最新完整版勾股定理的应用教学设计
勾股定理的应用教学设计5篇

勾股定理的应用教学设计5篇第一篇:《勾股定理的应用》教学设计《勾股定理的应用》教学设计——解决立体图形外表上最短路线的问题__县第_中学李政法一、内容及内容解析1、内容勾股定理的应用——解决立体图形外表上最短路线的问题。
2、内容解析本节课是勾股定理在立体图形中的一个拓展,在初中阶段,勾股定理在求两点间的距离时,沟通了几何图形和数量关系,发挥了重要的作用,在中考中有席之地。
启发学生对空间的认知,为将来学习空间几何奠定根底。
二、教学目标1、能把立体图形依据需要局部展开成平面图形,再建立直角三角形,利用两点间线段最短勾股定理求最短路径径问题。
2、学会观看图形,勇于探究图形间的关系,培养学生的空间观念;在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、通过有趣的问题提高学习数学的兴趣;在解决实际问题的过程中,培养学生的合作交流能力,体验数学学习的有用性,增强自信心,呈现成功感。
三、教学重难点【重点】:探究、发觉立体图形展开成平面图形,利用两点间线段最短勾股定理求最短路径径问题。
【难点】:查找长方体中最短路线。
四、教学方法本课采纳学生自主探究归纳教学法。
教学中,学生充分运用多媒体资源及大量的实物教具和学具,通过观看、思考、操作,归纳。
五、教学过程【复习回忆】右图是湿地公园长方形草坪一角,有人避开拐角在草坪内走出了一条小路,问这么走的理论依据是什么?若两步为1m,他们仅仅少走了几步?目的:1、复习两点之间线段最短及勾股定理,为新课做预备;2、激起学生爱护环境意识和对核心价值观“文明、友善”的践行。
思考:如图,立体图形中从点A到点B处,怎样找到最短路线呢?目的:引出课题。
【台阶中的最值问题】三级台阶示意图如图,每级台阶的长、宽、高分别为5dm、3dm和1dm,请你想一想,一只蚂蚁从点A动身,沿着台阶面爬行到点B,爬行的最短路线是多少?老师活动:假如A、B两点在同一个平面上,直接连接两点即可求出最短路。
1.3勾股定理的应用(教案)

(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量距离或高度,却无法直接测量的情况?”比如,我们想测量学校旗杆的高度,却无法直接到达顶部。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理在解决实际问题中的奥秘。
五、教学反思
在今天的课堂中,我尝试通过生活实例导入勾股定理的应用,希望让学生感受到数学与生活的紧密联系。从学生的反应来看,这个话题确实引起了他们的兴趣,但在讲解过程中,我意识到有些学生对定理的理解还不够深入,需要我在教学中更加细致地引导。
在理论介绍环节,我尽力用简洁明了的语言解释勾股定理的概念,并通过案例让学生看到定理在解决问题中的具体应用。然而,我也发现有些学生在转换实际问题时,还是不太会灵活运用勾股定理。这让我认识到,在今后的教学中,需要加强学生对定理应用场景的识别和问题转化能力的培养。
实践活动环节,学生分组讨论和实验操作进行得如火如荼,他们积极参与,热烈讨论。但从成果展示来看,部分小组在解决问题时还是存在一定的困难,尤其是在单位换算和实际操作中。这说明我在教学中还要加强对这些方面的讲解和练习。
学生小组讨论环节,大家围绕勾股定理在实际生活中的应用展开了热烈的讨论。我在一旁观察,适时引导,发现学生在互相交流中碰撞出了不少思维的火花。但也有一些学生在讨论中显得较为被动,可能是因为他们对定理的理解还不够自信。为此,我计划在后续的教学中,多关注这些学生,鼓励他们大胆表达自己的想法。
-在实际问题中,能够准确地识别出直角三角形,并将问题简化为勾股定理的应用;
-掌握在勾股定理应用中的单位换算,如长度单位、角度单位等,确保计算准确无误。
勾股定理的应用教案

勾股定理的应用教案一、知识目标:1. 理解勾股定理的数学定义;2. 掌握如何应用勾股定理解决直角三角形问题;3. 了解勾股定理的历史背景和意义。
二、能力目标:1. 能够运用勾股定理求解直角三角形的边长;2. 能够利用勾股定理解决实际问题,如测量不可直接测量的距离。
三、情感目标:1. 培养学生喜欢探索和发现数学规律的兴趣;2. 培养学生运用数学知识解决实际问题的能力;3. 增强学生对于数学的信心和兴趣。
四、教学步骤:Step 1:导入(5分钟)教师通过介绍勾股定理在现实生活中的应用,引发学生的兴趣。
例如:勾股定理可以用来计算斜坡的高度、建筑物的高度等。
Step 2:理论讲解(15分钟)1. 教师简要回顾勾股定理的数学定义:直角三角形的两条直角边的平方和等于斜边的平方。
2. 教师通过示意图解释勾股定理的几何含义。
3. 教师讲解勾股定理的证明过程,能够引导学生思考推导过程。
Step 3:应用演示(15分钟)教师通过实际示例演示如何运用勾股定理求解直角三角形的边长。
例如:已知两条直角边长分别为3和4,求斜边长。
Step 4:练习(20分钟)1. 学生在教师的引导下,尝试利用勾股定理求解直角三角形的边长。
2. 学生自愿上台演示解题过程,教师进行点评和指导。
Step 5:拓展应用(15分钟)教师提出一个实际问题:甲、乙两人在山上的两侧,他们分别测得距山脚的距离为3km和4km,他们两人之间的直线距离可以用勾股定理计算吗?请学生思考并解答。
Step 6:总结(10分钟)教师对本节课的内容进行总结,并提醒学生勾股定理的应用要点。
鼓励学生在日常生活中尝试运用数学知识解决问题。
五、板书设计:勾股定理直角三角形的两条直角边的平方和等于斜边的平方应用示例:已知直角边长分别为3和4,求斜边长a^2 + b^2 = c^23^2 + 4^2 = c^2c = 5六、教学反思:本节课通过简单举例和实际问题引导学生理解了勾股定理的数学定义和几何含义。
勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
八年级数学上册《勾股定理》教案、教学设计

(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。
学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。
具体内容是运用勾股定理及其逆定理解决简单的实际问题。
当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。
四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。
2.课前准备教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。
第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
勾股定理的应用
海子街中学刘天环
教学分析:勾股定理是平面几何中的基本定理,在解决实际问题时,我们要将
实际问题抽象成数学问题,再根据勾股定理及逆定理解答,本节微课将重点解决这个问题.
教学目标
1.通过实际问题转化为几何图形,观察图形,探索图形间的关系,发展学生的空间观念.
2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.
3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.
教学重点难点
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.
教学时间: 3-8分钟
教学方式:多媒体教学
教学方法:
引导—探究—归纳
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,顺势教学过程;
(3)利用探索研究手段,通过思维深入,领悟教学过程.
课前准备
教具:教材、电脑、多媒体课件.
教学过程:
一.引入新课
小明家外面有两颗树,一颗高13米,另一颗高7米,两颗树相距8米,一天,小明看见一只小鸟从一棵树的树梢飞到另一棵树的树梢,你知道小鸟至少飞了多少米吗?
问题:要求出小鸟至少飞了多少米,怎样才能求出来呢?
二.探究新知
将实际问题转化为几何图形,如图所示:树AB=13 m
树CD=7 m 而两棵树的距离为BC=8 m
则AD 为小鸟至少飞行的距离。
解:作DE ⊥AB 于E 点,则四边形BCDE 为长方形
所以DE=BC=8m BE=CD=7m
在Rt △AED 中 DE=8 AE=AB-BE=13-7=6 所以 ED AE AD 222+= 则10100826222==+=+=ED AE AD 所以小鸟至少飞行了10米
三.试一试
小亮想知道学校旗杆的高度.他发现旗杆上的绳子垂到地面还多2 m ,当他把绳子的下端拉开8m 后,下端刚好接触地面.你能帮他把学校旗杆的高求出来吗?
8m C D A B E 13m 7m
解:如图AB 是旗杆,AC 是绳子的长,BC 是绳子的下端拉开后离旗杆的距离为8m
设AB=x 则AC=x+2 BC=8
所以AC BC AB 222=+ 即)2(282X 2+=+X
解得x=15
所以学校旗杆的高15米
四.小结
在解决实际问题时,我们要将实际问题抽象成平面几何问题,再构造直角三角形,最后根据勾股定理及逆定理解答
五.板书设计
六.教学反思
在教学的过程中,我们要引导学生将实际问题抽象成数学问题,转化为几何图形问题解答,
提高分析问题、解决问题的能力,通过这种教学方式拓宽学生的思维方式,渗透数学建模的思想. C。