勾股定理及其应用
勾股定理及其逆定理应用

勾股定理及其逆定理应用1. 简介勾股定理是数学中的基本定理之一,描述了直角三角形中各边之间的关系。
勾股定理被广泛应用于几何学、物理学、工程学等领域,为解决实际问题提供了有力的工具。
除了勾股定理本身,其逆定理也有着广泛的应用价值。
本文将介绍勾股定理及其逆定理的基本原理和应用。
2. 勾股定理勾股定理是指在一个直角三角形中,直角边的平方等于两个直角边的平方之和。
数学表达式为:a^2 + b^2 = c^2其中,a和b分别表示直角三角形的两条直角边,c表示斜边长度。
该定理可以用来计算不知道的边长,或者验证一个三角形是否为直角三角形。
勾股定理的一个重要应用是解决实际问题中的测量和计算。
例如,在建筑工程中,可以利用勾股定理计算墙面的对角线长度,或者确定直角拐角的位置。
在导航系统中,可以利用勾股定理计算两个地点之间的直线距离。
此外,勾股定理还可以用于解决三角函数的关系,例如求解正弦、余弦和正切等。
3. 勾股定理的逆定理勾股定理的逆定理由三个整数构成,称为勾股数。
逆定理可以表示为:给定三个正整数a、b和c,若满足以下条件,则它们是勾股数:1.a、b和c两两互质;2.a、b和c中至少有一个为偶数。
勾股数具有很多有趣的性质和应用。
例如,利用勾股数可以构造出无穷多个满足勾股定理的直角三角形。
此外,逆定理还与数论中的素数有着密切的关系。
例如,勾股数中的c值是素数的情况下,其它两个整数a和b可以构成一个素勾股数。
4. 勾股定理的应用勾股定理被广泛应用于几何学和三角学中。
在几何学中,可以利用勾股定理求解三角形边长、角度和面积等问题。
在三角学中,勾股定理的衍生形式被用于计算三角函数的值。
在物理学中,勾股定理用于计算物体的速度、加速度和力的分解。
在工程学中,勾股定理被应用于设计和计算建筑物、桥梁和机械等。
例如,计算机图形学中的三维模型投影和旋转操作都离不开勾股定理。
此外,勾股定理还在实际生活中的测量和定位中发挥着重要作用。
例如,在测量地理位置时,可以利用勾股定理计算两个地点之间的直线距离。
勾股定理的应用的例子

勾股定理的应用的例子:
一、圆柱侧面上两点间的最短距离圆柱侧面的展开图是一个矩形,圆柱上两点之间最短距离的求法,是把圆柱展开成平面图形,依据两点之间线段最短,以最短路线为构造直角三角形,利用勾股定理求解.
二、长方体(或正方体)表面上两点间的最短距离长方体每个面都是平面图形,所以计算同一个面上的两点之间的距离比较容易,若计算不同平面上的两点之间的距离,就变成了两个面之间的问题,必须将它们转化到同一平面内,即把四棱柱设法展开成一个平面图形,再构造直角三角形利用勾股定理解决,正方体的展开图从哪一面上展开都一样,而长方体的展开图一定要注意打开哪一个侧面,并且向上、下与向左、右展开会出现长度不的路线,应通过尝试从几条路线中选一条符合要求的.
三、折叠问题关于折叠问题的解题步骤:(1)利用重叠的图形传递数据(一般不用重叠的图形进行计算);(2)选择或构造直角三角形,这个直角三角形一般一边已知,另两边可通过重叠图形找到数量关系,从而利用勾股定理列方程求解.。
勾股定理及其逆定理的应用

解:(1)AB= 5,AC= 13,AD=2 2,AE=2 5. (2)存在,线段AB,AC,AD可以构成直角三角形. 理由: ∵AB= 5,AD=2 2,AC= 13, ∴AD2+AB2=AC2, 由勾股定理的逆定理可知, 线段AB,AC,AD 可以构成直角三角形.
类型 6 勾股定理与它的逆定理的综合应用
21、怠惰是贫穷的制造厂。 22、先知三日,富贵十年。 23、自信是向成功迈出的第一步。——爱因斯 坦 24、一个人除非自己有信心,否则不能 带给别 人信心 ;已经 信服的 人,方 能使人 信服。 ——麦 修·阿诺 德 25、凡是挣扎过来的人都是真金不怕火 炼的; 任何幻 灭都不 能动摇 他们的 信仰: 因为他 们一开 始就知 道信仰 之路和 幸福之 路全然 不同, 而他们 是不能 选选择 的,只 有往这 条路走 ,别的 都是死 路。这 样的自 信不是 一朝一 夕所能 养成的 。你绝 不能以 此期待 那些十 五岁左 右的孩 子。在 得到这 个信念 之之前 ,先得 受尽悲 痛,流 尽眼泪 。可是 这样是 好的, 应该要 这样… …——罗 曼·罗 兰 26、一个人在科学探索的道路上,走过 弯路, 犯过错 误,并 不是坏 事,更 不是什 么耻辱 ,要在 实践中 勇于承 认和改 正错误 。——爱因斯 坦88我 们的理 想应该 是高尚 的。我 们不能 登上顶 峰,但 可以爬 上半山 腰,这 总比待 在平地 上要好 得多。 如果我 们的内 心为爱 的光辉 所照亮 ,我们 面前前 又有理 想,那 么就不 会有战 胜不了 的困难 。——普列姆 昌德 27、旁观者的姓3 勾股定理在最短路径中的应用
3.(中考·资阳)如图,透明的圆柱形容器(容器厚度忽略 不计)的高为12 cm,底面周长为10 cm,在容器内壁 离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁 正好在容器外壁,且离容器上沿 3 cm的点A处,则蚂蚁吃到饭粒 需爬行的最短路径的长是( A ) A.13 cm B.2 61 cm C. 61 cm D.2 34 cm
勾股定理的应用举例与解题方法

勾股定理的应用举例与解题方法勾股定理是一条著名的数学定理,它在几何学和代数学中具有广泛的应用。
本文将通过举例和解题方法来探讨勾股定理的应用。
一、求解直角三角形的边长勾股定理最常见的应用就是求解直角三角形的边长。
直角三角形是指一个角度为90度的三角形。
在这种三角形中,直角边即为斜边相对的两条边。
根据勾股定理,斜边的平方等于两条直角边的平方和。
举例1:已知一个直角三角形的一条直角边长度为5,另一条直角边长度为12,求斜边的长度。
解题方法:根据勾股定理可以得到:斜边的平方 = 直角边1的平方 + 直角边2的平方代入已知条件可得:斜边的平方 = 5² + 12² = 25 + 144 = 169开方得到斜边的长度为13。
因此,该直角三角形的斜边长度为13。
二、验证三条边是否构成直角三角形通过勾股定理,我们还可以验证三条边是否构成直角三角形。
举例2:已知三条边的长度分别为3、4、5,判断它们是否构成直角三角形。
解题方法:按照勾股定理,如果三条边的平方和等于斜边的平方,那么它们所构成的就是直角三角形。
代入已知条件可得:3² + 4² = 9 + 16 = 25而斜边的平方为5² = 25由此可见,两者相等,所以这三条边构成了直角三角形。
三、解决几何问题勾股定理不仅可以用于解决三角形问题,还可以应用于其他几何问题。
举例3:已知一个矩形的两条边长分别为5和12,求对角线的长度。
解题方法:由于矩形的对角线可以看作是直角三角形的斜边,我们可以利用勾股定理来求解。
根据勾股定理可以得到:对角线的平方 = 矩形的一条边长的平方 +矩形的另一条边长的平方代入已知条件可得:对角线的平方 = 5² + 12² = 25 + 144 = 169开方得到对角线的长度为13。
因此,该矩形的对角线长度为13。
四、应用于物理问题勾股定理还可以应用于物理问题的求解中。
举例4:一个投射角度为45度的物体以10 m/s的速度抛出,求物体在水平方向上的飞行距离。
利用勾股定理解决问题

利用勾股定理解决问题勾股定理是初中数学中非常重要的定理之一,它可以帮助我们解决很多与直角三角形相关的问题。
在本文中,我将通过举例和分析,向中学生及其父母介绍如何利用勾股定理解决问题。
一、求直角三角形的斜边长勾股定理的最常见应用就是求直角三角形的斜边长。
直角三角形是指其中一个角为90度的三角形。
假设直角三角形的两条直角边分别为a和b,斜边为c。
根据勾股定理,我们可以得到以下关系式:a² + b² = c²。
例如,已知直角三角形的直角边分别为3和4,我们可以利用勾股定理求出斜边的长度。
根据关系式,我们有3² + 4² = c²,即9 + 16 = c²,进一步计算得到c² = 25,因此c = 5。
所以,该直角三角形的斜边长为5。
二、判断三条边长是否构成直角三角形利用勾股定理,我们还可以判断三条边长是否构成直角三角形。
根据勾股定理,如果一个三角形的三条边长满足a² + b² = c²,那么这个三角形就是直角三角形。
举个例子,假设有一个三角形,其三条边长分别为5、12和13。
我们可以利用勾股定理来判断这个三角形是否为直角三角形。
根据关系式,我们有5² + 12² = 13²,即25 + 144 = 169,计算结果正确。
因此,这个三角形是直角三角形。
三、求直角三角形的边长比例利用勾股定理,我们还可以求解直角三角形的边长比例。
假设直角三角形的两条直角边分别为a和b,斜边为c。
根据勾股定理,我们可以得到以下关系式:a² + b² = c²。
例如,已知一个直角三角形的斜边长为10,其中一条直角边长为6,我们可以利用勾股定理求解另一条直角边长。
根据关系式,我们有6² + b² = 10²,即36 + b²= 100,进一步计算得到b² = 64,因此b = 8。
勾股定理及其逆定理的运用课件

通过学习勾股定理及其逆定理,学生可 以培养出严密的逻辑思维和推理能力, 为后续的数学、物理、工程等学科的学
习打下坚实的基础。
学生可以从中领悟到数学与实际生活的 紧密联系,激发对数学的兴趣和热爱,
提高自主学习和探索的能力。
对实际应用的展望和期待
随着科技的发展和实际问题的复杂化,勾股定理及其逆定理的应用前景 将更加广阔。
度。
物理学
在物理学中,勾股定理可以用来解 决与直角三角形相关的力和运动问 题,例如单摆的运动和受力分析。
航海学
在航海学中,勾股定理可以用来计 算船只的航行距离和方向,以确保 航行安全。
02
逆定理的的逆定理是指,如果一 个三角形的三边满足勾股定理的 条件,那么这个三角形一定是直 角三角形。
条件限制不同
勾股定理适用于所有直角 三角形,而逆定理只适用 于已知一边和与之相对的 角为直角的三角形。
证明方法不同
勾股定理可以通过相似三 角形或面积法证明,而逆 定理通常通过反证法证明 。
定理与逆定理的互补之处
勾股定理是逆定理的前提
01
只有当满足勾股定理的条件时,一个三角形才可能是直角三角
形。
逆定理是勾股定理的延伸
02
勾股定理的逆定理是勾股定理的 一个重要应用,它可以帮助我们 判断一个三角形是否为直角三角 形。
逆定理的证明方法
勾股定理的逆定理可以通过反证法进 行证明。
然后通过构造一个直角三角形与三角 形ABC全等,并利用勾股定理证明假 设不成立,从而得出三角形ABC是直 角三角形的结论。
首先假设一个三角形ABC的三边满足 a²+b²=c²,但角C不是直角。
勾股定理及其逆定理的运用ppt课件
目录
勾股定理的实际应用【十二大题型】(解析版)

勾股定理的实际应用【十二大题型】【题型1求梯子滑落高度】【题型2求旗杆高度】【题型3求小鸟飞行距离】【题型4求大树折断前的高度】【题型5解一元一次不等式组】【题型6解决水杯中筷子问题】【题型7解决航海问题】【题型8求河宽】【题型9求台阶上地毯长度】【题型10判断汽车是否超速】【题型11选址使到两地距离相等】【题型12求最短路径】【题型1求梯子滑落高度】1(2023春·广东惠州·八年级校考期中)某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1),如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE,点B在DE上,OE的长即为消防车的高3m)【答案】消防车从原处向着火的楼房靠近的距离AC为3m【分析】在Rt△ABO中,根据勾股定理得到AO和OC,于是得到结论.【详解】解:在Rt△ABO中, ∵∠AOB=90°,AB=15m,OB=12-3=9(m),∴AO=AB2-OB2=152-92=12(m),在Rt△ABO中,∵∠COD=90°,CD=15m,OD=15-3=12(m),∴OC=CD2-OD2=152-122=9(m),∴AC=OA-OC=3(m),答:消防车从原处向着火的楼房靠近的距离AC为3m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.1(2023春·山西晋中·八年级统考期中)如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离OC为0.7米,顶端B距墙顶的距离AB为0.6米若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离OF为1.5米,顶端E距墙项D的距离DE为1米,点A、B、C在一条直线上,点D、E、F在一条直线上,AC⊥CF,DF⊥CF.求:(1)墙的高度;(2)竹竿的长度.【答案】(1)墙高3米(2)竹竿的长2.5米【分析】(1)设墙高x米,在RtΔBCO,RtΔEFO根据勾股定理即可表示出竹竿长度的平方,联立即可得到答案;(2)把(1)中的x代入勾股定理即可得到答案.【详解】(1)解:设墙高x米,∵AC⊥CF,DF⊥CF,∴∠BCO=∠EFO=90°,在RtΔBCO,RtΔEFO根据勾股定理可得,BO2=(x-0.6)2+0.72,OE2=(x-1)2+1.52,∵BO=OE,∴(x-1)2+1.52=(x-0.6)2+0.72,解得:x=3,答:墙高3米;(2)由(1得),BO2=(x-0.6)2+0.72,x=3,∴BO=(3-0.6)2+0.72=2.5答:竹竿的长2.5米.【点睛】本题考查勾股定理实际应用题,解题的关键时根据两种不同状态竹竿长不变列等式及正确计算.2(2023春·浙江宁波·八年级统考期末)如图,一条笔直的竹竿斜靠在一道垂直于地面的墙面上,一端在墙面A处,另一端在地面B处,墙角记为点C.(1)若AB=6.5米,BC=2.5米.①竹竿的顶端A沿墙下滑1米,那么点B将向外移动多少米?②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?如果不可能,请说明理由;如果可能,请求出移动的距离(保留根号).(2)若AC=BC,则顶端A下滑的距离与底端B外移的距离,有可能相等吗?若能相等,请说明理由;若不等,请比较顶端A下滑的距离与底端B外移的距离的大小.【答案】(1)①69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由见解析(2)不可能相等,顶端A下滑的距离大于底端B外移的距离.【分析】(1)先根据勾股定理可得AC=6米,①根据题意得:AA =1m,可得到A C=AC-AA =5米,由勾股定理可得B C的长,即可求解;②设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据勾股定理,列出方程,即可求解;(2)设AC=BC=a,从A处沿墙AC下滑的距离为m米,点B向外移动的距离为n米,则AB=A B =2a,根据勾股定理,列出方程,可得m-n=m2+n22a,即可求解.【详解】(1)解:∠C=90°,AB=A B =6.5米,∴AC=AB2-BC2=6米,①根据题意得:AA =1m,∴A C=AC-AA =5米,∴B C=A B 2-A C2=692米,∴BB =B C-BC=692-2.5=69-52米,即点B将向外移动69-52米;②竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等,理由如下:设从A处沿墙AC下滑的距离为x米,点B也向外移动的距离为x米,根据题意得:6-x2+2.5+x2=6.52,解得:x1=3.5,x2=0(舍去),∴从A处沿墙AC下滑的距离为3.5米时,点B也向外移动的距离为3.5米,即竹竿的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等;(2)解:不可能相等,理由如下:设AC =BC =a ,从A 处沿墙AC 下滑的距离为m 米,点B 向外移动的距离为n 米,则AB =A B =2a ,根据题意得:a -m 2+a +n 2=2a 2,整理得:2a m -n =m 2+n 2,即m -n =m 2+n 22a,∵a 、m 、n 都为正数,∴m -n =m 2+n 22a>0,即m >n .∴顶端A 下滑的距离大于底端B 外移的距离.【点睛】本题主要考查了勾股定理的实际应用,熟练掌握勾股定理是解题的关键.3(2023春·辽宁沈阳·八年级统考期中)拉杆箱是人们出行的常用品,采用拉杆箱可以让人们出行更轻松.如图,一直某种拉杆箱箱体长AB =65cm ,拉杆最大伸长距离BC =35cm ,在箱体底端装有一圆形滚轮,当拉杆拉到最长时,滚轮的圆心在图中的A 处,点A 到地面的距离AD =3cm ,当拉杆全部缩进箱体时,滚轮圆心水平向右平移55cm 到A ′处,求拉杆把手C 离地面的距离(假设C 点的位置保持不变).【答案】拉杆把手C 离地面的距离为63cm【分析】过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,根据勾股定理即可得到方程652-x 2=1002-(55+x )2,求得A 'F 的长,即可利用勾股定理得到CF 的长,进而得出CE 的长.【详解】如图所示,过C 作CE ⊥DN 于E ,延长AA '交CE 于F ,则∠AFC =90°,设A 'F =x ,则AF =55+x ,由题可得,AC =65+35=100,A 'C =65,∵Rt △A 'CF 中,CF 2=652-x 2,Rt △ACF 中,CF 2=1002-(55+x )2,∴652-x 2=1002-(55+x )2,解得x =25,∴A 'F =25,∴CF =A C 2-A F 2=60(cm ),又∵EF =AD =3(cm ),∴CE =60+3=63(cm ),∴拉杆把手C 离地面的距离为63cm .【点睛】本题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.【题型2求旗杆高度】1(2023春·山西临汾·八年级统考期末)同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B 的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE 为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2=AF2+EF2,根据AC=AE,得出AB2+12=(AB-1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB-1)2+52,又∵AC=AE,∴AB2+12=(AB-1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12=(AB-1)2+52.1(2023春·江西景德镇·八年级统考期中)2021年是中国共产党建党100周年,大街小巷挂满了彩旗.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在地面上.旗杆从旗顶到地面的高度为240cm,在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.【答案】90cm【分析】首先观察题目,作辅助线构造一个直角三角形,如图,连接DE;已知彩旗为长方形,由题意可知,无风的天气里,彩旗自然下垂时,彩旗最低处到旗杆顶部的长度正好是长方形彩旗完全展开时的对角线的长度,根据勾股定理可求出它的长度;然后用旗杆顶部到地面高度减去这个数值,即可求得答案.【详解】彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=240-150=90(cm).∴彩旗下垂时的最低处离地面的最小高度h为90cm.【点睛】本题考查了勾股定理的实际应用,此类题的难点在于正确理解题意,结合实际运用勾股定理.2(2023春·八年级课时练习)太原的五一广场视野开阔,是一处设计别致,造型美丽的广场园林,成为不少市民放风筝的最佳场所,某校八年级(1)班的小明和小亮同学学习了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.7米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH的长度.【答案】(1)风筝的高度CE为21.7米(2)BH的长度为9米【分析】(1)在Rt△CDB中由勾股定理求得CD的长,再加上DE即可;(2)利用等积法求出DH的长,再在Rt△BHD中由勾股定理即可求得BH的长.【详解】(1)在Rt△CDB中,由勾股定理,得:CD=C2-BD2=252-152=20(米),所以CE=CD+DE=20+1.7=21.7(米),答:风筝的高度CE为21.7米.(2)由等积法知:12BD×DC=12BC×DH,解得:DH=15×2025=12(米).在Rt△BHD中,BH=BD2-DH2=9(米),答:BH的长度为9米.【点睛】本题考查了勾股定理的实际应用,正确运用勾股定理是关键,注意计算准确.3(2023春·山西吕梁·八年级统考期中)如图,一根直立的旗杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】6【分析】先根据勾股定理求得AC,进而求得AD,根据勾股定理即可求得范围.【详解】由题意可知AC+BC=8,AB=4,则AC2+AB2=BC2,即AC2+42=(8-AC)2,解得AC=3,若下次大风将旗杆从D处吹断,如图,∴AD=AC-1.25=3-1.25=1.75,∴BD=AB-AD=8-1.75=6.25,AB=BD2-AD2= 6.252-1.752=6.∴则距离旗杆底部周围6米范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.【题型3求小鸟飞行距离】1(2023春·陕西咸阳·八年级统考期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.【答案】17米【分析】已知AB和AC的长度,根据勾股定理即可求出BC的长度,小鸟下降12米,则BD=AB-12,根据勾股定理即可求出CD的长度.【详解】解:由勾股定理得;BC2=AC2-AB2=252-202=225,∴BC=15(米),∵BD=AB-AD=20-12=8(米),∴在Rt△BCD中,由勾股定理得CD=DB2+BC2=82+152=17,∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.【点睛】本题主要考查了勾股定理得实际应用,熟练地掌握勾股定理的内容是解题的关键.1(2023春·八年级课时练习)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了( )米.A.3B.4C.5D.6【答案】C【分析】此题可以过低树的一端向高树引垂线.则构造了一个直角三角形:其斜边是小鸟飞的路程,一条直角边是4,另一条直角边是两树相差的高度3.根据勾股定理得:小鸟飞了5米.【详解】解:如图所示,AB=6m,CD=3m,BC=4m,过D作DE⊥AB于E,则DE=BC=4m,BE=CD=3m,AE=AB-BE=6-3=3m,在Rt△ADE中,AD=5m.故选:C.【点睛】能够正确理解题意,准确画出图形,熟练运用勾股定理即可.2(2023春·山东枣庄·八年级统考期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【答案】它至少需要5.2s才能赶回巢中.【分析】根据题意,构建直角三角形,利用勾股定理解答.【详解】解:如图,由题意知AB=3,CD=14-1=13,BD=24.过A作AE⊥CD于E.则CE=13-3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).答:它至少需要5.2s才能赶回巢中.【点睛】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.3(2023春·贵州贵阳·八年级校考期中)假期中,小明和同学们到某海岛上去探宝,按照探宝图,他们从A点登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?【答案】10千米【分析】通过行走的方向和距离得出对应的线段的长度.根据题意构造直角三角形,利用勾股定理求解.【详解】解:过点B作BD⊥AC于点D.根据题意可知,AD=8-3+1=6,BD=2+6=8,在Rt△ABD中,∴AB=AD2+BD2=62+82=10.答:登陆点A到宝藏处B的距离为10千米.【点睛】本题考查勾股定理的实际应用.读懂题意,根据题意找到需要的等量关系,与勾股定理结合求线段的长度是解题的关键.【题型4求大树折断前的高度】1(2023春·八年级课时练习)如图,在倾斜角为45°(即∠NMP=45°)的山坡MN上有一棵树AB,由于大风,该树从点E处折断,其树顶B恰好落在另一棵树CD的根部C处,已知AE=1m,AC=18m.(1)求这两棵树的水平距离CF;(2)求树AB的高度.【答案】(1)3m(2)6m【分析】(1)根据平行的性质,证得AF=CF,根据勾股定理即可求得.(2)在Rt△CEF中,根据勾股定理即可解得.【详解】(1)由题可知MP∥CF,∠F=90°∴∠ACF=∠NMP=45°,∴AF=CF在Rt△ACF中,CF2+AF2=AC2,∴2CF2=18,∴AF=CF=3(m).即这两棵树的水平距离为3m.(2)在Rt△CEF中,CE2=CF2+EF2∴CE=32+42=5,∴AB=AE+CE=5+1=6(m).即树AB的高度为6m.【点睛】此题考查了勾股定理,解题的关键是熟悉勾股定理的实际应用.1(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10mB.15mC.18mD.20m【答案】C【分析】如图,勾股定理求出AC的长,利用AC+BC求解即可.【详解】解:如图,由题意,得:BC=5,AB=12,BC⊥AB,∴AC=AB2+BC2=13,∴这棵大树在折断前的高度为13+5=18m;故选C.【点睛】本题考查勾股定理的应用,熟练掌握勾股定理是解题的关键.2(2023春·山西阳泉·八年级统考期末)我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离PA的长为1尺,将它向前水平推送10尺时,即P C=10尺,秋千踏板离地的距离P B和身高5尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为x尺,根据题意可列方程为.【答案】(x+1-5)2+102=x2.【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OP'=x,OC=x+1-5,P'C=10,在Rt△OCP'中,由勾股定理得:(x+1-5)2+102=x2.故答案为:(x+1-5)2+102=x2.【点睛】本题主要考查了勾股定理的应用和列方程,读懂题意是解题的关键.3(2023春·广东珠海·八年级校考期中)如图,一根直立的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部A4m.(1)求旗杆距地面多高处折断;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?【答案】(1)旗杆距地面3m处折断;(2)距离杆脚周围6米大范围内有被砸伤的危险.【分析】(1)由题意可知:AC+BC=8米,根据勾股定理可得:AB2+AC2=BC2,又因为AB=4米,即可求得AC的长;(2)易求D点距地面3-1.25=1.75米,BD=8-1.75=6.25米,再根据勾股定理可以求得AB=6米,所以6米内有危险.【详解】(1)由题意可知:AC+BC=8米,∵∠A=90°,∴AB2+AC2=BC2,又∵AB=4米,∴AC=3米,BC=5米,∴旗杆距地面3m处折断;(2)如图,∵D点距地面AD=3-1.25=1.75米,∴BD=8-1.75=6.25米,∴AB=BD2-AD2=6米,∴距离杆脚周围6米大范围内有被砸伤的危险.【点睛】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.【题型5判断是否受台风影响】1(2023春·湖北武汉·八年级统考期中)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,公路PQ 上A处距离O点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN上沿MN方向以72千米/小时的速度行驶时,A处受到噪音影响的时间为秒.【答案】9【分析】过点A作AC⊥MN,求出最短距离AC的长度,然后在MN上取点B,D,使得AB=AD=150米,根据勾股定理得出BC,CD的长度,即可求出BD的长度,然后计算出时间即可.【详解】解:过点A作AC⊥MN,∵∠QON=30°,OA=240米,OA=120米,∴AC=12在MN上取点B,D,使得AB=AD=150米,当火车到B点时对A处产生噪音影响,∵AB=150米,AC=120米,∴由勾股定理得:BC=AB2-AC2=1502-1202=90米,CD=AD2-AC2=1502-1202=90米,即BD=180米,∵72千米/小时=20米/秒,∴影响时间应是:180÷20=9秒.故答案为:9.【点睛】本题主要考查了勾股定理,解题的关键在于准确找出受影响的路段,从而利用勾股定理求出其长度.1(2023春·陕西西安·八年级统考期中)为了鼓励大家积极接种新冠疫苗,某区镇政府采用了移动宣讲的形式进行广播宣传.如图,笔直的公路MN的一侧点A处有一村庄,村庄到公路MN的距离为300m,宣讲车P周围500m以内能听到广播宣传,宣讲车P在公路上沿MN方向行驶.(1)村庄能否听到广播宣传?请说明理由.(2)已知宣讲车的速度是50m/min,如果村庄能听到广播宣传,那么总共能听多长时间?【答案】(1)能,理由见解析(2)16【分析】(1)根据村庄A到公路MN的距离为300米<500米,即可得出村庄能听到广播宣传.(2)根据勾股定理得到BP=BQ=5002-3002=400(米),求得PQ=800米,即可得出结果.【详解】(1)村庄能听到广播宣传,理由如下:∵村庄A到公路MN的距离为300米<500米,∴村庄能听到广播宣传.(2)如图:假设当宣传车行驶到P点开始能听到广播,行驶到Q点不能听到广播,则AP=AQ=500米,AB=300米,由勾股定理得:BP=BQ=5002-3002=400(米),∴PQ=800米,∴能听到广播的时间为:800÷50=16(分钟),∴村庄总共能听到16分钟的宣传.【点睛】本题考查了勾股定理的应用,结合生活实际,便于更好地理解题意是解题的关键.2(2023春·山东青岛·八年级校考期末)如图所示,在甲村至乙村的公路AB旁有一块山地正在开发,现需要在C处进行爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB.为了安全起见,爆破点C周围半径250米范围内不得进入,在进行爆破时,公路AB 是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由.【答案】公路AB有危险需要封锁,需要封锁的路段长度为140米【分析】过C作CD⊥AB于D,利用勾股定理算出AB的长度,然后利用三角形的面积公式可求出CD的长,用CD的长和250比较大小即可判断是否需要封锁,最后根据勾股定理求出封锁的长度.【详解】解:公路AB需要暂时封锁,理由如下:如图,过C作CD⊥AB于D,因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米,因为S△ABC=12AB⋅CD=12BC⋅AC,所以CD=BC⋅ACAB=400×300500=240(米),由于240米<250米,故有危险,封锁长度为:2×2502-2402=140米,因此AB段公路需要暂时封锁,封锁长度为140米.【点睛】本题考查了正确运用勾股定理,善于观察题目的信息是解题的关键.3(2023春·广东广州·八年级校考期中)如图,A城气象台测得台风中心在A城正西方向320km的B 处,以每小时40km的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,则A城遭受这次台风影响有多长时间?【答案】(1)要,理由见解析(2)6h【分析】(1)由A点向BF作垂线,垂足为C,根据勾股定理求得AC的长,与200km比较即可得结论;(2)BF上分别取D、G,则△ADG是等腰三角形,由AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在GD长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.【详解】(1)解:由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200km,则还有一点G,有AG=200km.∵DA=AG,∴△ADG是等腰三角形,∵AC⊥BF,∴AC是DG的垂直平分线,CD=GC,在Rt△ADC中,DA=200km,AC=160km,由勾股定理得,CD=DA2-AC2=2002-1602=120km,则DG=2DC=240km,遭受台风影响的时间是:t=240÷40=6(h).【点睛】此题主要考查了勾股定理的应用以及点到直线的距离,构造出直角三角形是解题关键.【题型6解决水杯中筷子问题】1(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4<a<5B.3≤a≤4C.2≤a≤3D.1≤a≤2【答案】B【分析】如图,当吸管底部在D点时吸管在罐内部分最短,当吸管底部在B点时吸管在罐内部分最长,此时利用勾股定理在Rt△ADB中求出AB即可.【详解】解:如图,当吸管底部在底面圆心时吸管在罐内部分最短,此时吸管的的长度就是圆柱形的高,即12,∴a=16-12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分最长,吸管长度=AD2+BD2=122+52=13,∴此时a=16-13=3,所以3≤a≤4.故选:B.【点睛】本题考查勾股定理的应用,善于观察题目的信息,正确理解题意是解题的关键.1(2023春·重庆渝中·八年级重庆市求精中学校校考期中)一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2mB.2.5cmC.2.25mD.3m【答案】A【分析】设水池的深度BC=xm,则AB=(0.5+x)m,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC中,AC=1.5m.AB-BC=0.5m.设水池的深度BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2,∴1.52+x2=(x+0.5)2,解得:x=2.故选:A.【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键.2(2023春·山东青岛·八年级校考期中)有一个边长为10米的正方形水池,在水池正中央有一根新生的芦苇,它高出水面1米.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问:这个水池水的深度和这根芦苇的长度分别是多少?【答案】水池水深12米,芦苇长13米【分析】根据题意,构造直角三角形,根据勾股定理列出方程求解即可.【详解】解:如图:设芦苇BC长为x米,则水深AB为(x-1)米.∵芦苇长在水池中央,×10=5(米)∴AC=12根据勾股定理得:AC2+AB2=BC2,则:52+(x-1)2=x2,解得:x=13,∴x-1=13-1=12,答:水池水深12米,芦苇长13米.【点睛】本题主要考查勾股定理的实际应用,熟练掌握勾股定理的内容,勾股题意构造直角三角形,,根据勾股定理列出方程求解是解题的关键.3(2023春·河南漯河·八年级统考期中)如图,湖面上有一朵盛开的红莲,它高出水面30cm.大风吹过,红莲被吹至一边,花朵下部刚好齐及水面,已知红莲移动的水平距离为60cm,则水深是cm.【答案】45【分析】设水深h厘米,则AB=h,AC=h+30,BC=60,利用勾股定理计算即可.【详解】红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.设水深h厘米,由题意得:Rt△ABC中,AB=h,AC=h+30,BC=60,由勾股定理得:AC2=AB2+BC2,即h+302=h2+602,解得h=45.故答案为:45.【点睛】本题考查了勾股定理的应用,正确审题,明确直角三角形各边的长是解题的关键.【题型7解决航海问题】1(2023春·重庆巴南·八年级统考期末)在海平面上有A,B,C三个标记点,其中A在C的北偏西54°方向上,与C的距离是800海里,B在C的南偏西36°方向上,与C的距离是600海里.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为500海里,每隔半小时会发射一次信号,此时在点B处有一艘轮船准备沿直线向点A处航行,轮船航行的速度为每小时20海里.轮船在驶向A处的过程中,最多能收到多少次信号?(信号传播的时间忽略不计).【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;∴∠ACB=90°;∵AC=800,BC=600;∴AB=AC2+BC2=1000海里;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里.∵CH⊥AB;∴∠CHB =90°;∵S △ABC =12AC ⋅BC =12AB ⋅CH ;∴CH =480;∵CN =CM =500;∴NH =MH =CM 2-CH 2=140;则信号次数为140×2÷20=14(次).答:最多能收到14次信号.【点睛】本题考查了勾股定理的应用,直角三角形的判定等知识,涉及路程、速度、时间的关系,熟练掌握勾股定理是关键.1(2023春·河南信阳·八年级统考期末)如图,已知港口A 东偏南10°方向有一处小岛B ,一艘货轮从港口A 沿南偏东40°航线出发,行驶80海里到达C 处,此时观测小岛B 在北偏东60°方向.(1)求此时货轮到小岛B 的距离.(2)在小岛周围36海里范围内是暗礁区,此时轮船向正东方向航行有没有触礁危险?请作出判断并说明理由.【答案】(1)此时货轮到小岛B 的距离为80海里;(2)轮船向正东方向航行没有触礁危险.【分析】(1)先根据题意求出∠BAC =40°、∠ACB =100°,据此得∠ABC =∠ACB =40°,从而得出AC =BC =40海里;(2)作BD ⊥CD 于点D ,由∠BCD =30°、BC =70知BD =12BC =35,从而做出判断.【详解】解:(1)由题意知∠BAC =90°-10°-40°=40°,∠ACB =40°+60°=100°,∴∠ABC =180°-∠BAC -∠ACB =40°,∴∠ABC =∠BAC ,∴BC =AC =80海里,即此时货轮到小岛B 的距离为80海里;(2)如图,作BD ⊥CD 于点D ,在Rt △BCD 中,∵∠BCD =30°、BC =80,∴BD =12BC =40,∵40>36,。
勾股定理及其应用

例 5 20 (0 6长 春 ) 图 4 在 R 如 , t △AB 中 , C = 9 。A = 4 B C / 0,C ,C
5 m, △3 m,
问 题
一3 。在 Rt AB 的 外 部 拼 接 一 △ C 个 合适 的 直 角 j 角 形 , 得 拼 成 的 使 图 形 是 一个 等腰 三角 形 , 图所 示 。 如 要 求 : 答 题 卡 的 两 个 备 用 图 在 中 分别 画 出两 种 与 示 例 不 同 的拼 接 方 法 , 在 图 中 标 明 拼 接 的 直 角 三 并 角形 的 三 边 长 。 ( 同 学 们 先 用 铅 请 笔 画现 草 图 , 定 后 再 用 0 5毫 米 确 . 的黑 色 签 字 笔 画 出正 确 的 图形 )
@
考 试指导
勾I I I I I l I 股 定 理 及 其 应 用
■ 朱 家 熠
勾 股定 理 揭 示 了直 角 二 角 形 三边 之 问 的数 量 关 三 系 , 告 诉 我 们 : 角 三 角 形 中 两直 角 边 的平 方 和 等 它 直 于 斜边 的平 方 。应 用 时 要 注 意它 只对 直 角 三 角 形 适 用 , 不 适 用 于 钝 角 三 角 形 和 锐 角 三 角 形 。应 用 勾 而 股 定理 可 以帮 助 我 们 解 决 有 关 计 算 、 明 以及 一 些 证 实 际应 用 问题 , 现举 例 加 以说 明 , 读 者 参 考 。 供
—
‘ . .
4m, D一 1c D c C 2m, A一 1c I \ 3m, , / B 0, 四边形 A C 的 c 一9。求 BD \
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理及其应用
勾股定理是中国古代数学的一大发明,也是数学中最基础、最重要的定理之一。
它描述了直角三角形中三边的关系,被广泛应用于几何学、物理学、工程学等领域。
本文将介绍勾股定理的原理以及它在实际问题中的应用。
一、勾股定理的原理
勾股定理可以用数学公式表示为:在直角三角形中,直角边的平方等于两条直角边的平方和。
设直角三角形的两条直角边分别为a和b,斜边为c,根据勾股定理可以得出以下公式:
a² + b² = c²
这个公式是勾股定理的基本表达式,它是通过对直角三角形的三边进行数学推导得出的。
二、勾股定理的应用
1. 解决几何问题
勾股定理在几何学中有广泛的应用。
例如,可以通过已知直角边的长度来计算斜边的长度,或者通过已知斜边和一个直角边的长度来计算另一个直角边的长度。
通过勾股定理,我们可以解决诸如直角三角形的边长计算、角度计算等几何问题,对于建筑设计、地理测量等领域都有重要意义。
2. 测量地理距离
在地理学中,我们often需要计算地球表面上两点之间的直线距离。
由于地球是球状的,所以实际距离不能直接通过直线距离计算得出。
但是在较小的地理范围内(例如一个城市、一个国家等),可以将地
球表面近似为平面,这样就可以使用勾股定理来计算两点之间的近似
直线距离。
3. 解决物理问题
勾股定理也在物理学中得到了广泛的应用。
例如,在力学中,我们
可以通过勾股定理计算一个斜面上物体的重力分量和斜面的角度之间
的关系;在光学中,勾股定理可以用来计算光的传输路径和折射角度等。
4. 三角函数的应用
勾股定理与三角函数之间存在紧密的关系。
通过勾股定理,我们可
以定义正弦、余弦和正切等三角函数。
这些三角函数在科学计算、电
子工程、信号处理等领域中有广泛的应用,例如在无线通信中,计算
机图形学中,音频信号处理中等。
总结:
勾股定理作为数学中的重要定理,不仅仅是理论的产物,更是实践
中的有力工具。
它的应用广泛涉及到几何学、物理学、工程学等多个
领域。
通过勾股定理,我们可以解决许多实际问题,计算出未知的长度、角度等,为我们的工作和研究提供了便捷的数学基础。
虽然勾股定理只有一行简洁的公式,却蕴含着无限的智慧和应用价值。
我们应该深入学习勾股定理,掌握它的原理和应用,将其运用到更多的领域和问题中,推动科学技术的发展和进步。