变压器的基本结构和工作原理
变压器的基本工作原理和结构PPT课件

次端电压。 对三相变压器,铭牌上的额定电压指线电压 额定电流(IN)——指变压器在额定容量下,允许长期通
过的电流,三相变压器指的是线电流值。单位用A或kA。 额定频率〔HZ)—电力变压器的额定频率是50Hz 效率、温升
图3.1.8 壳式变压器的结构示意图
※ 芯式变压器绕组和铁芯的装配示意图
绕组同芯套装在变压器铁心柱上,低 压绕组在内层,高压绕组套装在低压 绕组外层,以便于绝缘。
图3.1.9 芯式变压器的铁芯和绕组的装配示意图
● 绕组的根本型式——同心式
※ 同芯式——铁芯式变压 器常用。高压绕组和低压 绕组均做成圆筒形,然后 同芯地套在铁芯柱上 ,为
平安气道——〔防爆筒〕如果是严重事故,变压器油大量 汽化,油气冲破平安气道管口的密封玻璃,冲出变压器油 箱,防止油箱爆裂。
吸湿器—— 〔呼吸器〕内装硅胶〔活性氧休铝〕,用以吸 收进入储油柜中空气的水分
净油器——过滤油中杂质,改善变压器油的性能
3.1.3 变压器的型号与额定值
一、变压器型号
型号——可反映出变压器的结构、额定容量、电压等级、冷却方 式等内容
变压器运行时产生热量,使变 压器油膨胀,储油柜中变压器 油上升,温度低时下降。
储油柜使变压器油与空气接触 面较少, 减缓了变压器油的氧
当变压器出现故障时,产生的 热量使变压器油汽化,气体继 电器动作,发出报警信号或切 断图电源。
气 体 继 电 器
化过程及吸收空气中的水分的 如果事故严重,变压器油大量
〔一〕电力变压器
配电变压器
升压变压器
降压变压器
电力变压器的类别——用途分
(二) 特种变压器
变压器的工作原理

变压器的工作原理一、引言变压器是电力系统中常见的电气设备,用于改变交流电的电压和电流。
本文将详细介绍变压器的工作原理,包括基本原理、结构和工作过程。
二、基本原理1. 电磁感应定律根据法拉第电磁感应定律,当一个导体在磁场中运动或者磁场变化时,会在导体中产生感应电动势。
变压器利用这一原理实现电压的转换。
2. 互感现象互感现象是指两个或者多个线圈通过磁场相互耦合时,其中一个线圈中的电流变化会在其他线圈中产生感应电动势。
变压器中的两个线圈分别称为主线圈和副线圈。
三、变压器的结构1. 铁心变压器的铁心是由硅钢片叠压而成,主要作用是提高磁通的传导性能,并减少铁损耗。
2. 主线圈主线圈是变压器的输入线圈,通常由较粗的导线绕制而成。
当主线圈中通过交流电流时,会在铁心中产生磁场。
3. 副线圈副线圈是变压器的输出线圈,通常由较细的导线绕制而成。
副线圈通过互感现象与主线圈相连,将主线圈中的磁场转换为感应电动势。
四、变压器的工作过程1. 变压器的工作原理可以分为两个阶段:磁场建立和磁场消失。
2. 磁场建立阶段当交流电通过主线圈时,产生的交变电流会在主线圈中产生交变磁场。
由于主线圈和副线圈之间的互感作用,副线圈中也会产生交变电动势。
3. 磁场消失阶段当交流电的方向改变时,主线圈中的交变磁场也会改变方向。
这个变化的磁场会在副线圈中产生感应电动势,导致副线圈中的电流方向发生变化。
4. 变压器的电压转换根据互感现象,变压器中主线圈和副线圈的匝数比可以决定输出电压与输入电压的比例关系。
当主线圈匝数较大时,输出电压相对较低;当主线圈匝数较小时,输出电压相对较高。
五、总结变压器是一种基于电磁感应和互感现象的电气设备,用于改变交流电的电压和电流。
它由铁心、主线圈和副线圈组成。
变压器的工作过程包括磁场建立和磁场消失两个阶段,通过互感现象实现电压的转换。
变压器在电力系统中起到了重要的作用,广泛应用于输电、配电和电子设备中。
变压器的结构及工作原理

变压器的结构及工作原理变压器是一种用于将电能从一种电压转换为另一种电压的电气设备。
它是电力系统中非常常见的设备之一,被广泛应用于发电厂、变电站、工业生产和民用电力系统中。
变压器的结构和工作原理十分重要,下面详细介绍。
一、变压器的结构变压器由两个或更多的线圈通过铁芯相互连接而成。
主要包括以下部分:1.铁芯:变压器的铁芯由硅钢片组成,可有效减小磁滞和涡流损耗。
铁芯的形状包括E型、I型和C型等,用于支撑和保护线圈。
2.一次线圈(主绕组):也称为原线圈或输入线圈,接收电源端的输入电能。
一次线圈一般由较粗的导线绕制而成。
3.二次线圈(副绕组):也称为输出线圈,输出变压器转换后的电能。
二次线圈一般由较细的导线绕制而成。
4.绝缘材料:用于在不同线圈之间提供电气绝缘,避免相互之间的短路。
5.冷却装置:用于散热,以保证变压器的工作温度不超过允许范围。
常见的冷却方式包括自然冷却(静风冷却)和强制冷却(风扇冷却、冷水冷却等)。
二、变压器的工作原理变压器基于电磁感应的原理工作,其主要过程是通过变化的磁场引起线圈中的电压变化。
1.变流原理:根据法拉第电磁感应定律,当一次线圈中的电流变化时,会在铁芯中产生一个变化的磁场。
这个磁场穿过二次线圈,并在其中引起电动势的产生。
根据电磁感应定律,产生的电动势与变化的磁场强度成正比。
2.变压原理:根据楞次定律,一次线圈和二次线圈中的电流方向是相互反的。
当一次线圈接通电源时,通过它的电流会在铁芯中产生一个磁场。
这个磁场会在二次线圈中引起电动势的产生,并使得二次线圈中的电流流动。
变压器的输入电压和输出电压之比等于输入线圈的匝数和输出线圈的匝数之比。
即:输入电压/输出电压=输入线圈匝数/输出线圈匝数3.近似理想性:在实际的变压器中,我们可以近似认为主线圈和副线圈之间没有电阻,也没有电感。
这样,变压器的损耗可以忽略不计,输出电压会完全等于输入电压。
4.变压器的效率:实际的变压器会有一定的损耗,主要包括铁损耗和铜损耗。
变压器的基本工作原理解析

变压器的基本工作原理解析一、引言变压器是电力系统中常见的电气设备,用于改变交流电压的大小。
本文将详细解析变压器的基本工作原理,包括变压器的结构、工作原理、主要参数和应用领域。
二、变压器的结构1. 主要部件变压器主要由铁心、绕组和外壳组成。
- 铁心:由硅钢片叠压而成,用于提供磁路和支撑绕组。
- 绕组:包括主绕组和副绕组,主绕组用于输入电压,副绕组用于输出电压。
- 外壳:用于保护变压器的内部部件。
2. 绝缘材料变压器的绝缘材料主要包括绝缘纸、绝缘漆和绝缘胶带。
这些材料用于保护绕组和绝缘铁心。
三、变压器的工作原理变压器的工作原理基于电磁感应定律。
当交流电通过主绕组时,产生的磁场会穿过铁心并感应到副绕组中。
根据电磁感应定律,磁场的变化会在副绕组中产生感应电动势,从而产生输出电压。
四、变压器的主要参数1. 额定容量变压器的额定容量是指变压器能够持续供应的最大功率。
常见的额定容量单位为千伏安(KVA)。
2. 额定电压变压器的额定电压是指变压器的设计电压。
主绕组和副绕组的额定电压决定了输入和输出电压的大小。
3. 额定频率变压器的额定频率是指变压器设计时所考虑的电源频率。
在电力系统中,常见的额定频率为50Hz或者60Hz。
五、变压器的应用领域变压器广泛应用于电力系统、工业生产和家庭用电等领域。
1. 电力系统:变压器用于电力输送和配电系统中,将高压电转换为低压电以供用户使用。
2. 工业生产:变压器用于工业设备的电源供应,如机电、照明设备等。
3. 家庭用电:变压器用于家庭电器的电源供应,如电视、冰箱、空调等。
六、总结本文详细解析了变压器的基本工作原理,包括变压器的结构、工作原理、主要参数和应用领域。
变压器作为电力系统中重要的电气设备,在能源转换和供电领域发挥着重要作用。
通过深入了解变压器的工作原理,我们可以更好地理解和应用这一设备。
变压器的基本结构与工作原理

变压器的基本结构与工作原理变压器,这个名字一听就有点高大上,但其实它的工作原理就像我们日常生活中的很多事情,简单而又神奇。
你想啊,就像你把一杯热水倒入另一杯冷水,温度就会慢慢平衡一样,变压器也在电流的世界里做着类似的事情。
那今天就来聊聊这个小家伙的基本结构和它是怎么工作的吧!1. 变压器的基本结构1.1 铁心首先,变压器的核心部分就是铁心。
这玩意儿可不简单,想象一下,它就像是变压器的脊梁骨,得承受一切。
一般来说,铁心是由很多层薄铁片叠成的,目的是为了减少能量的损耗。
你知道的,越薄越轻,热量就不容易散发,节省电力也省心。
它的工作方式就像一个优雅的舞者,轻轻地在电流中舞动,把能量传递得流畅无比。
1.2 绕组接下来,绕组就是变压器的“心脏”了。
它们一般分为高压绕组和低压绕组,就像是两个兄弟,一个负责“高大上”,一个负责“接地气”。
电流在高压绕组里走得飞快,像个风一样呼啸而过;而在低压绕组里,它则慢慢变得温和,适合我们日常使用。
这个过程就像一个调皮的小孩子,时而奔放,时而安静,总是给我们带来惊喜。
2. 变压器的工作原理2.1 电磁感应好了,讲到这里,很多人可能会问,这变压器到底是怎么工作的呢?其实,变压器的工作原理主要是依靠电磁感应。
简单来说,就是一个线圈里有电流流动时,周围就会产生磁场。
这个磁场就像是魔法一样,能影响到另一个线圈。
你想啊,如果你在火锅店里,锅里煮的火锅冒着热气,旁边的食材也会被吸引过来一样。
电流通过高压绕组产生的磁场,就能让低压绕组里的电流悄悄跑出来。
2.2 电压转换当我们把电流传递给低压绕组的时候,电压就会发生变化。
就像我们常说的“换个地方看看”,有时候会让事情变得更好。
在变压器中,电压的高低取决于绕组的圈数比。
如果高压绕组的圈数多,那么电压就高;反之,如果低压绕组的圈数少,电压就低。
这个过程就像打麻将,手里的牌决定了你能出的招数,变压器的“牌”也是这样定的。
3. 变压器的应用3.1 生活中的变压器变压器的应用可谓无处不在。
变压器的基本工作原理与结构

变压器的基本工作原理与结构变压器是一种电磁装置,主要用于改变电压的大小,实现电能的传输和分配。
变压器的基本工作原理是利用电磁感应原理。
变压器的结构主要由两部分组成,即主线圈和副线圈。
主线圈通常被称为高压线圈,而副线圈通常被称为低压线圈。
两个线圈之间通过铁芯连接。
变压器的工作原理可以通过法拉第电磁感应定律解释。
当主线圈中通入交流电时,由于在线圈中形成了一个交变的磁场,这个交变磁场会通过铁芯传导到副线圈中,使得副线圈中的导体中也产生交变电流。
这个交变电流通过副线圈的导线,形成了一个交变的电场,进而使得副线圈的两端产生了不同大小的电压。
基于电磁感应原理,根据变压器的线圈匝数比例,可以实现电压的变换。
根据理论计算,副线圈电压与主线圈电压的比值等于副线圈匝数与主线圈匝数的比值。
这就是变压器的基本公式:U2/U1=N2/N1,其中U1、U2分别为主线圈和副线圈的电压,N1、N2分别为主线圈和副线圈的匝数。
另外,为了提高变压器的效率和性能,变压器还会采用铁芯结构。
铁芯可以有效地导磁,并减少能量的损失。
铁芯通常由硅钢片组成,这种材料具有良好的导磁性能和较低的铁损耗。
变压器还包括一些辅助设备和保护装置,例如冷却装置、温度探头、过流保护、过压保护等。
这些设备和装置可以确保变压器的正常运行,并防止过载和损坏。
总的来说,变压器是一种能够改变电压的电磁装置。
它的工作原理是利用电磁感应现象,通过主副线圈之间的电磁感应实现电压的变换。
变压器的结构主要由主线圈、副线圈和铁芯组成。
通过合理设计和选择不同匝数的线圈,可以实现不同变比的变压器,满足电网和电气设备对不同电压级别的需求。
变压器的结构及工作原理课件

变压器工作原理
变压器原理图(图3-1)
变压器工作原理
01
与电源相连的线圈,接收交流电能,称为一次绕组 用U1 ,I1,E1,N组的磁通量的相量为 Fm ,该磁通量称为主磁通;
02
与负载相连的线圈,送出交流电能,称为二次绕组 用U2,I2,E2 ,N2表示;
变压器工作原理
变压器的构造: 变压器主要由:铁芯、绕组、油箱、附件等组成。
变压器工作原理
变压器的主体构造: 铁芯 绕组
变压器工作原理
铁芯 铁心的作用 是变压器的主磁路 铁心的材料 0.35~0.5mm厚的硅钢片 铁心形式 电力变压器主要采用心式结构
小型变压器铁芯截面为矩形或方形,大型变压器铁芯截面为阶梯形,这是为了充分利用空间。
按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。
8
变压器工作原理
变压器的工作原理:
变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能
变压器的主要部件是一个铁心和套在铁心上的两个绕组。
变压器工作原理
变压器工作原理
下图是我们常见的两种变压器: 干式变压器 油浸式变压器
一般容量在630kVA以下的为小型电力变压器;800~6300kVA的为中型电力变压器;8000~63000kVA为大型电力变压器; 90000kVA及以上的为特大型电力变压器;
01
03
02
变压器工作原理
额定电压U1N/U2N
均指线值电压。原边额定电压U1N是指电源加在原绕组上的额定电压;副边额定电压U2N是指原边加额定电压副边空载时副绕组的端电压,单位有:伏(V)或千伏(kV)。
08
13-器身; 14-接地板;
09
变压器的构造与工作原理

变压器的构造与工作原理变压器是一种利用电磁感应原理来变换交流电压和电流的电器设备。
它主要由铁心、线圈和外壳等构成。
下面将详细介绍变压器的构造和工作原理。
1.构造:(1)铁心:变压器的铁心通常采用高导磁性能的软磁材料,如硅钢片。
它将空气磁场集中,提高磁路的磁通密度,以增加变压器的效率。
(2)线圈:变压器的线圈包括两个部分,主线圈和副线圈。
主线圈通常连接到电源上,用于输入电能;副线圈通常连接到负载上,用于输出电能。
线圈由导电材料制成,通常是绝缘铜线。
(3)外壳:外壳是变压器的外部保护部分,通常由金属材料制成,具有防护、散热等功能。
2.工作原理:(1)变压器基本原理:变压器利用电磁感应原理工作。
当主线圈通电时,由于通过主线圈的电流在铁心中产生磁场,磁场会产生磁通(磁力线)。
(2)磁感应原理:根据法拉第电磁感应定律,在变压器中,当交流电通过主线圈时,它会产生变化的磁场。
而这个变化的磁场会先通过铁心再通过副线圈,从而在副线圈中产生感应电动势。
(3)变压器的运算原理:变压器转换电压的原理是基于励磁电流和互感。
即主线圈中的电流产生一个磁通,而这个磁通又能感应副线圈中的电动势,从而产生输出电压和电流。
(4)变比:根据变压器的运算原理,变压器的变比是主线圈和副线圈的匝数之比。
当主线圈的匝数大于副线圈时,变压器为升压变压器;反之,为降压变压器。
变压器的变比决定了输入电压和输出电压之间的关系。
变压器的工作过程:首先,交流电源的电流流过主线圈,产生电流的磁场。
磁场穿过铁心,再穿过副线圈,从而在副线圈中产生感应电动势。
副线圈中的感应电动势会导致电流的流动,从而产生输出电压和电流。
根据变压器的变比,输出电压可以是输入电压的升压或降压。
总结:变压器通过改变交流电的电压和电流来实现电能的传输和分配。
它的构造包括铁心、线圈和外壳等部分,而工作原理是基于电磁感应原理实现的。
变压器的工作过程是通过主线圈产生磁场,进而在副线圈中产生感应电动势,实现电能的输入和输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器的基本结构和工作原理
变压器的基本结构是由铁芯和绕组(线圈)组成的。
变压器铁芯是由两面涂有绝缘漆的硅钢片叠装而成的。
绕组是绕在铁芯上的两个匝数不等的线圈,与相连的绕组称为一次绕组,与负载相连的绕组称为二次绕组。
变压器就是利用一次绕组和二次绕组匝数不同而进行变压的。
变压器的种类很多,各种变压器都是利用电磁感应原理进行工作的。
在铁芯柱上装有一次绕组和二次绕组。
一次绕组与电源相接,二次绕组与负载相接。
当变压器一次绕组接入电源时,交流电源电压在铁芯中产生交变磁通。
磁通以铁芯为闭合回路,穿过一次绕组及二次绕组,于是在二次绕组中产生感应电动势。
如果在二次绕组输出端接入负载,就会在负载中流过交流电流。
根据电磁感应原理,在一次绕组和二次绕组中产生的感应电动势分别为
E1=4.44fN1Φm
E2=4.44fN2Φm
式中,f为电源频率(Hz);N1为一次绕组匝数;N2为二次绕组匝数;Φm为交变主磁通的值。
略去一次绕组的阻抗压降不计,则电源电压与自感电动势数值相等,即
U1=E1
空载时,二次绕组的端电压U2=E2,两绕组的电压比为
U1/U2=E1/E2=N1/N2
此关系式表明变压器一、二次绕组电压之比等于一、二次绕组匝数之比。
当二次绕组接上负载时,二次绕组电路中有电流,2通过,这时在一、二次绕组中产生的磁势满足
I1N1=I2N2
即I1/I2=N2/N1
此式说明变压器一、二、次绕组电流与一、二次绕组匝数成反比。
标签: 变压器。