储集层孔隙结构研究方法及其应用共16页
《储层孔隙结构》PPT课件

碎屑岩储层孔隙类型简表
成因 原生 孔隙
次生 孔隙
孔隙 裂缝 孔隙
裂缝
产状 原生粒间孔隙(正常粒间孔和残余粒间孔) 原生粒内孔隙和矿物解理缝 杂基内微孔隙 层面缝 粒间溶孔(次生粒间溶孔和混合粒间溶孔) 组分内溶孔(粒内溶孔、杂基内溶孔、胶结物溶孔、交代物溶孔) 铸模孔 特大溶孔 贴粒溶孔 岩石裂缝 粒内裂缝
1、孔隙类型
综合性分类: 以成因为主,结合产状进行分类
首先,按成因分二大类:原生孔 隙和次生孔隙;然后,按产状又 可细分为:右表
成因 原生 孔隙
次生 孔隙
产状 粒间孔隙 粒内孔隙 生物格架孔隙 生物钻孔孔隙 窗格状孔隙
晶间孔隙 晶内孔隙 孔隙 粒间溶孔 粒内溶孔 铸模孔 岩溶角砾孔隙 裂缝 岩石裂缝 粒内裂缝 溶洞
•最大孔径值Rmax和最小孔径值Rmin;
•孔径中值:累积频率曲线上50%处的孔径值R50
n
Ribi
RS
•孔径平均值Rs:
i 1
100
Rs:孔径平均值; Ri:第i个孔径分类组的中值; bi:对应于Ri的各类孔隙的
百分比;
n
•孔隙分选系数
(3)面孔率
m=Sk/Ss
m:面孔率,显微镜下的可视孔隙度,不包括微孔隙; Sk Ss:薄片观测视域总面积。
储层地质学
长江大学地球科学学院 尹太举
二OO五年十二月
第五章 储层孔隙结构
储层中,孔隙和喉道的几何形状、大小、分布及其相互连通关系 微观研究范畴:储层孔隙结构、孔壁特征、充填物特征 宏观研究范畴:储层孔隙度、渗透率、流体饱和度、敏感性
第一节 储层孔隙和喉道类型
第一节 储层孔隙和喉道类型
储集空间:孔隙、喉道 孔隙:被岩石颗粒包围的较大储集空间。流体的基本储集空间 喉道:两个孔隙之间的狭窄的连通部分。流体渗流的重要通道 •碎屑岩储层孔隙和喉道类型 •碳酸盐岩储层孔隙和喉道类型
储集层孔隙结构研究方法及其应用

三、储集层的孔隙类型
图4-3 砂岩内溶孔的典型特征示意图
测定岩石孔隙结构的方法很多,有压汞 法、孔隙铸体法、图像分析法、半渗透 隔板法、离心机法、蒸汽压力法等等。 最有效的是压汞法和图像分析法相结合。
四、压汞法原理
原理:采用压汞法注入水银时,因为水 银是非润湿相液体,欲进入孔隙系统, 需要克服表面张力所产生的毛细管阻力。 控制水银进入孔隙系统的是喉道大小而 不是孔隙大小,所以在测量过程中求得 与毛细管阻力平衡的外力的大小,以及 压入岩样内的水银体积,就能求出与注 入量对应的喉道大小。
二、储集层的孔隙结构
储集层的孔隙结构:指岩石所具有的孔隙和喉道的几何形状、大小、 分布及其相互连通关系。 岩石的孔隙系统由孔隙和喉道两部分组成。 孔隙:系统中的膨大部分。 喉道:连通孔隙的细小部分。 喉道指某一点处的通道大小,它没有长度和体积概念, 只有面积概念。 喉道可用直径确定,孔隙可用直径和体积确定。
四、压汞法原理
当给一定的外加压力而将水银注入岩样,则可根据平 衡压力计算出相应的孔隙吼道半径值。
在这个平衡压力下进入岩样孔隙系统中的水银体积, 应是这个压力下的相应孔隙喉道的孔隙体积。 孔隙喉道越大,毛管阻力将越小,注入水银的压力也 小。因此,再注入水银时,随注入压力的增高,水银 将由大到小逐次进入其相应喉道的孔隙体系中去。
一、岩石的孔隙类型
1、广义的孔隙:岩石中未被固体物质充填的空间。 2、狭义的孔隙:岩石中的颗粒(晶粒)间、颗粒(晶粒) 内的充填物内的空隙。 根据孔隙的成因分类 原生孔隙:指沉积作用过程中碎屑颗粒与颗粒之间的 支撑作用形成的孔隙,如粒间孔隙。 次生孔隙:指在成岩作用过程中或成岩以后形成的孔 隙,如溶蚀孔隙。
孔隙结构的研究方法

碳酸盐岩的铸体薄片镜下孔隙特征(陶艳忠)
(a)残余颗粒云岩,残余鲕粒铸模孔a、生屑铸模孔b、蓝色铸 体,单偏光,四川盆地,三叠系,下三叠统,飞仙关组, WL1 井, 4352. 5m; (b) 粉晶藻灰岩,溶蚀孔,蓝色铸体,单江偏光 ,四川盆地,三叠系,飞仙关组,北碚剖面
a)岩石结构构造、主要粒径范围、颗粒 分选磨圆、岩石胶结类型等岩石基础信息
b)粒间填隙物类型及含量
c)孔隙类型、相对含量、孔隙发育程度
d) 岩石定名
二、扫描电子显微镜(SEM)法
二、扫描电子显微镜(SEM)法
• 扫描电镜法的机理与电视摄像存在一定近似度,在于通过电子枪发射出 电子束,在加速作用下实现偏转,电子束对样品表层展开扫描,样品与电 子间形成作用,激发出一系列信号,此信号经处理后于荧光屏上成像。
接收样品——样品制备——配置液态浸染剂—— 真空灌注——加压灌注——加温固——分样— —磨铸体薄片、铸体样品酸蚀
铸体技术
• 铸体骨架:若将注入了浸染剂的岩石用酸 处理,溶蚀掉组成岩石的碎屑矿物、岩块 和胶结物,即成为岩石孔隙的空间结构。
• 铸体薄片:将注入浸染剂的岩石进一步加 工成岩石薄片。
一、薄片法--铸体薄片法
(焦淑静,2012)
三、毛管压力曲线法--压汞法
三、毛管压力曲线法--压汞法
基本原理: 对于岩石而言,汞是非润湿相流体,若将汞注入被抽空的岩样孔隙系统内,
则必须克服岩石孔隙喉道所产生的的毛细管阻力。因此,当某一注汞压力与岩样 孔隙吼道的毛细管阻力达到平衡时,便可测得该注汞压力及其该压力条件下进入 岩样内的汞体积。
四、数字岩心法--CT技术
四、数字岩心法--CT技术
【推选】储层孔隙结构PPT资料

• (1)孔隙线密度: • (2)孔隙截距平均宽度: • (3)分散率: • (4)变异系数: • (5)孔隙度:
三、扫描电子显微镜法
石英具次生加大,粒间孔 分布绿泥石、自生石英。
粒间孔分布伊利 石、绿泥石。
• 扫描电镜主要研究内容
四、数字岩心——孔隙结构三维模型重构技术
第三节 孔隙结构参数的定量表征
• 参数: • 最大与最小孔径值 • 孔径中值:累积频率曲线上50%处的孔径
• 孔径平均值:
• 孔径分散率:
• 面孔率:薄片中孔隙喉道 • 面积占薄片总面积的百分数。
• 直线法测定孔隙是在载物台上安装机械台 以使薄片沿侧线而移动,在一定移动过程
中用目镜微尺测量侧线通过每个孔隙的交 切点的长度(截距)来测量孔径的大小。
分选
指孔喉大小、分布的均一程度。大小、分布愈集 中,表明分选性愈好,毛管曲线上就会出现一平 台;当孔喉分选差时,毛管曲线是倾斜的。
毛细管压力曲线的形态分 析
2. 毛管压力曲线的定量特征
1.入口压力Pd 定义、 Pd评价储集岩、Pd为二 次运移的最小压力。
C50、中值半径r50 及 h50 r50:可视为岩石的平均喉
第52章 储层孔隙结 构
一、压汞法
• (一)原理 采用压汞法注入水银时,因为水银是非润湿相
液体,欲进入孔隙系统,需要克服表面张力所产生 的毛细管阻力。控制水银进入孔隙系统的是喉道大 小而不是孔隙大小,所以在测量过程中求得与毛细 管阻力平衡的外力的大小,以及压入岩样内的水银 体积,就能求出与注入量对应的喉道大小。
• 一、反映孔喉大小的参数 • (一)孔隙喉道半径及孔隙
喉道大小分布 • 孔喉大小分布——把喉道直
径及该喉道所控制的孔隙体 积占总孔隙体积的百分数
储层微观孔隙结构

(a)
(b)
(c)
(d)
(e)
March 5, 2009
颗粒
杂基
微孔隙
喉道
孔隙
图 5-4 碎屑岩孔隙喉道的类型示意图(据罗蛰潭、王允诚,1986)
(a)喉道是孔隙的缩小部分;(b)可变断面收缩部分是喉道;(c)片状喉道; (d)弯片状喉道;(e)管束状喉道; 10
三、碳酸盐岩的孔隙和喉道类型
Bill Yu
2.裂缝
①构造裂缝:②隐爆裂缝:③成岩裂缝: ④风化裂缝:⑤竖直节理:⑥柱状节理: 按成因火山岩的储集空间还可划分为原生储集空间和次生储集空间两类。
3.孔缝组合类型
各种储集空间多不是单独存在,而是呈某种组合形式出现。
March 5, 2009
15
March 5, 2009
表 5-2 火山岩储集空间类型(据赵澄林,1997,以苏北阂桥地区火山岩为例)
括扩大的粒间孔、特大孔、粒内
孔隙。
March 5, 2009
4
二、碎屑岩的孔隙和喉道类型
Bill Yu
z溶蚀粒内孔隙:指碎屑颗粒内部所含可溶矿物被溶,或沿颗粒解理等易溶 部位发生溶解而成的孔隙。 z溶蚀填隙物内孔隙:指填隙物受溶蚀作用所形成的孔隙。 z溶蚀裂缝孔隙:是流体沿岩石裂缝渗流,使缝面两侧岩石发生溶蚀所致。
250μm~0.1μm之间。流体在这种孔隙中,由于受毛细管力的作用,已不能在其
中自由流动,只有在外力大于毛细管阻力的情况下,流体才能在其中流动。微裂
缝和一般砂岩中的孔隙多属这种类型。
(3)微毛细管孔隙:管形孔隙直径<0.2μm,裂缝宽度<0.1μm。在通常温度
和压力条件下,流体在这种孔隙中不能流动;增加温度和压力,也只能引起流体
孔隙结构在储层分类评价中应用的研究

孔隙结构在储层分类评价中应用的研究
储层是指地下含油气或水的岩石层,其物性参数对油气勘探和开发有着至关重要的影响。
而孔隙结构是储层物性参数中最为重要的一个因素,它不仅关系到储层的孔隙度、渗透率、孔径分布等基本物性参数,还对储层的油气储量、储层类型、储层成因等方面有着重要的影响。
因此,在储层分类评价中,孔隙结构的应用是非常重要的。
一、孔隙结构对储层类型的影响
孔隙结构是储层类型的重要标志之一。
根据孔隙结构的不同,储层可以分为裂缝型、孔洞型和混合型三种类型。
其中,裂缝型储层的孔隙结构是由裂缝组成的,渗透性较强,但储量较少;孔洞型储层的孔隙结构是由孔洞组成的,储量较大,但渗透性较弱;混合型储层则是由裂缝和孔洞组成的,具有较高的储量和渗透性。
二、孔隙结构对储层成因的影响
孔隙结构还可以反映储层的成因。
例如,碳酸盐岩储层的孔隙结构是由溶蚀作用形成的,因此孔隙度较高,但孔径分布不均匀;而砂岩储层的孔隙结构则是由沉积作用形成的,孔隙度较低,但孔径分布均匀。
因此,通过对孔隙结构的分析,可以更加准确地判断储层的成因类型。
三、孔隙结构对储层油气储量的影响
孔隙结构还可以反映储层的油气储量。
例如,孔洞型储层的孔隙结构比裂缝型储层更容易形成油气聚集,因此储量较大;而裂缝型储层的孔隙结构则不利于油气的聚集,因此储量较少。
因此,在评价储层油气储量时,需要对孔隙结构进行分析。
总之,孔隙结构在储层分类评价中的应用是非常重要的。
通过对孔隙结构的分析,可以更加准确地判断储层的类型、成因和油气储量,为油气勘探和开发提供重要的参考依据。
石油天然气地质学 第4章储层孔隙结构新进展

51
52
二、毛管压力曲线常规定量分析
(四)孔隙-喉道分选性
75% 总饱和度下的压力 PTS 25% 总饱和度下的压力
(五)储层级别(Reservoir grade)
18
二、次生孔隙(secondary porosity)
2、破裂孔隙-裂缝(fracture)
19
二、次生孔隙(secondary porosity)
2、破裂孔隙-裂缝(fracture)
20
二、次生孔隙 (secondary porosity)
3、晶间孔隙 ---重结晶作用晶间孔为主
21
二、次生孔隙(secondary porosity)
2 碳酸盐岩基块的喉道类型:管状喉道 孔隙缩颈喉道 片状喉道
五、碳酸盐岩储层的孔隙结构
1 孔隙空间由孔隙及相当孤立的近乎狭窄的连通喉道组成。 2 孔隙空间的缩小部分为连通喉道,喉道变宽即成孔隙。 3 孔隙由细粒孔隙性连通带所连通,镜下可见连通支脉。 4 孔隙系统在白云岩的主体或胶结物的颗粒之间发育,孔隙大 部分反映了颗粒外形。 5 孔隙主要由裂缝沟通。 6 由两种以上基本孔隙结构构成。
孔喉分选性则是指孔喉大小分 布的均一程度
50
第四节
压汞数据的孔隙结构参数研究进展
二、毛管压力曲线常规定量分析
(一)排驱压力(displacement pressure) Wardlaw和Taylor(1976) :取饱和度为20%时对应的压力为排驱压力。
Schowalter(1979):把汞饱和度在10%的压力定义为排驱压力。 在毛管压力曲线上, 沿着曲线的平坦部分作切线与纵轴相交的压力 值就是排驱压力(Pd)。
煤中储集层的孔隙特征

煤中集气层孔隙的特征煤中储集层的孔隙特征摘要:煤层气储集层即煤层本身, 它是一种双孔隙岩石, 由基质孔隙和裂隙组成, 二者对煤层气赋存、运移和产出起决定作用.关键词:煤层气基质孔隙裂隙1 煤中孔隙研究概况煤层既是煤层气的源岩, 又是其储层. 作为储层, 它有着与常规天然储层明显不同的特征. 最重要的区别在于煤储层是一种双孔隙岩石, 由基质孔隙和裂隙组成, 二者对煤层气的赋存、运移和产出起不同作用. 因此系统研究和正确认识煤中的孔隙, 对煤层气的勘探开发至关重要. 从人们认识到煤中裂隙的存在, 至今已有百余年. 在这一漫长的历史进程中, 煤中裂隙的研究逐渐分化为两个领域: 煤田地质学领域和煤层气领域. 这两个领域因研究的出发点和目的不同而各具特色.2 煤中孔隙的分类与成因作为煤层气储集层的煤层是一种双孔隙岩石, 由基质孔隙和裂隙组成. 所谓裂隙是指煤中自然形成的裂缝. 由这些裂缝围限的基质块内的微孔隙称基质孔隙. 裂隙对煤层气的运移和产出起决定作用, 基质孔隙主要影响煤层气的赋存.2. 1 基质孔隙的分类基质孔隙可定义为煤的基质块体单元中未被固态物质充填的空间, 由孔隙和通道组成. 一般将较大空间称孔隙, 其间连通的狭窄部分称通道.基质孔隙可根据成因和大小进行分类. 按成因可将孔隙区分为气孔、残留植物组织孔、溶蚀孔、晶间孔、原生粒间孔等. 可按多孔介质孔隙大小进行的分类虽有多种方案. 但因研究对象、目的不同而有所差别, 分类方案如表1 所示.表1 煤孔隙分类方案中孔大孔研究者微孔小孔小孔(或过度孔)< 100 100~1 000 1 000~10 000 > 10 000B. B. 霍多特(1961)Gan 等(1972) < 12 12~300 > 300抚顺所(1985) < 80 80~1 000 > 1 000Girish 等< 8 (亚微孔) 8~20 (微孔) 20~500 > 500 (1987)其中Girish 等人的分类是依据煤的等温吸附特性进行的, 并得到国际理论与应用化学联合会的认可. 霍多特的分类是依工业吸附剂研究提出的, 认为微孔构成煤的吸附容积, 小孔构成煤层气毛细凝结和扩散区域, 中孔构成煤层气缓慢层流渗透区域, 而大孔则构成剧烈层流渗透区域, 这是目前煤层气领域普遍采用的方案.2. 2 基质孔隙的影响因素2. 2. 1 煤化程度煤的基质孔隙特征与煤化程度有着密切关系. 随煤化程度升高, 基质孔隙的总孔容、孔面积和孔径分布出现有规律的变化. 在Romax < 1. 5 %时, 该阶段内随煤化程度升高, 总孔容、孔面积和各级孔隙体积均急剧下降, 尤其是大中孔隙体积减小更为迅速. 在Romax = 1. 0 %~ 5. 0 %时变动较大, 可能是煤中内生裂隙发育的影响. 在Romax = 1. 5 %~5. 0 %时, 该区间内小孔体积和微孔体积随Romax 增高而增大. 在Romax = 5. 0 %时形成第2 高峰, 但大、中孔的关系体积仍持续下降. 在Romax > 5. 0 %时,小孔、微孔面积、孔面积又开始下降, 大、中孔体积持续缓慢下降.煤的基质孔隙结构特征的变化, 是煤在温度、压力作用下长时间内部结构物理化学变化的结果.因此, 其变化与煤化作用跃变有着良好的对应关系. 这种现象可从煤在外部因素作用下, 内部分子结构重组变化的角度来解释。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
35、不要以为自己成功一次就可以你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
储集层孔隙结构研究方法及 其应用
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。