运筹学课后习题答案

合集下载

运筹学(第五版) 习题答案

运筹学(第五版)  习题答案
k 时, , 同号。
当 0,目标函数在B点有最大值;
当 0,目标函数在原点最大值。
k 0时, , 同号。
当 0时,目标函数在A点有最大值
当 0时,目标函数在原点最大值。
k 0时, , 异号。
当 0, 0时,目标函数在A点有最大值;
当 0, 0时,目标函数在C点最大值。
k= 时, , 同号
当 0时,目标函数在AB线断上任一点有最大值
最优解为
X=(0,8/5,0,1/5
目标函数下界是z=32/5
1.8表1-6是某求极大化线性规划问题计算得到的单纯形表。表中无人工变量, , , ,d, , 为待定常数,试说明这些常数分别取何值时,以下结论成立。
(1)表中解为唯一最优解;(2)表中解为最优解,但存在无穷多最优解;(3)该线性规划问题具有无界解;(4)表中解非最优,对解改进,换入变量为 ,换出变量为 。
, , 0, 无约束
(2)max
0 (i=1…n; k=1,…,m)
(1)解:设z=- , = - , , 0
标准型:
Max =3 -4 +2 -5( - )+0 +0 -M -M
s. t .
-4 + -2 + - + =2
+ +3 - + + =14
-2 +3 - +2 -2 - + =2
, , , , , , , , 0
2
4
1
1/3
0
1/6
12
-z
-8
0
1/3
0
-1/3
1
3/4
0
1
1/4
-1/8

运筹学笔记和课后习题(含考研真题)详解_部分17

运筹学笔记和课后习题(含考研真题)详解_部分17

为使成立的最小值。

(3)模型三:需求是连续的。

需求r是连续随机变量,分布函数为;,从中解出Q;若,则,从中解出Q。

(4)模型四:型库存策略,连续型。

需求r是连续随机变量,分布函数为,密度函数为;,从中解出S;已知I,,,计算:为使成立的最小值。

14.2课后习题详解14.1 设某工厂每年需用某种原料1800吨,不需每日供应,但不得缺货。

设每吨每月的保管费为60元,每次订购费为200元,试求最佳订购量。

解:由题意知,该模型为“不允许缺货,生产时间很短”,按E.O.Q计算Q*得所以最佳订购量为32吨。

14.2 某公司采用无安全存量的存储策略。

每年使用某种零件100000件,每件每年的保管费为30元,每次订购费为600元。

试求:(1)经济定购批量;(2)订购次数。

解:(1)按E.O.Q模型计算,得所以经济订购批量为2000件。

(2)订购次数为:=50(次)所以每年的订购次数为50次。

14.3 某工厂生产某种零件,每年需要量为18000个,该厂每月可生产3000个,每次生产后的装配费为5000元,每个零件的存储费为1.5元,求每次生产的最佳批量。

解:由题意知,该题模型为“不允许缺货,生产需一定时间”,已知,,。

最佳批量是所以,每次生产的最佳批量为4472个。

14.4 某产品每月用量为4件,装配费为50元,存储费每月每件为8元,求产品每次最佳生产量及最小费用。

若生产速度为每月可生产10件,求每次生产量及最小费用。

解:(1)用“不允许缺货,生产时间很短”的模型求解。

已知。

则最佳批量为以月为单位的平均费用为(2)用“不允许缺货,生产需一段时间”的模型求解。

已知,,则最佳批量为最小费用为所以,如果生产时间足够短,那么最佳生产量为7件,最小费用为56.6元;如果生产速度为每月可生产10件,那么最佳生产量为9件,最小费用为43.8元。

14.5 每月需要某种机械零件2000件,每件成本l50元,每年的存储费用为成本的16%,每次订购费100元,求E.O.Q及最小费用。

规划数学(运筹学)第三版课后习题答案 习 题 2

规划数学(运筹学)第三版课后习题答案 习 题 2

习题21图解法解下列目标规划问题:1122334min (2)f Pd P d P d d -+--=+++..s t 121140x x d d -+++-=122250x x d d -+++-=13324x d d -++-=1244430x x d d -+++-=120,0;,0,1,2,3,4i i x x d d i -+≥≥≥=P 1:AD 直线上侧,P 2:四边形ABCD,P 3:四边形ABEF ,P 4:四边形ABEF 。

故该问题的满意解为四边形ABEF 内的点,所有目标都达到了。

2用单纯形法求解以下目标规划问题的满意解:(1)1122334min (53)f Pd P d P d d -+--=+++..s t 121180x x d d -+++-=122290x x d d -+++-=13370x d d -++-=24445x d d -++-=120,0;,0,1,2,3,4i i x x d d i -+≥≥≥=(2)1122234min ()f P d d P d P d -+--=+++..s t 12114580x x d d -+++-=12224248x x d d -+++-=123381080x x d d -+++-=1445x d d -++-=120,0;,0,1,2,3,4i i x x d d i -+≥≥≥=5案例练习(1)某厂生产甲、乙两种产品,每件利润分别为20、30元。

这两种产品都要在A 、B 、C 、D 四种设备上加工,每件甲产品需,而这4种设备正常生产能力依次为每天12、8、16、12机时。

此外,A 、B 两种设备每天还可加班运行。

试拟订一个满足下列目标的生产计划: 1P :两种产品每天总利润不低于120元;2P :两种产品的产量尽可能均衡;3P :A 、B 设备都应不超负荷,其中A 设备能力还应充分利用(A 比B 重要3倍)。

运筹学基础课后习题答案

运筹学基础课后习题答案

运筹学基础课后习题答案[2002年版新教材]第一章导论P51.、区别决策中的定性分析和定量分析,试举例。

定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。

举例:免了吧。

2、.构成运筹学的科学方法论的六个步骤是哪些?.观察待决策问题所处的环境;.分析和定义待决策的问题;.拟定模型;.选择输入资料;.提出解并验证它的合理性(注意敏感度试验);.实施最优解;3、.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据第二章作业预测P251、.为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分?答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。

但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。

调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。

(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。

2.、某地区积累了5个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α=0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤)年度12345大米销售量实际值(千公斤)52025079393744533979。

答:F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F16=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9F6=3581.1+400.77+35.433+4.5711+0.3764F6=4022.33、某地区积累了11个年度纺织品销售额与职工工资总额的数据,列入下列表中(表略),计算:(1)回归参数a,b(2)写出一元线性回归方程。

清华大学《运筹学教程》胡运权主编课后习题答案

清华大学《运筹学教程》胡运权主编课后习题答案

3 x1 x2 x5 3
st
4 x1 3 x2 x3 x6
x1
2 x2
x4
4
6
x j 0(, j 1,,4)
cj
CB
xB
b
-M x5 3
-M
x6
6
0
x4
4
cj zj
-4 x1 1
-M x6 2
0
x4
3
cj zj
-4
-1 0
x1
x2
x3
3
1
0
4
3 -1
1
20
7M-4 4M-1 -M
小于0 ,因此已经得到唯一最优解,最优解为:
X * 2 5 ,9 / 5,1,0T
max Z 10x1 15x2 12x3
5x1 3x2 x3 9
(4)
st
5x1 2x1
6x2 x2 x3
15x3 5
15
x j 0(, j 1,,3)
39
1.8 已知某线性规划问题的初始单纯形
表和用单纯形法迭代后得到下面表格,试求括
弧中未知数a∼l值。
项目
X1 X2 X3 X4 X5
X4 6 (b) (c) (d) 1 0
X5 1 -1 3 (e) 0 1
Cj-Zj
a -1 2 0 0
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-Zj
0 -7 (j) (k) (l)
6 4
x1 , x2 0
无穷多最优解
(蓝 色 线 段 上 的 点 都 是 最优 解 )
x1
6 5
,
x2

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。

它包括数学模型的建立、问题求解方法的设计等方面。

b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。

它可以帮助组织提高效率、降低成本、优化资源分配等。

c)运筹学主要包括线性规划、整数规划、指派问题等方法。

习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。

它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。

运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。

1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。

在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。

在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。

在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。

在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。

习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。

在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。

在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。

在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。

第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。

其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。

习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。

最新《运筹学》第四版课后习题答案

9)/7〈100%,所以最优解不变。
作出可行域.
x2y20
2xy16
得Q(4,8)
z最大200424082720
答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.
8.解:
设需截第一种钢板x张,第二种钢板y张,所用钢板面积zm2. 目标函数z=x+2y,线性约束条件:
xy12
2xy15
x3y27
x0
y0
x3y27
(4)x16。
x24。
(5)最优解为x1=8,x2=0。
(6)不变化。因为当斜率1≤c1
c2
1,最优解不变,变化后斜率为1,所以最优解3
不变。
7.解:
设x,y分别为甲、乙两种柜的日产量, 目标函数z=200x+240y,线性约束条件:
6x12y120
8x4y64

x0
y0
x2y20
2xy16
x0
y0
x350
得ቤተ መጻሕፍቲ ባይዱ
y100
即C(350,100).当直线6x+10y=0即3x+5y=0平移到
经过点C(350,100)时,z=6x+10y最大
12.解:
模型maxz500x1400x2
2x1≤300
3x2≤540
2x12x1≤440
1.2x11.5x2≤300
x1,x2≥0
(1)x1150,x270,即目标函数最优值是103000。
《管理运筹学》第四版课后习题解析(上


1.解:
(1)可行域为OABC。
(2)等值线为图中虚线部分。
(3)由图2-1可知,最优解为B点,最优解x=12,x15

运筹学课后习题答案(优选资料)

No .1 线性规划1、某织带厂生产A 、B 两种纱线和C 、D 两种纱带,纱带由专门纱线加工而 产品项目A B C D 单位产值 (元)168 140 1050 406单位成本 (元)42 28 350 140 单位纺纱用时 (h)3 2 104 单位织带用时 (h) 0 0 2 0.5工厂有供纺纱的总工时7200h ,织带的总工时1200h 。

(1) 列出线性规划模型,以便确定产品的数量使总利润最大;(2) 如果组织这次生产具有一次性的投入20万元,模型有什么变化?对模型的解是否有影响?解:(1)设A 的产量为x 1,B 的产量为x 2,C 的产量为x 3,D 的产量为x 4,则有线性规划模型如下:max f (x )=(168-42)x 1 +(140-28)x 2 +(1050-350)x 3 +(406-140)x 4=126 x 1 +112 x 2 +700 x 3 +266 x 4s.t. ⎪⎩⎪⎨⎧=≥≤+≤+++4,3,2,1 ,012005.02 720041023434321i x x x x x x x i(2)如果组织这次生产有一次性的投入20万元,由于与产品的生产量无关,故上述模型只需要在目标函数中减去一个常数20万,因此可知对模型的解没有影响。

2、将下列线性规划化为极大化的标准形式 解:将约束条件中的第一行的右端项变为正值,并添加松弛变量x 4,在第二行添加人工变量x 5,将第三行约束的绝对值号打开,变为两个不等式,分别添加松弛变量x 6, x 7,并令x x x 333='-'',则有max[-f (x )]= {-2 x 1 -3 x 2 -5('-''x x 33)+0 x 4 -M x 5+0 x 6 +0 x 7}s.t. 0,,,,,,,1355719 13 5571916 9976 5 7654332173321633215332143321≥'''=+''+'-+-=+''-'+-=+''+'-+-=+''-'+--⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x x x x x x x x x x x x x x x x x x x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧±≥≤+-=-+--≥-+++=不限321321321321321 ,0,13|5719|169765..532)(min x x x x x x x x x x x x t s x x x x f3、用单纯形法解下面的线性规划⎪⎪⎩⎪⎪⎨⎧≥≤++-≤++-≤-+++= ,0,,4205.021********* ..352)(max 321321321321321x x x x x x x x x x x x t s x x x x f 解:在约束行1,2,3分别添加x 4, x 5, x 6松弛变量,有初始基础可行解和单纯形 C j → 2 5 3 0 0 0 C B X B b x 1 x 2 x 3 x 4 x 5 x 6 b i /a ij* 0 x 4 610 3 2 -1 1 0 0 610/2 0 x 5 125 -1 (6) 3 0 1 0 125/6* 0 x 6 420 -2 1 1/2 0 0 1 420/1 OBJ= 0 z j → 0 0 0 0 0 0 c j - z j 2 5 3 0 0 0 C j → 2 5 3 0 0 0 C B X B b x 1 x 2 x 3 x 4 x 5 x 6 b i /a ij* 0 x 4 1705/3 (10/3) 0 -2 1 -1/3 0 170.5 5 x 2 125/6 -1/6 1 1/2 0 1/6 0 - 0 x 6 2395/6 -11/6 0 0 0 -1/6 1 - OBJ= 625/6 z j → -5/6 5 5/2 0 5/6 0 c j - z j 17/6 0 1/2 0 -5/6 0 C j → 2 5 3 0 0 0 C B X B b x 1 x 2 x 3 x 4 x 5 x 6 b i /a ij* 2 x 1 341/2 1 0 -3/5 3/10 -1/10 0 - 5 x 5 197/4 0 1 (2/5) 1/20 3/20 0 125.125 0 x 6 2847/4 0 0 -11/10 11/20 -7/20 1 - OBJ= 2349/4 z j → 2 5 4/5 17/20 11/20 0 c j - z j 0 0 11/5 0 -11/20 0 C j → 2 5 3 0 0 0 C B X B b x 1 x 2 x 3 x 4 x 5 x 6 b i /a ij* 2 x 1 1955/8 1 3/2 0 3/8 1/8 0 3 x 3 985/8 0 5/2 1 1/8 3/8 0 0 x 6 13555/16 0 11/4 0 11/16 1/16 1 OBJ= 6865/8 z j → 2 21/2 3 9/8 11/8 0 c j - z j 0 -11/2 0 -9/8 -11/8 0 答:最优解为x 1 =244.375, x 2 =0, x 3 =123.125, 剩余变量x 6 =847.1875;最优解的目标函数值为858.125。

【优质】运筹学第三版课后习题答案-推荐word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==运筹学第三版课后习题答案篇一:运筹学第3版熊伟编著习题答案运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章多属性决策品P343 第13章博弈论P371 全书420页第1章线性规划1.1 工厂每月生产A、B、C三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为maxZ?10x1?14x2?12x3?1.5x1?1.2x2?4x3?2500?3x?1.6x?1.2x?140023?1? ?150?x1?250??260?x2?310?120?x3?130???x1,x2,x3?01.2 建筑公司需要用5m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1)用料最少;(2)余料最少.【解设xj(j=1,2,…,10)为第j种方案使用原材料的根数,则(1)用料最少数学模型为minZ??xjj?110?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200 ??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,10(2)余料最少数学模型为minZ?0.5x2?0.5x3?x4?x5?x6?x8?0.5x10?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,101.3某企业需要制定1~6月份产品A的生产与销售计划。

运筹学笔记和课后习题(含考研真题)详解_部分5

第一步:用伏格尔法求初始可行解,求得的初始解,如表4-29所示:表4-29第二步:用位势法进行最优解的判断。

在对应于表4-29的数字格处填入单位运价,并增加一行一列,在行中填入,在列中填入。

令,按照()求出所有的和,并依据()计算所有空格处的检验数,计算结果如表4-30所示:表4-30由表4-28可知,所有空格处的检验数均为非负。

所以,表4-27中的运输方案即为此问题的最优调运方案,最小运价为14650万元。

4.7 某造船厂根据合同要从当年起连续三年末各提供三艘规格型号相同的大型客货轮,已知该厂在三年内生产大型客货轮的能力及每艘客货轮的成本如表4-31所示:表4-31已知加班生产时,每艘客货轮成本比正常生产时高出70万元。

又知造出来的客货轮如当年不交货,每艘每积压一年造成积压损失为40万元。

在签订合同时,该厂已储存了两艘客货轮,而该厂希望在第三年末完成合同后还能储存一艘备用。

问该厂应如何安排每年客货轮的生产量,使在满足上述各项要求的情况下,总的生产费用加积压损失为最少?解:设为第年的正常生产能力,为第年的加班生产能力;为第年的需求订货,S为因积压而产生的供货能力。

因为产大于销,所以虚拟一个销地,于是可构造如表4-32的运价表。

问题变为求解表4-32的最优调运方案。

表4-32单位:千万元第一步:用伏格尔法求初始可行解,求得的初始解,如表4-33所示:表4-33第二步:用位势法进行最优解的检验。

在对应于表4-33的数字格处填入单位运价,并增加一行一列,在行中填入,在列中填入。

令,按照()求出所有的和,并依据()计算所有空格处的检验数,计算结果如表4-34所示。

表4-34在表4-34中,存在两个非基变量的检验数小于0。

所以,表4-33中的运输方案不是此问题的最优调运方案,需进行进一步调整。

第三步:利用闭回路法进行解的改进。

从表4-33中的空格出发作一闭回路,利用闭回路法进行调整,得到的结果如表4-35所示:表4-35第四步:重复第二、三步,得到新的调运方案,如表4-36所示:表4-36继续重复第二、三步,再一次得到新的调运方案,如表4-37所示:表4-37利用位势法计算表4-37中空格处的检验数,如表4-38所示:表4-38由表4-38可知,所有非基变量的检验数均为非负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档