a 表示,边AC 、AB 分别用b 、c 表示.2.三角形的分类(1)按角分类:特别说明:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.(2)按边分类:特别说明:①等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;②等边三角形:三边都相等的三角形.要点二、三角形的三边关系定理:三角形任意两边的和大于第三边.推论:三角形任意两边的差小于第三边.特别说明:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形(3)证明线段之间的不等关系.要点三、三角形的高、中线与角平分线1、三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.三角形的高的数学语言:如下图,AD 是ΔABC 的高,或AD 是ΔABC 的BC 边上的高,或AD⊥BC 于D ,或∠ADB=∠ADC=∠90°.注意:AD 是ΔABC 的高∠ADB=∠ADC=90°(或AD⊥BC 于D);特别说明:(1)三角形的高是线段;(2)三角形有三条高,且相交于一点,这一点叫做三角形的垂心;(3)三角形的三条高:(ⅰ)锐角三角形的三条高在三角形内部,三条高的交点也在三角形内部;(ⅱ)钝角三角形有两条高在三角形的外部,且三条高的交点在三角形的外部;(ⅲ)直角三角形三条高的交点是直角的顶点.2、三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.三角形的中线的数学语言:如下图,AD 是ΔABC 的中线或AD 是ΔABC 的BC 边上的中线或BD =CD =BC. 特别说明:(1)三角形的中线是线段;(2)三角形三条中线全在三角形内部; (3)三角形三条中线交于三角形内部一点,这一点叫三角形的重心; (4)中线把三角形分成面积相等的两个三角形.3、三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线. 三角形的角平分线的数学语言:如下图,AD 是ΔABC 的角平分线,或∠BAD=∠CAD 且点D 在BC 上.注意:AD 是ΔABC 的角平分线∠BAD=∠DAC=∠BAC (或∠BAC=2∠BAD=2∠DAC) . 特别说明:(1)三角形的角平分线是线段; ⇔21⇔21(2)一个三角形有三条角平分线,并且都在三角形的内部;(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;(4)可以用量角器或圆规画三角形的角平分线.要点四、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性. 特别说明:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.【典型例题】类型一、与三角形有关线段??三角形的边段??概念??分类1.如图所示,(1)图中有几个三角形?(2)说出CDE ∆的边和角.(3)AD 是哪些三角形的边?C ∠是哪些三角形的角?【答案】(1)图中有:ABD ∆,ADC ∆,ADE ∆,EDC ∆,ACB ∆,共5个;(2)CDE ∆的边:CD ,CE ,DE ,角:C ∠,CDE ∠,DEC ∠;(3)AD 是ADB ∆,ADE ∆,ADC ∆的边;C ∠是ABC ∆,ADC ∆,DEC ∆的角.【分析】(1)分类找三角形,含AB 的,含AD (不含AB )的,含DE (不含AD )的三类即可;(2)根据组成三角形的三条线段一一找出,利用三角形两边的夹角即可找出;(3)观察图形,找出含AD 的三角形,先找AD 左边的,再找AD 右边的即可,根据三角形内角的定义,角的两边是三角形的边,找到第三边,在∠C 的内部在线段看与角的两边是否相交即可解:(1)图中有:以AB 为边的三角形有∠ABD ,∠ABC ,以AD 为边的三角形有∠ADE ,∠ADC ,再以DE 为边三角形有∠DEC ,一共有5个三角形分别为ABD ∆,ABC ∆,ADC ∆,ADE ∆,EDC ∆;(2)CDE ∆的边:CD ,CE ,DE ,角:C ∠,CDE ∠,DEC ∠;(3)AD 是ADB ∆,ADE ∆,ADC ∆的边;C ∠是ABC ∆,ADC ∆,DEC ∆的角.【点拨】本题考查三角形的识别,三角形的基本要素,三角形个数,观察图形找出图中的三角形,三角形的组成,找以固定线段的三角形,和固定角的三角形,掌握利用分类思想找出所有的图形,三角形的边与角,共线段三角形以及共角三角形是解题关键.举一反三:【变式】如图,以BD 为边的三角形有哪些?分别写出来;以∠1为内角的三角形有哪些?分别写出来.【分析】先根据BD 边找三角形,再根据∠1找三角形.解:以BD 为边的三角形有:∠BDC ,∠BDO ,以∠1为内角的三角形有:∠EOC ,∠ACD .【点拨】本题考查了三角形的内角和边的概念,学会分类的方法找三角形是本题的解题关键.2.已知ABC 的三边长分别为a ,b ,c .若a ,b ,c 满足22()()0a b b c -+-=,试判断ABC 的形状.【答案】ABC 的形状是等边三角形.【分析】利用平方数的非负性,求解a ,b ,c 的关系,进而判断ABC .解:∠22()()0a b b c -+-=,∠0a b -=,0b c -=∠a =b =c ,∠ ABC ∆是等边三角形.【点拨】本题主要是考查了三角形的分类,熟练掌握各类三角形的特点,例如三边相等为等边三角形,含90︒的三角形为直角三角形等,这是解决此类题的关键.举一反三:【变式】满足下列条件的三角形是锐角三角形、直角三角形还是钝角三角形.(1)∠ABC 中,∠A =30°,∠C =∠B ;(2)三个内角的度数之比为1:2:3.【答案】(1)锐角三角形;(2)直角三角形.【分析】根据角的分类对三角形进行分类即可.解:(1)∠∠A =30°,∠C =∠B ,∠A +∠C +∠B =180°,∠∠C =∠B =75°,∠满足条件的三角形是锐角三角形.(2) ∠三个内角的度数之比为1∠2∠3,∠可求得每个内角的度数分别为30°,60°,90°,∠满足条件的三角形是直角三角形.【点拨】本题主要考查了三角形的分类问题.类型二、与三角形有关线段??构成三角形条件??确定第三边取值范围3.判断下列长度的三条线段能否拼成三角形?为什么?(1)3cm 、8cm 、4cm ; (2)5cm 、6cm 、11cm ; (3)5cm 、6cm 、10cm ;【答案】(1)不能,因为3cm +4cm <8cm ;(2)不能,因为5cm +6cm =11cm ;(3)能,因为5cm +6cm >10cm【分析】略举一反三:【变式】如图所示三条线段a ,b ,c 能组成三角形吗?你是用什么方法判别的?【答案】三条线段a ,b ,c 能组成三角形,理由见分析【分析】只需要利用作图方法证明b a c b c -<<+即可.解:三条线段a ,b ,c 能组成三角形,理由如下:如图所示,根据线段的和差可知b a c b c -<<+,∠三条线段a ,b ,c 能组成三角形.【点拨】本题主要考查了构成三角形的条件,线段的尺规作图,证明b a c b c -<<+是解题的关键.4.己知三角形的两边长为5和7,第三边的边长a .(1)求a 的取值范围;(2)若a 为整数,当a 为何值时,组成的三角形的周长最大,最大值是多少?【答案】(1) 212a << (2)当11a =时,三角形的周长最大为23【分析】(1)根据三角形三边关系求解即可得到答案;(2)由(1)取最大值即可得到答案.(1)解:由三角形的三边关系可知7575a -<<+,即212a <<,∠a 的取值范围是212a <<;(2)解:由(1)知,a 的取值范围是212a <<,a 是整数,∠当11a =时,三角形的周长最大,此时周长为:571123++=,∠周长的最大值是23.【点拨】本题考查三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边. 举一反三:【变式】已知:ABC 中,5AB =,21BC a =+,12AC =,求a 的范围.【答案】38a <<【分析】根据三角形的三边关系列不等式求解即可.解:∠AB BC AC 、、是ABC 的三边,∠AC AB BC AC AB -<<+,即:a -<+<+12521125,解得:38a <<,故答案为:38a <<.【点拨】本题考查了三角形的三边关系、解不等式组;熟练掌握三角形的三边关系以及解不等式组的方法是解题的关键.类型三、与三角形有关线段??三角形的高??作图??求值(等面积法)5.在如图所示的方格纸中,每个小正方形的边长均为1,点A ,点B ,点C 均在小正方形的顶点上.(1) 画出ABC 中BC 边上的高AD ;(2) 直接写出ABC 的面积为___.【答案】(1)见分析 (2)8【分析】(1)结合网格图,直接利用三角形高线作法得出答案;(2)结合网格图,直接利用三角形的面积求法得出答案.(1)解:如图所示:AD 即为所求;1【变式】如图:(1) 用三角尺分别作出锐角三角形ABC ,直角三角形DEF 和钝角三角形PQR 的各边上的高线.(2) 观察你所作的图形,比较三个三角形中三条高线的位置,与三角形的类型有什么关系?【分析】(1)根据三角形高的画法画图即可;(2)根据(1)所作图形进行求解即可.(1)解;如图所示,即为所求; (2)解:由(1)可知,锐角三角形的三条高线的交点在三角形内部;直角三角形的三条高线的交点为直角顶点;钝角三角形的三条高线的交点在三角形外部.【点拨】本题主要考查了画三角形的高,三角形高线的交点,正确画出三角形的高是解题的关键.6.如图,,AD AE 分别是ABC 的中线和高,3cm AE =,26cm ABD S =△.求BC 和DC 的长.【答案】8cm BC =,4cm CD =ABD S =是ABC 的中线,得到解:由题意,得:BD AE ⋅4cm ,是ABC 的中线,12BD BC =∠4cm,28cm CD BC BD ===.【点拨】本题考查三角形的高线和中线.熟练掌握三角形的中线是三角形的顶点到对边中点所连线段,是解题的关键.举一反三:【变式】如图,AD BE ,分别是ABC 的高,若465AD BC AC ===,,,求BE 的长.2ABC S =分别是ABC 的高,1122ABC S BC AD AC =⨯=⨯45AD BC AC ===,,,462455BC BE ⨯==24BE =【点拨】本题考查了三角形面积的计算公式,掌握等面积法求解是解题的关键.7.如图,在ABC 中()2AB BC AC BC BC >=,,边上的中线AD 把ABC 的周长分成70和50两部分,求AC 和AB 的长.【答案】5636AC AB ==,【分析】先根据2AC BC =和三角形的中线列出方程求解,分类讨论7050AC CD AC CD +=+=①,②,注意答案是否满足条件,即是否满足题目给出的条件、是否满足三角形三边的关系.解:设BD CD x ==,则24AC BC x ==,BC 边上的中线AD 把ABC 的周长分成70和50两部分,AB BC >,①当7050AC CD AB BD +=+=,时,470x x +=,解得:14x =,441456AC x ∴==⨯=,14BD CD ==,50501436AB BD ∴=-=-=,36AB ∴=,36286456BC AB AC +=+=>=,满足三边关系,5636AC AB ∴==,;②当5070AC CD AB BD +=+=,时,450x x +=,解得:10x =,441040AC x ∴==⨯=,10BD CD ∴==,70701060AB BD =-=-=,60AC BC AB +==,不满足三角形三边关系,所以舍去,5636AC AB ∴==,.【点拨】本题考查了三角形中线的性质和三边的关系,解题的关键是找到等量关系,列出方程. 举一反三:【变式】如图,已知AD 、AE 分别是ABC 的高和中线9cm,12cm AB AC ==,15cm BC =,90BAC ∠=︒.试求:(1) ABE 的面积;(2) AD 的长度;(3) ACE △与ABE 的周长的差.2ACE △的周长-ABE 的周长)解:ABC 是直角三角形,2191254(cm )2ABC =⨯⨯,AE 是BC 上的中线,BE EC ∴=,ABE ACE S S ∆∆∴=,2127cm 2ABE ABC S S ∆∆∴=; )解:BAC ∠=,AD 是BC 1122AD BC ∴⋅=AB AC AD BC ⋅∴=)解:AE 是BC BE CE =,ACE 的周长-ABE 的周长和ABE 的周长差是3cm 【点拨】本题考查了三角形的面积公式,以及三角形的中线将三角形分成面积相等的两部分,熟练掌握相关的性质与公式是解决此题的关键.8.如图,ABC 中,90C ∠=︒,8cm AC ,6cm BC ,10cm AB =.若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒2cm .设运动的时间为t 秒.(1) 当t =___________时,CP 把ABC 的周长分成相等的两部分?(2) 当t =___________时,CP 把ABC 的面积分成相等的两部分?(3) 当t 为何值时,BCP 的面积为12?【答案】(1)6(2)6.5(3) 2或6.5秒先求出ABC的周长为把ABC的周长分成相等的两部分时,12cmBC+=速度即可求解;)根据中线的性质可知,点把ABC的面积分成相等的两部分,进而求解即)分两种情况:∠P在AC1)ABC中,∠8cmAC,6cmBC,10cmAB,∠ABC的周长861024cm=++=,∠当CP把ABC的周长分成相等的两部分时,点P在AB上,此时212t=,解得6t=.故答案为:6;)当点P在AB中点时,把ABC的面积分成相等的两部分,此时213t=,解得 6.5t=.故答案为:6.5;)分两种情况:∠当P在AC∠BCP的面积16 2CP⨯⨯4CP=,24t=,t∠当P在AB∠BCP的面积=12=ABC面积的一半,∠P为AB中点,213t=, 6.5.故t为2或6.5秒时,BCP的面积为12.【点拨】本题考查了一元一次方程的应用,三角形的周长与面积,三角形的中线,难度适中.利用分【变式】已知ABC的面积为S,根据下列条件完成填空.图1图2图3(1) 1AM 是ABC 的边BC 上的中线,如图1,则1ACM 的面积为 (用含S 的式子表示,下同);2CM 是1ACM 的边1AM 上的中线,如图2,则2ACM △的面积为 ;3AM 是2ACM △的边2CM 上的中线,如图3,则3ACM △的面积为 ;…… )中的求解可得规律,利用规律即可求解.是ABC 的边上的中线,ABC 的面积为11122ACM ABC S S S ==; 2CM 是1ACM 的边AM 2, 12111244ACM ACM ABC S S S S ===;3AM 是2ACM △的边2CM 上的中线,如图3,231128ACM ACM S S S ==, 故答案为:12S ,14S ,1)解:∠112ACM SS =,211124ACM ACM S S S ==2312ACM ACM S S ==,以此类推,可得12n ACM S ⎛⎫= ⎪⎝⎭2022=2022ACM S故答案为:202212⎛⎫ ⎪【点拨】本题考查了三角形中线的性质,熟记三角形的一条中线把三角形的面积分成相等的两部分是9.如图,CE 是ABC 的角平分线,EF BC ∥,交AC 于点F ,已知64AFE ∠=︒,求FEC ∠的度数.【答案】32︒ ACB AFE ==∠是ABC 的角平分线,12BCE ACB =∠FEC BCE =∠本题主要考查了平行线的性质,【变式】如图,点E 为直线AB 上一点,B ACB ∠=∠,BC 平分ACD ∠,求证:AB CD .【分析】根据平行线的判定定理求解即可.解:BC 平分ACD ∠,ACB BCD ∴∠=∠,B ACB ∠=∠,B BCD ∴∠=∠,∠AB CD ∥.【点拨】本题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键.10.如图,ABC 中,按要求画图:(1) BAC ∠的平分线AD ;(2) 画出ABC 中BC 边上的中线AE ;(3) 画出ABC 中AB 边上的高CF .【分析】(1)画出BAC ∠的平分线交BC 于D 即可;(2)取BC 的中点E ,连接AE ,中线AE 即为所求;(3)过点C 作CF BA ⊥交BA 的延长线于F ,CF 即为ABC 中AB 边上的高.(1)解:如图,AD 即为所求;(2)解:如图,中线AE 即为所求;(3)解:如图,高CF 即为所求.【点拨】本题考查了作三角形的角平分线、中线和高线,解决本题的关键是掌握基本作图方法.举一反三:【变式】在边长为1的正方形网格中:''';(1)画出ABC沿CB方向平移2个单位后的A B C'''的重叠部分面积为多少?(2)ABC与A B C重叠部分面积为'''即可;)根据题意画出ABC沿CB个单位后的A B C)正方形的边长为,根据图形进行求解即可.'''如图所示:解:(1)ABC沿CB方向平移2个单位后的A B C(2)∠正方形的边长为1,9.下列图形中哪些具有稳定性?【答案】(1)(4)(6)中的图形具有稳定性.【分析】根据三角形的稳定性可直接进行求解.解:具有三角形稳定性的有(1)(4)(6).【点拨】本题主要考查三角形的稳定性,熟练掌握三角形的稳定性是解题的关键.举一反三:【变式1】(1)下列图形中具有稳定性是;(只填图形序号)(2)对不具有稳定性的图形,请适当地添加线段,使之具有稳定性.【答案】(1)∠∠∠;(2)图见分析【分析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性.解:(1)具有稳定性的是∠∠∠三个.(2)如图所示:【点拨】本题主要考查了三角形的稳定性,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.【变式2】如图(1)扭动三角形木架,它的形状会改变吗?如图(2)扭动四边形木架,它的形状会改变吗?如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?归纳:∠三角形木架的形状______,说明三角形具有______;∠四边形木架的形状______说明四边形没有______.【答案】图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:∠是三角形,稳定性;∠四边形,稳定性.【分析】∠根据三角形的稳定性进行解答即可;∠根据四边形的不稳定性进行解答即可.解:图(1)扭动三角形木架,它的形状不会改变,因为三角形具有稳定性;图(2)扭动四边形木架,它的形状会改变,四边形不稳定;图(3)斜钉一根木条的四边形木架的形状形状不会改变,四边形变成两个三角形,三角形具有稳定性;归纳:∠由三角形具有稳定性知,三角形木架的形状不会改变,这说明三角形具有稳定性.故答案为:是三角形,稳定性;∠四边形木架的形状是四边形,四边形具有不稳定性.故答案为:四边形,稳定性.【点拨】本题考查的是三角形的稳定性,三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,比较简单.。
北师大版七年级下册第三章三角形讲义资料讲解

三角形1.认识三角形1、它的三个顶点分别是,三条边分别是,三个内角分别是。
2、分别量出这三角形三边的长度,并计算任意两边Ab C之和以及任意两边之差。
你发现了什么?结论:三角形任意两边之和大于第三边三角形任意两边之差小于第三边c aB例:有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?长度为7cm的木棒呢?二、巩固练习:1、下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(单位:cm)(1)1,3,3(2)3,4,7(3)5,9,13(4)11,12,22(5)14,15,302、已知一个三角形的两边长分别是3cm和4cm,则第三边长X的取值范围是。
若X是奇数,则X的值是。
这样的三角形有个;若X是偶数,则X的值是,这样的三角形又有个3、一个等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是cm 夯实基础1、填空:(1)当0°<α<90°时,α是角;(2)当α=°时,α是直角;(3)当90°<α<180°时,α是角;(4)当α=°时,α是平角。
A2、如右图,E∵AB∥CE,(已知)∴∠A=,()B12C3D∴∠B=,()(第2题)二、探索练习:根据知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的兴趣)结论:三角形三个内角和等于180°(几何表示)练习1:1、判断:(1)一个三角形的三个内角可以都小于60°;()(2)一个三角形最多只能有一个内角是钝角或直角;()2、在△ABC中,(1)∠C=70°,∠A=50°,则∠B=度;(2)∠B=100°,∠A=∠C,则∠C=度;(3)2∠A=∠B+∠C,则∠A=度。
3、如右图,在△ABC中,∠A=3x°∠=2x°∠=x°求三个内角的度数。
七年级下册数学专题10 三角形(知识点串讲)(解析版)

专题10 三角形知识网络重难突破知识点一三角形角和边1、三角形的有关概念名称内容图形三角形由不在同一条直线上的三条线段首尾依次相接所组成的图形叫作三角形.边三角形有三条边.三角形的边可以用一个小写字母或两个大写字母表示,如:a,b,c或BC,CA,AB.顶点相邻两边的公共端点叫作三角形的顶点.三角形有三个顶点.角相邻两条边所组成的角,叫作三角形的内角,简称三角形的角.三角形有三个内角.三角形的记法三角形用符号“”来表示,顶点是A ,B ,C 的三角形记作ABC ,读作“三角形ABC ”.2、三角形的分类三个角都是锐角的三角形叫作锐角三角形,有一个角是直角的三角形叫作直角三角形,有一个角是钝角的三角形叫作钝角三角形.3、三角形内角和定理三角形三个内角的和等于180°. 4、三角形的边(1)对于任意的ABC ,如果把其中任意两个顶点看成定点(假设B 、C 为定点),由“两点之间,线段最短”可得:b c a +>.同理可得:a b c +>,a c b +>. 即:三角形任意两边之和大于第三边.推论:三角形任意两边之差小于第三边. 理论依据:两点之间,线段最短. (2)三角形三边关系的应用①已知三角形的两边长,求第三边的取值范围;②判断三条线段能否组成三角形.注意:判断三条线段能否组成三角形时,首先找出三条边中的最长边,然后计算另外两边的长度和,若两条短边的长度之和大于最长边的长度,就能组成三角形.典例1(2019春•青羊区期末)若等腰三角形的一个内角为80°,则这个等腰三角形的顶角为()A.80°B.50°C.80°或50°D.80°或20°【解答】解:当80°是等腰三角形的顶角时,则顶角就是80°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.故选:D.典例2(2019春•福田区校级期末)下列长度的三条线段能组成三角形的是()A.2cm,3cm,6cm B.3cm,4cm,7cmC.5cm,6cm,8cm D.7cm,8cm,16cm【解答】解:A、2+3<6,不能组成三角形,故此选项不符合题意;B、3+4=7,不能组成三角形,故此选项不符合题意;C、5+6>8,能组成三角形,故此选项符合题意;D、8+7<16,不能组成三角形,故此选项不符合题意;故选:C.典例3(2019春•莲湖区期末)已知三角形三边分别为2,1a-,4,那么a的取值范围是()A.15a<<B.26<<D.46<<aa<<C.37a【解答】解:依题意得:42142-<-<+,a即:216<-<,a37a ∴<<.故选:C .知识点二 三角形三条重要线段名称图形定义几何语言三角形的高从三角形的一个顶点向它的对边所在的直线画垂线.顶点与垂足之间的线段叫作三角形的高线.简称三角形的高因为AD 是ABC 的高(已知),所以AD BC ⊥于点D (或90ADC ADB ∠∠︒==)三角形的角平分线在三角形中,一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫作三角形的角平分线因为AD 是ABC 的角平分线(已知),所以1122BAC ∠∠∠==三角形的中线在三角形中,连接一个顶点和它的对边中点的线段叫作三角形的中线.三角形的三条中线相交于一点,交点叫作三角形的重心因为AD 为ABC 的中线(已知),所以12BD DC BC ==(或22BC BD DC ==)注意:三角形的中线、角平分线、高都是一条线段;中线、角平分线都在三角形内部,三角形的高有两种特例:直角三角形中其中一条直角边的高就是另一条直角边;钝角三角形中锐角所对的边上的高在三角形的外部.典例1(2019春•商河县期末)在ABC∠是钝角,下列图中画AC边上的高线正确的是()∆中,AA.B.C.D.【解答】解:由题意可得,在ABC∠是钝角,画AC边上的高线是∆中,A故选:A.典例2(2019春•雁塔区校级期末)如图,已知BD是ABC∆的周长为11,则∆的中线,5AB=,3BC=,且ABD∆的周长是.BCD【解答】解:BD是ABC∆的中线,∴=,AD CD∆的周长为11,5ABDAB=,3BC=,--=,BCD∴∆的周长是11(53)9故答案为9.典例3(2019春•武侯区校级期中)如图,在ABC∠=∠,G为AD的中点,延长BG交AC于E.F为AB∆中,12上的一点,CF AD⊥于H.下列判断正确的有()A.AD是ABE∆边AD上的中线∆的角平分线B.BE是ABDC.CH为ACD∆的角平分线∆边AD上的高D.AH为ABC【解答】解:A、根据三角形的角平分线的概念,知AG是ABE∆的角平分线,故本选项错误;∆的边AD上的中线,故本选项错误;B、根据三角形的中线的概念,知BG是ABD∆的边AD上的高,故本选项正确;C、根据三角形的高的概念,知CH为ACDD、根据三角形的角平分线的概念,知AD是ABC∆的角平分线,故本选项错误.故选:C.典例4(2019春•福田区校级期末)如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9 B.6 C.5 D.3【解答】解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.巩固训练一、单选题(共6小题)1.(2019春•皇姑区期末)若三角形的两个内角的和是85︒,那么这个三角形是() A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【解答】解:第三个角是1808595︒-︒=︒,则该三角形是钝角三角形.故选:A.2.(2019春•光明区期末)下列各组数作为三条线段的长,使它们能构成三角形的一组是()A.2,3,5 B.9,10,15 C.6,7,14 D.4,4,8【解答】解:A、3+2=5,不能构成三角形,故此选项不合题意;B、9+10>15,能构成三角形,故此选项符合题意;C、6+7<14,不能构成三角形,故此选项不合题意;D、4+4=8,不能构成三角形,故此选项不合题意.故选:B.3.(2019春•福田区期末)已知三角形三边的长度分别是6cm,10cm和xcm,若x是偶数,则x可能等于()A.8cm B.16cm C.5cm D.2cm【解答】解:根据三角形的三边关系定理得:10﹣6<x<10+6,解得:4<x<16,∵x是偶数,∴x可以为6、8、10、12、14,所以只有选项A符合,选项B、C、D都不符合,故选:A.4.(2019春•西岗区期末)等腰三角形的一条边长为4,一条边长为5,则它的周长为()A.13B.14C.13或14D.15【解答】解:当5为底,4为腰时,能构成三角形,此时周长44513=++=;当5为腰,4为底时,能构成三角形,此时周长55414=++=.故它的周长为为13或14.故选:C.5.(2019•常州二模)如图,一位同学用直尺和圆规作出了△ABC中BC边上的高AD,则一定有()A .P A =PCB .P A =PQC .PQ =PCD .∠QPC =90°【解答】解:由作法得AD 垂直平分CQ , 所以PQ =PC . 故选:C .6.(2019春•莲湖区期末)如图,在ABC ∆中,点D 、E 、F 分别是BC 、AD 、EC 的中点,若ABC ∆的面积是16,则BEF ∆的面积为( )A .4B .6C .8D .10【解答】解:如图,E 为AD 的中点,:2:1ABC BCE S S ∆∆∴=,同理可得,:2:1BCE EFB S S ∆∆=, 16ABC S ∆=,1116444EFB ABC S S ∆∆∴==⨯=.故选:A .二、填空题(共5小题)7.(2019春•武侯区校级期中)ABC ∆中,2A B C ∠=∠=∠,那么C ∠= . 【解答】解:设C x ∠=︒,则2A B x ∠=∠=︒,22180x x x ++=︒,解得:36x =︒, 故答案为:36︒.8.(2019春•平阴县期末)等腰三角形的两边长为4和6,则此等腰三角形的周长为 . 【解答】解:当腰为4时,则三角形的三边为4、4、6,满足三角形三边关系,此时三角形的周长为14; 当腰为6时,则三角形的三边为6、6、4,满足三角形三边关系,此时三角形的周长为16; 综上可知该等腰三角形的周长为14或16. 故答案为:14或16. 9.(2018秋•青羊区校级月考)ABC ∆的三边分别是a ,b ,c ,试化简||||||a b c b c a c b a --+-+---= ;【解答】解:因为ABC ∆的三边分别是a ,b ,c , 所以0a b c --<,0b c a -+>,0c b a --<,所以||||||a b c b c a c b a a b c b c a c b a a b c --+-+---=-+++-++--=-++. 故答案为:a b c -++.10.(2019春•通川区期末)如图,AD 是ABC ∆中BC 边上的高,AE 是BAC ∠的平分线,若44B ∠=︒,76C ∠=︒,则DAE ∠= .【解答】解:44B ∠=︒,76C ∠=︒,18060BA B C ∴∠=︒-∠-∠=︒,AE 平分BAC ∠,1302CAE BAC ∴∠=∠=︒,AD 是BC 边上的高,90ADC ∴∠=︒, 76C ∠=︒,18014CAD ADC C ∴∠=︒-∠-∠=︒, 301416DAE CAE CAD ∴∠=∠-∠=︒-︒=︒,故答案为:16︒.11.(2019春•皇姑区期末)如图,在ABC ∆中,A m ∠=︒,ABC ∠和ACD ∠的平分线交于点1A ,得1A ∠;1A BC∠和1ACD ∠的平分线交于点2A ,得2A ∠;2018A BC ⋯∠和2018A CD ∠的平分线交于点2019A ,得2019A ∠,则2019A ∠= ︒.【解答】解:1A B 平分ABC ∠,1A C 平分ACD ∠,112A BC ABC ∴∠=∠,112ACA ACD ∠=∠, 111ACD A A BC ∠=∠+∠, 即11122ACD A ABC ∠=∠+∠, 11()2A ACD ABC ∴∠=∠-∠,A ABC ACD ∠+∠=∠, A ACD ABC ∴∠=∠-∠,112A A ∴∠=∠,2121122A A A ∠=∠=∠,⋯,以此类推可知201920192019122m A A ︒∠=∠=, 故答案为:20192m .三、解答题(共2小题)12.(2019春•西岗区期末)如图,ABC ∆中,ABC ∠和ACB ∠的平分线相交于点D ,过点D 作BC 的平行线交AB 的于点E ,交AC 于点,且130BDC ∠=︒,AFE ∠比ABC ∠大20︒,求EDB ∠的度数.【解答】证明://EF BC ,AFE ACB ∴∠=∠,20AFE ABC ∠-∠=︒,20ACB ABC ∴∠-∠=︒, BD 、CD 分别ABC ∠和ACB ∠,2220DCB DBC ∴∠-∠=︒,10DCB DBC ∴∠-∠=︒,又130BDC ∠=︒,50DCB DBC ∴∠+∠=︒,30DCB ∴∠=︒,//EF BC ,30FDC DCB ∴∠=∠=︒,1801801303020EDB BDC FDC ∴∠=︒-∠-∠=︒-︒-︒=︒.13.(2019春•商河县期末)问题情景:如图1,ABC ∆中,有一块直角三角板PMN 放置在ABC ∆上(P 点在ABC ∆内),使三角板PMN 的两条直角边PM 、PN 恰好分别经过点B 和点C ,试问ABP ∠与ACP ∠是否存在某种确定的数量关系?(1)特殊探究:若40A ∠=︒,则ABC ACB ∠+∠= 度,PBC PCB ∠+∠= 度,ABP ACP ∠+∠= 度.(2)类比探索:请探究ABP ACP ∠+∠与A ∠的关系;(3)类比延伸:如图2,改变直角三角板PMN 的位置:使P 点在ABC ∆外,三角板PMN 的两条直角边PM 、PN 仍然分别经过点B 和点C ,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.【解答】解:(1)40A ∠=︒,140ABC ACB ∴∠+∠=︒,90P ∠=︒,90PBC PCB ∴∠+∠=︒,1409050ABP ACP ∴∠+∠=︒-︒=︒,故答案为140,90,50.(2)结论:90∠+∠=︒-∠.ABP ACP A证明:90()180︒+∠+∠+∠=︒,ABP ACP AABP ACP A∴∠+∠+∠=︒,90∴∠+∠=︒-∠.90ABP ACP A(3)不成立;存在结论:90∠-∠=︒-∠.ACP ABP A理由:设AB交PC于O.∠=∠,AOC POBACO A P PBO∴∠+∠=∠+∠,∴∠-∠=︒-∠.90ACP ABP A。
认识三角形说课课件讲解

教学设计思考
2、指导数学阅读的方法设计
课题研究《数学阅读》为我提供了数学 阅读的方法即数学阅读五步读书法: 粗读——重点读——理解、领会、应用、记 忆读——归纳概括读——复习巩固提升.
教学设计思考
3、自学中辅以多种形式突破难点
对于三角形的三边关系的理解和应用 是个难点,加上学生自学能力还在培养之 中,仅靠学生自学是不能完成的,所以在 教学中通过自学导读,小组讨论,引导分 析,例题讲解,强化练习来帮助学生理解。 以达到突破难点的目的
教 学 重 点
教 学 难 点
重 难 点 突 破
目标分析
1.学情分析
(1)已有基础知识与生活经验分析 本节教材是继七年级上册《线段和角》,七年 级下册《平行线与相交线》后的几何知识的学习, 在小学就对三角形有了初步的认识,学生具有初步 的几何基础知识.同学们对平行线,相交线,线段 和角有了初步的认识,能通过观察、操作、想象、 推理、交流等获得基本的几何知识,有了初步的推 理能力、空间想象力和表达能力.
. 2 18 20 . 50 50 30
能谈谈你是怎样检验的吗?
要善于自己
归规纳律总结:哦
要善于自己
规归律纳总:结哦
用最长线段减去最 短线段的差与 另用一最长线段减去最短线 条线段比较,若段大的差与另一条线段比 于则能组成,否较则,若大于则能组成, 不能组成三角形否则不能组成三角形
过程设计
一个等腰三角形的周长是36cm, (1)已知腰长是底边的2倍,求
各边长?
(2) 已知其中一边长是8cm,求 其他两边的长?
渗透分类讨 论的思想
创设情景 图片展示
2分钟
新课引入
七年级数学三角形知识点

七年级数学三角形知识点在七年级的数学课程中,学生需要学习各种几何图形和基本几何概念,其中之一就是三角形。
在这篇文章中,我们将会了解七年级学生需要了解的三角形知识点。
1. 三角形的定义和分类三角形是由三条线段构成的图形,我们可以从以下几个方面对三角形进行分类:- 按照角度分类:锐角三角形、钝角三角形、直角三角形;- 按照边长分类:等边三角形、等腰三角形、普通三角形;- 按照内角和分类:等腰直角三角形、等角三角形、普通三角形。
2. 直角三角形直角三角形是最基本的三角形之一,它有一个角是90度。
直角三角形的两条直角边相加的平方等于斜边的平方。
3. 等腰三角形等腰三角形是指两条边的长度相等的三角形。
等腰三角形有以下特点:- 两个底角是相等的;- 两条等边的夹角是锐角;- 顶角是锐角或直角。
4. 等边三角形等边三角形是指三条边的长度都相等的三角形。
等边三角形有以下特点:- 所有角都是60度;- 三条边的长度都相等;- 等边三角形的高度等于边长的一半。
5. 相似三角形相似三角形是指两个三角形的对应角度相等,对应边比例相等的三角形。
相似三角形有以下性质:- 相似三角形的对应边比例相等;- 相似三角形的对应角度相等;- 相似三角形的面积比等于边长比的平方。
6. 三角形的面积公式在数学中,计算三角形面积的公式是非常重要的知识点。
三角形的面积可以通过以下公式来计算:- 普通三角形的面积公式:S=1/2×b×h;- 直角三角形的面积公式:S=1/2×a×b;- 等腰三角形的面积公式:S=1/2×b×h;- 等边三角形的面积公式:S=(√3/4)×a²。
小结以上是七年级数学中的三角形知识点,包括三角形的定义和分类、直角三角形、等腰三角形、等边三角形、相似三角形及三角形的面积公式等。
学生在学习这些知识点的同时,需要做大量的练习题,提高自己的数学能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档 精品文档 三角形的认识讲义
一.知识点拨 1、由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。当三角形的三条边长确定时,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性。 三角形的任何两边之和大于第三边;三角形的任何两边之差小于第三边。 2、三角形三个内角的和等于180°。 3、三角形的分类: 锐角三角形(三角形的三个内角都小于90°);
直角三角形(三角形有一个角是90°); 钝角三角形(三角形有一个角大于90°)。 4、由三角形一条边和另一条相邻边的延长组成的角叫做该三角形的外角。三角形的一个外角等于和它不相邻的两个内角的和。 5、在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 6、在三角形中,连结一个顶点与它对边中点的线段叫做这个三角形的中线。 7、从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。三角形的面积等于底乘于高除以2。同高等底的两个三角形面积相等。三角形的中线把三角形分成两个面积相等的三角形。 即已知△ABC的中线AD,则2S△ABD =2S△ACD=S△ABC
二.典例精析: 1、 如图,BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线。试探求∠F与∠B、∠D之间的关系,并说明理由。
ABC
ABCA
BC
ABCD
E F D
C B
A 精品文档 精品文档 ABC
DE
x
yzxy
z
2、如图,在△ABC中,AB=AC,点D、E分别在AC、AB上,且BC=BD,DE=DA=BE,求∠A的度数。
3.如图,P是△ABC内一点,试证明PA+PB+PC>21(AB+BC=AC)
4.已知a,b,c是△ABC的三边 (1)化简|a+b-c|+|b-a-c|-|c+b-a| (2)|a-b+c|+|b-c+a|-|a-b-c|
三.类型题透析 类型1.五种基本图形(必会) (1)如图1, ∠BOC=____________ (2) 如图2,八字形的结论______________
(3) 如图3若OB,OC分别平分∠ABC, ∠ACB,则∠BOC=___________ O B
A
C A B C D
图1 图3
B C
O A
A B C P
图2 精品文档
精品文档 (4) 如图4若OB,OC分别平分∠CBF, ∠ECB,则∠BOC=____________ (5) 如图5若OB,OC分别平分∠ABC, ∠ACD,则∠BOC=_____________
类型2.利用三角形外角性质求特殊角。 1.如图, 求∠A+∠B+∠C+∠D+∠E?
2. 如图, 求∠A+∠B+∠C+∠D+∠E+∠F?
3.如图求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数 类型3.面积求解法 1.如图,△ABC中,AE=3,CD=5,AB=4,求BC的长?
E A C B O F 图4
A O
B C D
图5
A B C D E
L E C H G A B D F
D C G
F B
E A 精品文档 精品文档 2.如图S△ABC=1,且D是BC的中点,AE:EB=1:2,则S△ADE=___________
3如图,在△ABC中,点D、E、F、分别为BC、 AD、 CE的中点,且S△ABC
=16 ,
则S△DEF
= .
4.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC, S△GEC=3,S△GDC=4,则△AGB的面积是多少?
类型4.综合探究 1.如图,△ABC中,∠A=64°,分别作ABC的角平分线BA1和ACM角平分线C A1 ,两线相交于点A1 ;同样,作1ABC的角平分线BA2和1ACM角平分线C A2 ,两线相交于点A2 ,依次类推……,则6A_____ 度。
D E C B
A
A3
A2
A1x
MBC
A精品文档 精品文档 2. 如下几个图形是五角星和它的变形。 ⑴图⑴ 中是一个五角星,求∠A+∠B+∠C+∠D+∠E。 ⑵图⑴中的点A向下移到BE上时(如图②)五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性。 ⑶把图②中的点C向上移动到BD上时(如图③),五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性。
3.好学的小红在学完三角形的角平分线后,遇到下列4个问题,请你帮她解决.如图,在△ABC中,∠BAC= 50°,点I是两角B、C平分线的交点.
问题(1):填空:∠BIC= °. 问题(2):若点D是两条外角平分线的交点;填空:∠BDC= °. 问题(3):若点E是内角∠ABC、外角∠ACG的平分线的交点,试探索:∠BEC与∠BAC的数量关系,并说明理由. 问题(4):在问题(3)的条件下,当∠ACB等于多少度时, CE∥AB.
4.如图,90AOB,点C、D分别在射线OA、OB上,CE是ACD的平分线,CE的
ABCDE
(1)
ABCDE
(2)
AB
CD
E
(3)
I A B C
D
E G 精品文档
精品文档 FEOD
CB
A
反向延长线与CDO的平分线交于点F. (1)当50OCD(图6),试求F. (2)当C、D在射线OA、OB上任意移动时(不与点O重合)(图7),F的大小是否变化?若变化,请说明理由;若不变化,求出F.
类型5.角平分线与角的求解 1如图,BF是∠ABD的平分线,CE是∠ACD的平分线, BE与CE交于G,若∠BDC=140O,∠BGC=110O,则∠A的 度数为( ) A. 50O B. 55O C. 800 D. 700 . 2. △ABC中,∠B<∠C,AD平分∠BAC
在图一中画出△ABC的高AE,垂足为E;并完成下列问题: ① 若∠B=500,∠C=700,则∠DAE=___________. ② 试探寻∠DAE与∠B、∠C的关系。请说明理由.
DABC
(1) 若一点F在AD上移动,且FE⊥BC于E,其他条件不变,那么∠EFD与∠B、∠C间有怎样的关系?_____________________________.
四.当堂小测验(时间30分钟,满分100分)
GFE
DCB
AA B E F
C D G 精品文档
精品文档 1.如图, ABCDEF=_________
2.如图在ABC△中,1240BCBAD,,求EDC的度数.
3. .如图,在ABCVC中,90ACBCDABAF,,是角平分线,交CD于点E,求证
12
4.下列各组三条线段中,不能组成三角形的是( ) A.2a,2a,30aa B.3a,5a,210aa C.三条线段之比为123﹕﹕ D.3cm8cm10cm,, 5.三角形的三个内角分别为、、,且≥≥,=2, 则的取值范围是
( ).A.36°≤≤45° B.45°≤≤60° C.60°≤≤90° D.45°≤≤72° 6.三角形纸片ABC中,60A,75B。将纸片的一角折叠,使点C落在ABC△内(如图)。若120,则2的度数为_________。 精品文档 精品文档 21C'
CB
A
7. 如图,在图(1)中,互不重叠的三角形共有4个,在图(2)中,互不重叠的三角形共有7个,在图(3)中,互不重叠的三角形共有10个,…,则在第n个图形中,互不重叠的三角形共有_____________个(用含n的代数式表示).
8. .如图所示,BECD,交于A点,C和E的平分线相交于F。 (1)试求:F与B,D有何等量关系? (2)当::2:4:BDFx时,x为多少?
4321FE
D
CB
A
9.观察下图,若第1个图形中的阴影部分的面积为1,第2•个图形中的阴影部分面积为34,第3个图形中的阴影部分面积为916,第4个图形中阴影部分的面积为2764,…,•则第n个图形的阴影部分的面积为 .
10. .如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC, ∠EDF=∠EFD.则∠A 的度数
为 ( ) A. 150 B. 200