勾股定理的应用(人教版)(含答案)

合集下载

人教版八年级下 第十八章 勾股定理应用综合题汇编(详细答案)

人教版八年级下 第十八章 勾股定理应用综合题汇编(详细答案)

勾股定理应用综合题汇编一.解答题(共29小题)1.如图所示,缉毒警方在基地B处获知有贩毒分子分别在P岛和M岛进行毒品交易后,缉毒艇立即出发,已知甲艇沿北偏东60°方向以每小时40海里的速度前进,乙艇沿南偏东30°方向以每小时30海里的速度前进,半小时后甲到M岛,乙到P岛,则M岛与P岛之间的距离是多少?2.小明家有一块三角形菜地,量得两边长分别为80米,100米,第三边上的高为60米,请你帮小明计算这块菜地的面积.3.如图,一探险者在某海岛探宝,登陆后,先往东走了8千米,又往北走了2千米,又向西走了3千米,再又向北走了6千米,往东一拐,仅走了1千米就找到了宝藏,试问:他走的是最近的路吗?如果是,请求出这个路线长;如果不是,请在图上画出最近的路线,并求出最近的路线长.4.如图,在笔直的某公路上有A、B两点相距50km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=30km,CB=20km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?5.如图,一艘渔政船从小岛A处出发,向正北方向以每小时20海里的速度行驶了1.5小时到达B处执行任务,再向正东方向以相同的速度行驶了2小时到达C处继续执行任务,然后以相同的速度直接从C处返回A处.(1)分别求AB、BC的长;(2)问返回时比出去时节省了多少时间?6.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=8m,BC=6m,CD=24m,AD=26m.求这块草坪的面积.7.如图,斜坡AC=8米,∠CAD=30°.坡顶有一旗杆BC(旗杆与地面AD垂直),旗杆顶端B点与A点有一彩带AB相连,AB=10米.试求旗杆BC的高度?(结果保留根号)8.如图所示,在3米高的柱子顶端A处有一只老鹰,它看到一条蛇从距柱脚9米B处向柱脚的蛇洞C游来,老鹰立即扑下,如果它们的速度相等,问老鹰在距蛇洞多远处捉住蛇?(设老鹰按直线飞行)9.如图,为修铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB=5km,BC=4km,若每天凿隧道0.3km,问几天才能把隧道凿通?10.如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.11.如图所示,有高为3米,斜坡长为5米的楼梯表面铺地毯,那么地毯至少需要多少米?12.(2008•义乌市)如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为3米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米,≈1.732)13.(2005•双柏县)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?14.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?15.某校把一块形状为直角三角形的废地开辟为生物园,如图所示,∠ACB=90°,AC=80米,BC=60米,若线段CD 是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?16.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.17.如图,小强在江南岸选定建筑物A,并在江北岸的B处观察,此时,视线与江岸BE所成的夹角是30°,小强沿江岸BE向东走了500m,到C处,再观察A,此时视线AC与江岸所成的夹角∠ACE=60°.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.18.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B 点,最短线路是多少?19.甲、乙两人在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时速度向东南方向行走,1小时后乙出发,他以5千米/时速度向西南方向行走,上午10:00时,甲、乙两人相距多远?20.如图是一个长方体盒子,棱长AB=3cm,BF=3cm,BC=4cm.(1)连接BD,求BD的长;(2)一根长为6cm的木棒能放进这个盒子里去吗?说明你的理由.21.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼梯上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?22.在甲村至乙村的公路有一块山地正在开发.现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?23.如图,小丽荡秋千,秋千架高2.4米,秋千座位离地0.4米,小红荡起最高时,坐位离地0.8米.此时小红荡出的水平距离是多少?(荡到秋千架两边的最高点之间的距离)24.如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图.求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm).25.如图,一根竹竿在离地面5米处断裂,竹竿顶部落在离竹竿底部12米处,问竹竿折断之前有多长?26.如图,要测一池塘两端A、B的距离,请你利用三角形知识设计一个测量方案.要求:①简述测量方法;②画出示意图(原图画);③用你测量的数据(用字母表示)表示AB,并说明理由,说明:池塘周围在同一高度,并且比较平坦.27.有一块边长为24米的正方形绿地,如图所示,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍”,请你计算后帮小明在标牌的▇填上适当的数字.28.如图,是一个长8m,宽6m,高5m的仓库,在其内壁的A(长的四等分点)处有一只壁虎,B(宽的三等分点)处有一只蚊子,则壁虎爬到蚊子处的最短距离为多少米.29.在△ABC中,AB=AC.(1)如图,若点P是BC边上的中点,连接AP.求证:BP•CP=AB2﹣AP2;(2)如图,若点P是BC边上任意一点,上面(1)的结论还成立吗?若成立,请证明、若不成立,请说明理由;(3)如图,若点P是BC边延长线上一点,线段AB,AP,BP,CP之间有什么样的数量关系?画出图形,写出你的结论.(不必证明)答案与评分标准一.解答题(共29小题)1.如图所示,缉毒警方在基地B处获知有贩毒分子分别在P岛和M岛进行毒品交易后,缉毒艇立即出发,已知甲艇沿北偏东60°方向以每小时40海里的速度前进,乙艇沿南偏东30°方向以每小时30海里的速度前进,半小时后甲到M岛,乙到P岛,则M岛与P岛之间的距离是多少?考点:勾股定理的应用。

新人教版八年级上勾股定理的实际应用

新人教版八年级上勾股定理的实际应用
始经过4个侧面缠绕一圈到达点
B时,最短距离为 AB,此时, 由勾股定理,得 AB=10,即所
用细线最短为 10cm.
聪明的葛藤 葛藤是一种刁钻的植物,
它自己腰杆不硬,为了得到 阳光的沐浴,常常会选择高 大的树木为依托,缠绕其树 干盘旋而上。如图(1)所示。
葛藤又是一种聪明的植
物,它绕树干攀升的路线, 总是沿着最短路径 ——螺旋
一种盛饮料的圆柱形杯(如图),测得
内部底面直径为5㎝,高为12㎝,吸管 放进杯里,杯口外面露出5㎝,问吸管要
做多长?
C
A
B
如图,将一根 25 ㎝长的细木棒放入长、 宽、高分别为8㎝、6㎝和10 ㎝的长方体 无盖盒子中,则细木棒露在盒外面的最 短长度是多少㎝.(保留1 位小数)
C
B
A
D
有一个圆柱,它的
研A
D

3.6 米
A B 1. 2米O C
D
3. 6米 3米
B
OC
挑战“试一试”:
一辆装满货物的卡
车,其外形高 2.5 米,
宽1.6 米,要开进厂门 A
B
形状如图的某工厂, 米 问这辆卡车能否通过 2.3
该工厂的厂门 ? 说明理
由。
D
2米
C
一辆装满货物的卡车,其外形高2.5 米,宽1.6 米
分析 由于厂门宽度足够,所 A
A
3
③ AB? (3+2)2 ? 12 ? 26
A1
3
B
2
1
C B
1
2
C
B 2 C
如果长方形的长、宽、高分 别是a、b、c(a>b>c),则 从顶点A到B的最短线是:
a 2 ? (b ? c)2

勾股定理的实际应用(人教版)(含答案)

勾股定理的实际应用(人教版)(含答案)

勾股定理的实际应用(人教版)一、单选题(共8道,每道10分)1.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为3的半圆,其边缘AB=CD=16,点E在CD上,CE=4,一滑板爱好者从A点滑到E点,则他滑行的最短距离为( )(π按3计算)A.15B.C. D.21答案:A解题思路:试题难度:三颗星知识点:平面展开最短路径问题2.如图,圆柱底面半径为,高为9cm,点A,B分别是圆柱两底面圆周上的点,且点A,B在同一母线上,用一根棉线从点A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( )A.12cmB.C.15cmD.答案:C解题思路:试题难度:三颗星知识点:平面展开最短路径问题3.如图是一个三级台阶,它的每一级的长,宽和高分别为50寸,30寸和10寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长是( )A.13寸B.40寸C.130寸D.169寸答案:C解题思路:试题难度:三颗星知识点:平面展开最短路径问题4.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为( )A.20B.22C.28D.18答案:A解题思路:试题难度:三颗星知识点:平面展开最短路径问题5.如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm.当筷子倒向杯壁时(筷子底端不动),若筷子顶端刚好触到杯口,则筷子长度和杯子的高度分别为( )cm.A.8,7B.8.5,7.5C.9,8D.10,9答案:B解题思路:试题难度:三颗星知识点:勾股定理的应用6.如图,将一根木棒垂直或倾斜的放进长、宽、高分别为12cm,4cm,3cm的水箱中,能放入水箱内木棒的最大长度为( )cm.A.13B.12C.15D.16答案:A解题思路:试题难度:三颗星知识点:勾股定理的应用7.一辆卡车装满货物后宽3.2米,这辆卡车要通过如图所示的隧道(上方是一个半圆,下方是边长为4米的正方形),则装满货物后卡车的最大高度为( )米.A.5.2B.5.8C.7.6D.5.4答案:A解题思路:试题难度:三颗星知识点:勾股定理应用之拱桥问题8.某工厂大门形状如图所示,其上部分为半圆,工厂门口的道路为双行道(双行道中间隔离带忽略不计).要想使宽为1.5米,高为3.1米的卡车安全通过,那么此大门的宽度至少应增加( )米.A.1.7B.2C.0.3D.1答案:B解题思路:试题难度:三颗星知识点:勾股定理应用之拱桥问题二、填空题(共2道,每道10分)9.如图,一圆柱体的底面周长为24cm,高AB为16cm,BC是上底面的直径.一只昆虫从点A出发,沿着圆柱的侧面爬行到点C,则昆虫爬行的最短路程为____cm.答案:20解题思路:试题难度:知识点:平面展开最短路径问题10.如图,长方体的长、宽、高分别为4cm,2cm,5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为____cm.答案:13解题思路:试题难度:知识点:平面展开最短路径问题。

人教版八年级数学下册《勾股定理》勾股定理在实际生活中的应用

人教版八年级数学下册《勾股定理》勾股定理在实际生活中的应用
(2)构造直角三角形; 25 推论1 三个角都相等的三角形是等边三角形
第二十一章 一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。
(3)利用勾股定理等列方程; 本章的难点是解一元二次方程。
4.最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接 、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向。
小技巧 化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
归纳小结
1、勾股定理: 如__果__直_角__三__角__形_的__两__直__角_边__长__分__别_为__a_,_b_,_斜_边__为__c.
那__么____________________________ 2、勾股定理有广泛的应用.
第十七章 勾股定理
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
教学目标 1.会用勾股定理解决简单的实际问题. 2.树立数形结合的思想.
勾股定理的应用
例1:一个门框的尺寸如图所示,一块长3m, 宽2.2m的长方形薄木板能否从门框内通过? 为什么?
已知条件有哪些?
C
2m
A 1m B
1.木板能横着或竖着从门框通过吗? 2.这个门框能通过的最大长度是多少? 3.怎样判定这块木板能否通过木框?
3、学习反思:
____________________________ __________________ ____B
拓展迁移
在数轴上作出表示 20的点. 一个门框的尺寸如图所示,一块长3m,宽的长方形薄木板能否从门框内通过?为什么?

人教版八年级下册数学 第17章 勾股定理—— 勾股定理的应用及折叠问题

人教版八年级下册数学  第17章 勾股定理—— 勾股定理的应用及折叠问题

勾股定理的应用及折叠问题(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.【能力提高篇】【经典例题】1.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.82.如图,已知直角三角形的三边长分别为a、b、c,以直角三角形的三边为边(或直径),分别向外作等边三角形、半圆、等腰直角三角形和正方形.那么,这四个图形中,其面积S1、S2、S3满足S1+S2=S3的个数是()A.1B.2C.3D.43.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2017=()A.B.C.D.4.现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是6,小正方形的面积是2,求(a+b)2的值.5.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为3,求S1+S2+S3的值.6.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?7.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)8.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B 点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.9.如图,△ABC中,∠C=90°,AC=3,AB=5,点D是边BC上一点.若沿AD将△ACD翻折,点C 刚好落在AB边上点E处,则BD=.10.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则BE的长是()A.3 B.4 C.5 D.611.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A.3B.4C.5D.612.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为()A.B.1C.D.213.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2。

2023-2024学年人教版 八年级数学下册17.1勾股定理第2课时勾股定理的应用作业课件

2023-2024学年人教版 八年级数学下册17.1勾股定理第2课时勾股定理的应用作业课件

10.如图,一只蚂蚁从点 A 出发,沿底面边长为 10 cm,侧棱长为 16 cm 的正四棱 柱的侧面到点 B 处吃食物,则它需要爬行的最短路径的长是__4___4_1__cm.
二、解答题(共 22 分) 11.(10 分)如图所示,某住宅小区在相邻两楼之间修建了一个上方是一个半圆,下 方是长方形的仿古通道.现有一辆卡车装满家具后高 4 m,宽 2.4 m,请问这辆卡车能 否通过这个通道?
A.17 m B.18 m C.25 m D.26 m 4.(4 分)如图,在水塔 O 的东北方向 32 m 处有一抽水站 A,在水塔的东南方向 24 m 处有一建筑工地 B,现要在 A,B 间建一条直水管,则水管的长度至少应为_4_0__m.
5.(4 分)如图,有两棵树,一棵高 10 m,另一棵高 5 m,两树相距 12 m.一只小 鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少要飞行__1_3_m.
(2)设 BF 上点 D,G,使 AD=AG=200 km,∴△ADG 是等腰三角形,∵AC⊥BF, ∴AC 是 DG 的垂直平分线,∴CD=GC,在 Rt△ADC 中,DA=200 km,AC=160 km, 由勾股定理得,CD= DA2-AC2 = 2002-1602 =120(km),则 DG=2DC=240(km), 遭受台风影响的时间是:t=240÷40=6(小时).
第十七章 勾股定理 17.1 勾股定理
第2课时 勾股定理的应用
1.(3 分)如图所示的是某校的长方形水泥操场,如果一学生要从 A 角走到 C 角, 至少要走( C )
A.70 m B.90 m C.130 m D.180 m
2.(3 分)一个长方形抽屉长 4 cm,宽 3 cm,贴抽屉底面放一根木棒,那么这根木 棒最长(不计木棒粗细)可以是( B )

专题08 勾股定理的应用-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题08 勾股定理的应用-2020-2021学年八年级数学下册常考题专练(人教版)(解析版)

专题08勾股定理的应用★知识归纳●勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.★实操夯实一.选择题(共8小题)1.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m,他在水中实际游了520m,那么该河的宽度为()A.440m B.460m C.480m D.500m【解答】解:根据已知数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.故选:C.2.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.3.一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为()A.2m B.2.5cm C.2.25m D.3m【解答】解:在直角△ABC中,AC=1.5cm.AB﹣BC=0.5m.设水池BC=xm,则AB=(0.5+x)m.根据勾股定理得出:∵AC2+BC2=AB2∴1.52+x2=(x+0.5)2解得:x=2.故选:A.4.如图,△ABE、△BCF、△CDG、△DAH是四个全等的直角三角形,其中,AE=5,AB=13,则EG的长是()A.7B.6C.7D.7【解答】解:由勾股定理得,BE===12,∵△ABE、△BCF、△CDG、△DAH是四个全等的直角三角形,∴∠AEB=∠BFC=∠CGD=90°,BF=CG=DH=AE=5,∴∠FEB=∠EFC=∠FGD=90°,EF=EH=12﹣5=7,∴四边形EFGH为正方形,∴EG==7,故选:A.5.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF=90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50 mm B.120 mm C.160 mm D.200 mm【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.6.如图,一轮船以8海里/时的速度从港口A出发向东北方向航行,另一轮船以6海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距()A.6海里B.8海里C.10海里D.20海里【解答】解:由题意可得:8×1=8(海里),6×1=6(海里).则两船相距:=10(海里).故选:C.7.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5米,则小巷的宽为()A.2.5米B.2.6米C.2.7米D.2.8米【解答】解:在Rt△ABC中,AB===2.5(米),∴A′B=2.5米,在Rt△A′BD中,BD===2(米),∴BC+BD=2+0.7=2.7(米),故选:C.8.为了打造“绿洲”,计划在市内一块如图所示的三角形空地上种植某种草皮,已知AB=10米,BC=15米,∠B =150°,这种草皮每平方米售价2a元,则购买这种草皮需()元.A.75a B.50a C.a D.150a【解答】解:如图,作BA边的高CD,设与AB的延长线交于点D,∵∠ABC=150°,∴∠DBC=30°,∵CD⊥BD,BC=15米,∴CD=7.5米,∵AB=10米,∴S△ABC=AB×CD=×10×7.5=37.5(平方米),∵每平方米售价2a元,∴购买这种草皮至少为37.5×2a=75a(元),故选:A.二.填空题(共2小题)9.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章节中记载了一道“折竹抵地”的问题:“今有竹高一尺,末折抵地,去本三尺,问折者高几何?”译文:一根竹子,原高一丈,后来竹子折断,其竹竿恰好着地,着地处离原竹子根部3尺远,如图所示,问:原处竹子(AC)还剩 4.55尺?(1丈=10尺).【解答】解:设原处竹子(AC)还剩x尺,由题意得:x2+32=(10﹣x)2,解得:x=4.55,故答案为:4.55.10.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则AD= 1.5米.【解答】解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,则AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故答案是:1.5.三.解答题(共8小题)11.某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD =8,AD=17,∠B=90°.求证:△ACD是直角三角形.【解答】证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.12.我市某中学有一块四边形的空地ABCD(如图所示),为了绿化环境,学校计划在空地上种植草皮,经测量∠A =90°,AB=3m,DA=4m,CD=13m,BC=12m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?【解答】解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,所以∠DBC=90°,则S四边形ABCD=S△ABD+S△DBC=3×4÷2+5×12÷2=36m2;(2)所需费用为36×200=7200(元).13.如图,小颖和她的同学荡秋千,秋千AB′在静止位置时,下端B′离地面0.6米,荡秋千到AB的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.【解答】解:由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,AE2+BE2=AB2,∴(AB﹣0.8)2+2.42=AB2解得:AB=4,答:秋千AB的长为4m.14.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.【解答】解:(1)A处会受到火车的影响,理由:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200米,∴A处会受到火车的影响;(2)当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵72千米/小时=20米/秒,∴影响时间应是:320÷20=16秒.答:A处受噪音影响的时间为16秒.15.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m 以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?【解答】解:(1)学校C会受噪声影响.理由:如图,过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉机周围130m以内为受噪声影响区域域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=100(m),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.16.如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉.经测量,∠EDC=90°,DC=6m,CE=10m,BD=14m,AB=16m,AE=2m.(1)求DE的长;(2)求四边形ABDE的面积.【解答】解:(1)在Rt△EDC中,∠EDC=90°,DC=6m,CE=10m,∴m;(2)如图,连接BE,在Rt△EBD中,BD=14m,ED=8m,∴BE2=BD2+ED2=142+82=260,∵AB=16m,AE=2m,∴AB2+AE2=162+22=260,∴AB2+AE2=BE2,∴△ABE是直角三角形,∠A=90°,∴S△ABE=×16×2=16(m2).又∵S△BDE=×14×8=56(m2).∴四边形ABDE的面积=S△ABE+S△BDE=72(m2).17.如图,铁路上A,B两点相距23km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=8km.现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km 处?【解答】解:∵使得C,D两村到E站的距离相等.∴DE=CE,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2=BE2+BC2,设AE=x,则BE=AB﹣AE=(23﹣x),∵DA=15km,CB=8km,∴x2+152=(23﹣x)2+82,解得:x=8,∴AE=8km.答:E站应建在离A站8km处.18.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)【解答】解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:(m)∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.。

人教版八年级下册数学《勾股定理》说课复习(第2课时勾股定理的应用)

人教版八年级下册数学《勾股定理》说课复习(第2课时勾股定理的应用)
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
= (DE+CE)·( DE- BE)
=BD·
CD.
10km
藏宝点B的距离是________.
课程讲授
构造直角三角形解决实际问题
例4
一辆装满货物的卡车,其外形高2.5米,宽1.6米,要
开进厂门形状如图所示的某工厂,问这辆卡车能否通过该
工厂的厂门?说明理由.
解:在Rt△OCD中,∠CDO=90°,由
C
A
O
勾股定理,得
CD= OC 2 OD 2 1 0.82 0.6(米).
CH=0.6+2.3=2.9(米)>2.5(米).
D
B
2.3米
2
答:卡车能通过厂门.
M
2米
H
N
课程讲授
2
构造直角三角形解决实际问题
练一练:
(中考·安顺)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,
一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行( B )
A.8米
B.10米
C.12米
练一练:
如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB
一样长.已知滑梯的高度 CE=3m, CD=1m,试求滑道AC的长.
解:设滑道AC的长度为xm,则AB的长度为xm,
AE的长度为(x-1)m,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的应用(人教版)
一、单选题(共10道,每道10分)
1.如图,Rt△ABC的直角边长分别为12和16,在其内部有n个小直角三角形,则这n个小直角三角形周长之和为( )
A.28
B.48
C.36
D.56
答案:B
解题思路:
试题难度:三颗星知识点:图形的平移
2.暑假中,小明到某海岛探宝.如图,他到达海岛登陆点后先往东走8km,又往北走
2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅1km就找到宝藏,则登陆点到埋宝藏点
的直线距离是( )km.
A. B.
C.10
D.
答案:C
解题思路:
试题难度:三颗星知识点:勾股定理的应用
3.如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的对应的值为( )
A.2
B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:勾股定理的应用
4.一架5m长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角1.4m,如果梯子的顶端沿墙下滑0.8m,那么梯脚移动的距离为( )m.
A.0.6
B.0.8
C.1.2
D.1.6
答案:D
解题思路:
试题难度:三颗星知识点:勾股定理的应用
5.小明想知道学校旗杆的高,他发现旗杆顶端绳子垂到地面还多1米,当他把绳子的下端拉
开7米后,发现下端刚好接触地面,则旗杆的高度为( )米.
A.8
B.12
C.24
D.25
答案:C
解题思路:
试题难度:三颗星知识点:勾股定理的应用
6.路旁有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )米.
A.8
B.10
C.12
D.14
答案:B
解题思路:
试题难度:三颗星知识点:勾股定理的应用
7.在一棵树上10米高的B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处,另一只爬到树顶D后直接跃到A处,两只猴子所经过的距离相等,则这棵树高为( )米.
A.5
B.15
C.20
D.18
答案:B
解题思路:
试题难度:三颗星知识点:勾股定理的应用
8.如图,将一个含60°角的三角板的直角顶点C放在一张宽为5cm的纸带边沿上,另一个顶点B在纸带的另一边沿上(∠ABC=60°),测得∠DBC=45°,则三角板的最大边长为( )cm.
A.5
B.10
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:等腰直角三角形的性质和判定
9.如图,一棵树在一次强风中,从离地面5米处折断,倒下的部分与地面成30°夹角,如图所示,这棵树在折断前的高度是( )米.
A.10
B.15
C.5
D.20
答案:B
解题思路:
试题难度:三颗星知识点:含30°角的直角三角形
10.如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为,,则的值为( )
A.8π
B.16π
C.25π
D.12.5π
答案:D
解题思路:
试题难度:三颗星知识点:勾股定理的应用。

相关文档
最新文档