初中数学必背三角函数公式大全
初中数学三角函数公式总结

初中数学三角函数公式总结
三角形中的恒等式是我们经常在考试中遇到的题型,具体的公式
内容如下:
三角形与三角函数
1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,
即a/sinA=b/sinB=c/sinC=2R 。(其中R为外接圆的半径)
2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余
弦的交叉乘积的和,即a=c cosB + b cosC
3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方
之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2—
2bc·cosA
4、正切定理(napier比拟):三角形中任意两边差和的比值等于
对应角半角差和的正切比值,即(a—b)/(a+b)=tan[(A—B)
/2]/tan[(A+B)/2]=tan[(A—B)/2]/cot(C/2)
5、三角形中的恒等式:
对于任意非直角三角形中,如三角形ABC,总有
tanA+tanB+tanC=tanAtanBtanC
证明:
已知(A+B)=(π—C)
所以tan(A+B)=tan(π—C)
则(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/
(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有
tanα+tanβ+tanγ=tanαtanβtanγ
[初中数学三角函数公式总结]
初中数学三角函数公式

初中数学三角函数公式三角函数是初中数学中的一个重要内容,包括正弦函数、余弦函数和正切函数。
它们是用来描述角度与三角形边长之间的关系的函数。
初中数学中,我们主要学习三角函数的性质、图像、周期性等内容,并且需要掌握一些重要的三角函数公式。
一、正弦函数的公式正弦函数的定义域为全体实数,值域为[-1,1]。
我们用sin表示正弦函数,对于任意实数x,有sinx=y,则y为x的正弦值。
1. 正弦函数的周期性:sin(x+2pai)=sinx。
即正弦函数的一个周期为2pai的整数倍。
2. 正弦函数的图像:正弦函数的图像是一个周期性变化的波动曲线。
波动的最高点是(pai/2, 1),最低点是(3pai/2, -1)。
3. 正弦函数的奇偶性:sin(-x) = -sinx。
即sin函数是奇函数。
4. 正弦函数的诱导公式:sin(a+b) = sina cosb + cosa sinb。
即正弦函数的和差角公式。
二、余弦函数的公式余弦函数的定义域为全体实数,值域为[-1,1]。
我们用cos表示余弦函数,对于任意实数x,有cosx=y,则y为x的余弦值。
1. 余弦函数的周期性:cos(x+2pai)=cosx。
即余弦函数的一个周期为2pai的整数倍。
2. 余弦函数的图像:余弦函数的图像是一个周期性变化的波动曲线。
波动的最高点是(0, 1),最低点是(pai, -1)。
3. 余弦函数的奇偶性:cos(-x) = cosx。
即cos函数是偶函数。
4. 余弦函数的诱导公式:cos(a+b) = cosa cosb - sina sinb。
即余弦函数的和差角公式。
三、正切函数的公式正切函数的定义域为全体实数,值域为全体实数。
我们用tan表示正切函数,对于任意实数x,有tanx=y,则y为x的正切值。
1. 正切函数的周期性:tan(x+pai)=tanx。
即正切函数的一个周期为pai的整数倍。
2.正切函数的图像:正切函数的图像具有周期性,且在每个周期内有无数个极值点。
初中数学三角函数公式

初中数学三角函数公式三角函数的公式:1. 余弦定理:\cos A=\frac{b^2 + c^2 - a^2}{2bc};2. 正弦定理:\sin A=\frac{\sqrt{a^2 - b^2 - c^2}}{2bc};3. 梯形公式:S=\frac{1}{2} a \times b \sin C;4. 两边和定理:a\sin A=b\sin B=c\sin C;5. 余切定理:\tan A=\frac{1}{\sin A}\;6. 正切定理:\cot A=\frac{1}{\tan A}\;三角函数的概念问题可以追溯到古希腊人。
他们考虑了三角函数如何影响几何形状和外形,从而得到了代表三角形的几个基本函数,即正弦函数、余弦函数和正切函数。
三角函数在很多领域有着广泛的用途,比如在地理学和天文学中,它们帮助计算地球上特定地点的坐标,确定太阳位置等等;在单元电路中它们可以用来计算电流和电压;在许多工程应用中,它们可以用来计算房屋的张力,测量角度等等。
三角函数的公式有多种,主要有:1. 余弦定理:它有助于计算三角形的两个角的余弦值,当我们知道该三角形的三条边的长度的时候:余弦定理的表达式为:\cos A=\frac{b^2 + c^2 -a^2}{2bc};2. 正弦定理:它可以帮助我们计算三角形三个角度中其中一个角度的正弦值,以及三角形三条边的关系:正弦定理的表达式:\sin A=\frac{\sqrt{a^2 - b^2 - c^2}}{2bc};3. 梯形公式:它可以帮助我们计算出三角形的面积,它有两种表示形式:一:根据三角形三条边的长度,可以表示为:S=\frac{1}{2} a \times b \sin C;二:根据三角形的三个内角的度数,可以表示为:S=\frac{abc}{4R};4. 两边和定理:它可以帮助我们计算出一个三角形的面积,这个定理可以用来得出三角形三个角度两条边之间的关系:两边和定理的表达式为:a\sin A=b\sin B=c\sin C;5. 余切定理:它可以帮助我们计算出三角形的余切值,当我们知道角的正弦值时:余切定理的表达式为:\tan A=\frac{1}{\sin A}\;6. 正切定理:它可以帮助我们计算出三角形的正切值,当我们知道角的余弦值时:正切定理的表达式:\cot A=\frac{1}{\tan A}\;以上这些定理和公式都是三角函数中最重要最常用的,因为三角函数具有广泛的应用,所以必须熟悉这些定理和公式,以便于灵活地应用。
初中数学三角函数公式

初中数学三角函数公式三角函数是数学中重要的一部分,它在几何、物理等领域有广泛的应用。
在初中数学中,我们主要学习正弦函数、余弦函数和正切函数,以及它们之间的关系。
本文将详细介绍这些三角函数的定义、性质和常用公式。
一、正弦函数正弦函数是最基本的三角函数之一,它反映了角度和边长之间的关系。
定义:设角A的终边与单位圆交于点P(x,y),则角A的正弦值sinA定义为点P的纵坐标y。
即sinA=y。
性质:1. sin(90°)=1,即sinA的最大值为1;2. sin(-A)=-sinA,即正弦函数具有奇对称性;3. sin(180°+A)=-sinA,即正弦函数具有周期性。
常用公式:1. 三角恒等式:sin(A±B)=sinAcosB±cosAsinB;2. 万能公式:sin2A=2sinAcosA;3. 正弦的平方:sin²A+cos²A=1二、余弦函数余弦函数与正弦函数相似,也是描述角度和边长之间关系的函数。
定义:设角A的终边与单位圆交于点P(x,y),则角A的余弦值cosA定义为点P的横坐标x。
即cosA=x。
性质:1. cos(0°)=1,即cosA的最大值为1;2. cos(-A)=cosA,即余弦函数具有偶对称性;3. cos(180°+A)=-cosA,即余弦函数具有周期性。
常用公式:1. 三角恒等式:cos(A±B)=cosAcosB∓sinAsinB;2. 万能公式:cos2A=cos²A-sin²A;3. 余弦的平方:sin²A+cos²A=1三、正切函数正切函数是正弦函数和余弦函数的比值,它在三角函数中也是重要的一员。
定义:设角A的终边与单位圆交于点P(x,y),且x≠0,则角A的正切值tanA定义为y/x。
即tanA=y/x。
性质:1. tan(0°)=0,即tanA的最小值为0;2. tan(-A)=-tanA,即正切函数具有奇对称性;3. tan(180°+A)=tanA,即正切函数具有周期性。
初中数学公式必背

初中数学公式必背为了帮助初中学生更好地掌握数学知识,以下是一些必须背诵的数学公式。
1. 平方公式:- $(a+b)^2 = a^2 + 2ab + b^2$- $(a-b)^2 = a^2 - 2ab + b^2$- $(a+b)(a-b) = a^2 - b^2$2. 三角函数公式:- 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正切定理:$\tan A = \frac{\sin A}{\cos A}$- 90度角的特殊三角函数值:$\sin 90^\circ = 1$,$\cos 90^\circ = 0$,$\tan 90^\circ = \pm\infty$3. 集合公式:- 交集:$A \cap B = \{x \,|\, x \in A \text{ 且 } x \in B\}$- 并集:$A \cup B = \{x \,|\, x \in A \text{ 或 } x \in B\}$- 补集:$A^C = \{x \,|\, x \text{ 不属于 } A\}$- 全集:$U$- 空集:$\emptyset$4. 直线方程:- 点斜式方程:$y-y_1 = m(x-x_1)$- 两点式方程:$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$- 一般式方程:$Ax + By + C = 0$5. 平行四边形性质:- 对角线互相平分- 两对边平行且相等这些公式是初中数学研究的基础,背诵并熟练运用它们将有助于解决各种问题。
希望同学们能够认真研究,掌握这些公式,为数学研究打下坚实的基础。
初中数学常用三角函数公式表

平方关系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
两角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
chusancom隶属于吉林省春雨秋风科技有限公司其它同名网站均为侵权或假冒
初中数学常用三角函数公式表
三角函数公式表整理
sin是对边比斜边,cos是邻边比斜边,tan是对边比邻边cot邻边比对边。
sin30是二分之一,sin45是二分之根二,sin60是二分之根三。
cos30是二分之根三,cos45是二分之根二,cos60是二分之一。
tan30是三分之根三,tan45是一,tan60是根三。
cot30是根三,cot45是一,cot60是三分之根三。
三角函数常用公式集锦
积的关系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
【初中数学】三角函数公式汇总

定义式函数公式倒数关系:①②③商数关系:平方关系:诱导公式公式1:设a为任意角,终边相同的角的同一三角函数的值相等:公式2:设a为任意角,Π+a与a的三角函数值之间的关系:公式3:任意角与a的三角函数值之间的关系:公式4:Π-a与a的三角函数值之间的关系:公式5:与a的三角函数值之间的关系:公式6:Π/2+a及与a的三角函数值之间的关系:记背诀窍:奇变偶不变,符号看象限,即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。
形如2k×90°±α,则函数名称不变。
基本公式【和差角公式】◆二角和差公式◆三角和公式【和差化积公式】口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.【积化和差公式】【倍角公式】◆二倍角公式◆三倍角公式◆四倍角公式sin4a=-4*[cosa*sina*(2*sina^2-1)]cos4a=1+(-8*cosa^2+8*cosa^4)tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)◆五倍角公式◆半角公式(正负由所在的象限决定)◆万能公式◆辅助角公式◆余弦定理◆三角函数公式算面积定理:在△ABC中,其面积就应该是底边对应的高的1/2,不妨设BC边对应的高是AD,那么△ABC的面积就是AD*BC*1/2。
而AD是垂直于BC的,这样△ADC就是直角三角形了,显然,由此可以得出,AD=ACsinC,将这个式子带回三角形的计算公式中就可以得到:,同理,即可得出三角形的面积等于两邻边及其夹角正弦值的乘积的一半。
◆公式:若△ABC中角A,B,C所对的三边是a,b,c:则S△ABC=1/2absinC=1/2bcsinA=1/2acsinB.◆反三角函数反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] ,值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】◆反三角函数公式:arcsin(-x)=-arcsinxarccos(-x)=π-arccosxarctan(-x)=-arctanxarccot(-x)=π-arccotxarcsinx+arccosx=π/2=arctanx+arccotxsin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x当x∈〔0,π〕,arccos(cosx)=xx∈(—π/2,π/2),arctan(tanx)=xx∈(0,π),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似若(arctanx+arctany)∈(—π/2,π/2),。
中考复习:初中数学三角函数公式

中考复习:初中数学三角函数公式中考复习:初中数学三角函数公式三角函数公式正弦( sin):角的对边比上斜边余弦( cos) :角的邻边比上斜边正切( tan):角的对边比上邻边余切( cot):角的邻边比上对边正割( sec) :角的斜边比上邻边余割( csc) :角的斜边比上对边sin30=1/2sin45=根号 2/2sin60=根号 3/2cos30=根号 3/2cos45=根号 2/2cos60=1/2tan30=根号 3/3tan45=1tan60=根号 3两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB ?cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA) ? cot(A-B) = (cotAcotB+1)/(cotB-cotA) 2019 倍角公式Sin2A=2SinA?CosACos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1 tan2A=2tanA/1-tanA^22019 三倍角公式tan3a = tan a tan(/3+a) tan(/3-a)2019 半角公式2019 和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 2019 积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 2019 引诱公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(/2-a) = cos(a)cos(/2-a) = sin(a)sin(/2+a) = cos(a)cos(/2+a) = -sin(a)sin(-a) = sin(a)cos(-a) = -cos(a)sin(+a) = -sin(a)cos(+a) = -cos(a)tanA=tanA = sinA/cosA2019 全能公式2019 其余公式2019 其余非要点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)2019 双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设为随意角,终边同样的角的同一三角函数的值相等:sin( 2k+) = sincos(2k+) = costan( 2k+) = tancot( 2k+) = cot公式二:设为随意角,的三角函数值与的三角函数值之间的关系:sin(+) = -sincos(+) = -costan(+) = tancot(+) = cot公式三:随意角与-的三角函数值之间的关系:sin( -)= -sincos(-) = costan( -) = -tancot( -) = -cot公式四:利用公式二和公式三能够获得与的三角函数值之间的关系:sin() = sincos() = -costan() = -tancot() = -cot公式五:利用公式 -和公式三能够获得 2 与的三角函数值之间的关系:sin( 2) = -sincos(2) = costan( 2) = -tancot( 2) = -cot公式六:/2 及 3/2 与的三角函数值之间的关系:sin( /2+) = coscos(/2+ )= -sintan( /2+ )= -cotcot( /2+ )= -tansin( /2-) = coscos(/2-) = sintan( /2-) = cotcot( /2-) = tansin( 3/2+) = -coscos(3/2+ )= sintan( 3/2+) = -cotcot( 3/2+) = -tansin( 3/2-) = -coscos(3/2-) = -sintan( 3/2- )= cotcot( 3/2- )= tan(以上 kZ)个物理常用公式我了半天的才来,希望大家有用Asin(t+)+ Bsin(t+) ={(A^2 +B^2 +2ABcos(-)} ? sin{ t + arcsin[ (A?sin+B?sin)/ {A^2 +B^2; +2ABcos(-)} }表示根号 ,包含 { ⋯⋯}中的内容函数名正弦余弦正切余切正割余割在平面直角坐系 xOy 中,从点 O 引出一条射 OP,旋角,OP=r , P 点的坐( x, y)有正弦函数sin=y/r余弦函数cos=x/r正切函数tan=y/x余切函数cot=x/y正割函数sec=r/x余割函数csc=r/y(斜 r,y, x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学必背三角函数公式大全
初中数学必背的知识点,三角函数公式大全同学们总结归纳过吗?
如果没有快来小编这里瞧瞧。下面是由小编为大家整理的“初中数学
必背三角函数公式大全”,仅供参考,欢迎大家阅读。
初中数学必背三角函数公式大全
常用三角函数公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
- ctgA+ctgBsin(A+B)/sinAsinB
拓展阅读:三角函数导数公式大全
(sinx)' = cosx
(cosx)' = - sinx
(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2
-(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2
(secx)'=tanx·secx
(cscx)'=-cotx·cscx
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
(sinhx)'=coshx
(coshx)'=sinhx
(tanhx)'=1/(coshx)^2=(sechx)^2
(coth)'=-1/(sinhx)^2=-(cschx)^2
(sechx)'=-tanhx·sechx
(cschx)'=-cothx·cschx