信号的采集与处理
信号处理流程顺序

信号处理流程顺序信号处理是指对信号进行采集、处理、分析和识别的过程。
信号处理流程顺序包括信号采集、信号预处理、特征提取、分类识别和结果输出等步骤。
一、信号采集信号采集是指将待处理的信号从外部环境中获取到计算机系统中。
信号采集的方式有很多种,如模拟信号采集、数字信号采集、传感器采集等。
在信号采集过程中,需要注意信号的采样率、采样精度和采样时间等参数的设置,以保证采集到的信号质量和准确性。
二、信号预处理信号预处理是指对采集到的信号进行滤波、降噪、去除干扰等处理,以提高信号的质量和准确性。
信号预处理的方法有很多种,如数字滤波、小波变换、自适应滤波等。
在信号预处理过程中,需要根据信号的特点和处理目的选择合适的方法和参数。
三、特征提取特征提取是指从预处理后的信号中提取出具有代表性的特征,以便进行分类和识别。
特征提取的方法有很多种,如时域特征、频域特征、小波特征等。
在特征提取过程中,需要根据信号的特点和处理目的选择合适的方法和参数。
四、分类识别分类识别是指将提取出的特征进行分类和识别,以实现对信号的自动识别和分类。
分类识别的方法有很多种,如支持向量机、神经网络、决策树等。
在分类识别过程中,需要根据信号的特点和处理目的选择合适的方法和参数。
五、结果输出结果输出是指将分类识别的结果输出到计算机系统中,以便进行后续的处理和分析。
结果输出的方式有很多种,如图像显示、声音播放、数据存储等。
在结果输出过程中,需要根据处理目的和用户需求选择合适的方式和格式。
信号处理流程顺序包括信号采集、信号预处理、特征提取、分类识别和结果输出等步骤。
在每个步骤中,需要根据信号的特点和处理目的选择合适的方法和参数,以保证信号处理的质量和准确性。
简述数字信号处理的流程

简述数字信号处理的流程数字信号处理啊,那可真是个有趣的事儿呢。
一、信号采集。
这就像是去收集宝贝一样。
我们得先有个信号源,这个信号源就像是宝藏的源头。
比如说,声音信号可以从麦克风来,图像信号可以从摄像头来。
然后呢,把这个信号转化成数字形式,这就好比把宝藏从原来的样子变成了我们能数得清、看得懂的小金币。
这个转化的过程是通过一种叫模数转换器(ADC)的东西完成的。
这个ADC可厉害了,它能把连续的模拟信号按照一定的规则变成离散的数字信号,就像把一整块金子切成了好多小块。
二、预处理。
采集到数字信号后呀,这信号可能有点粗糙,就像刚挖出来的宝石上面还有泥呢。
我们要对它进行预处理。
比如说去除噪声,噪声就像那些宝石上的泥,会影响我们对真正宝贝的观察。
可能是环境里一些杂七杂八的声音或者光线干扰造成的噪声。
我们可以用滤波的方法来去掉这些噪声,就像用水把宝石上的泥冲洗掉。
还有可能信号的幅度太大或者太小了,这时候就得调整它的幅度,就像把宝石放在合适的灯光下,让它的光彩能正好被我们看到。
三、数字信号分析。
这一步就像是仔细研究宝石的质地和纹路一样。
我们要分析这个数字信号的各种特性。
比如说它的频率特性,就像宝石的纹路一样独特。
我们可以用快速傅里叶变换(FFT)来把信号从时域转换到频域,这样就能更清楚地看到信号里不同频率成分的分布了。
就像在不同的光线下看宝石,能发现它不同的美。
除了频率特性,我们还可能分析信号的相位特性呀,相关性之类的。
这都是为了更好地了解这个信号到底是个啥样的宝贝。
四、信号处理操作。
分析完了就得动手处理啦。
这就像对宝石进行雕琢一样。
我们可以对信号进行各种各样的操作。
比如说信号增强,如果信号有点弱,就像宝石的颜色不够鲜艳,我们可以通过一些算法让它变得更明显。
还有信号压缩,如果信号数据量太大了,就像宝石太大不好携带,我们可以把它压缩一下,在不损失太多重要信息的前提下,让它变得更便于存储和传输。
五、后处理。
处理完信号后呀,还不能就这么结束了。
电力系统中的信号采集与处理技术研究

电力系统中的信号采集与处理技术研究在现代社会中,电力系统扮演着至关重要的角色。
它为我们的日常生活提供了稳定可靠的电力供应,支持各种行业的运作。
然而,为了确保电力系统的安全和高效运行,信号采集与处理技术的研究变得至关重要。
本文将探讨电力系统中的信号采集与处理技术,并重点介绍其在电力系统保护与监控中的应用。
1. 信号采集技术信号采集是电力系统中的关键环节,它通过传感器将电力系统中的物理量转化为电信号。
常见的信号采集技术包括模拟信号采样和数字信号采样。
模拟信号采样是将连续的模拟信号转化为离散的模拟信号。
传统的采样方法包括脉冲挡位和脉冲宽度调制。
然而,这些方法存在精度和稳定性的问题。
近年来,随着模拟-数字转换器(ADC)技术的发展,基于直接数字化的采样方法逐渐成为主流。
直接数字化采样技术通过将连续的模拟信号直接转换为数字信号,提高了采样的速度和精度。
2. 信号处理技术信号处理是将采集到的信号进行处理和分析的过程。
它可以帮助我们提取有效信息,分析系统状况并做出相应控制决策。
常用的信号处理技术包括滤波、频谱分析和特征提取。
滤波技术是信号处理的基础。
它可以去除信号中的噪声和干扰,并增强信号的质量。
常见的滤波技术包括低通滤波、高通滤波和带通滤波等。
滤波技术在信号采集中具有重要作用,可以有效提高信号的清晰度和准确性。
频谱分析是对信号的频域性质进行分析的技术。
它可以帮助我们了解信号的频率成分和频域特性,并进一步分析信号的动态。
常用的频谱分析方法包括傅里叶变换和小波变换等。
这些方法可以将信号从时域转换到频域,并提取出其中的频率信息。
特征提取是从信号中提取出具有代表性的特征,用于系统状态判断和故障检测的过程。
常见的特征包括振荡频率、幅度和相位等。
特征提取可以通过各种数学和统计方法实现,如小波包分析和相关分析等。
通过特征提取,我们可以更准确地判断电力系统的运行状态,并做出相应的调控决策。
3. 应用案例分析信号采集与处理技术在电力系统保护与监控中具有广泛的应用。
音频信号的采集与处理技术综述

音频信号的采集与处理技术综述音频信号的采集与处理技术在现代通信、音乐、语音识别和声音处理等领域有着广泛的应用。
本文将对音频信号的采集与处理技术进行综述,为读者介绍相关的原理、方法和应用。
一、音频信号的采集技术音频信号的采集是指将声音转化为数字形式,以便后续的处理和存储。
主要的音频信号采集技术包括模拟声音录制、数字声音录制和实时音频采集。
模拟声音录制是早期常用的技术,通过麦克风将声音转化为电信号,再经过放大、滤波等处理,最终得到模拟音频信号。
然而,由于模拟信号具有易受干扰、难以传输和存储等缺点,逐渐被数字声音录制技术所取代。
数字声音录制技术利用模数转换器(ADC)将模拟音频信号转化为数字形式,再进行压缩和编码,最终得到数字音频文件。
这种技术具有抗干扰性强、易于传输和存储的优点,广泛应用于音乐录制、广播电视和多媒体等领域。
实时音频采集技术是指能够实时地获取声音信号,并进行处理和分析。
这种技术常用于声音识别、语音合成和实时通信等场景,要求采样率高、延迟低,并能够处理多通道信号。
二、音频信号的处理技术音频信号的处理技术包括音频编码、音频增强和音频分析等方面。
这些技术能够对音频信号进行压缩、去噪、降噪和特征提取等操作,提高音频的质量和准确性。
音频编码技术是指将音频信号转化为数字数据的过程,常用的编码方法有PCM编码、MP3编码和AAC编码等。
PCM编码是一种无损编码方法,能够保持原始音频信号的完整性;而MP3和AAC编码则是有损压缩方法,能够在降低数据量的同时保持较高的音质。
音频增强技术用于提高音频信号的清晰度和可听性。
常见的音频增强方法包括降噪、回声消除和均衡器等。
降噪技术通过滤波和频域分析等方法,减少环境噪声对音频信号的影响;回声消除技术通过模型估计和滤波等方法,抑制声音的反射和回声;均衡器技术则用于调整音频信号的频率和音量,使其在不同场景下具有更好的效果。
音频分析技术用于提取音频信号的特征和信息。
常用的音频分析方法包括频谱分析、时域分析和时频分析等。
生物医学信号处理

生物医学信号处理一、介绍随着科技的不断发展,生物医学信号处理近年来备受关注。
生物医学信号处理是指对生物医学信号进行采集、处理、分析和可视化呈现的技术,旨在提高医学诊断水平,辅助临床诊断和治疗。
本文将介绍生物医学信号处理的几种常见方法。
二、生物医学信号的采集与预处理1.生物医学信号的采集生物医学信号的采集有很多方法,如电极采集、超声波采集、磁共振成像、计算机断层扫描等。
电极采集是指通过接触皮肤或粘贴电极来测量生物电信号。
超声波采集是通过超声波进行成像检测器的回声强度来获取图像。
磁共振成像则是通过磁场和无线电波的相互作用来生成患者内部的图像,而计算机断层扫描可以通过获取多个角度的X射线图像进行三维可视化。
2.生物医学信号的预处理采集到的生物医学信号存在很多噪音,如器材噪音、运动伪影噪音等。
因此,预处理是信号处理前的一个重要步骤。
常用的预处理方法包括滤波、降噪和去伪影等。
滤波可以去除信号中的高频或低频噪音,从而对信号进行清洗。
降噪则是通过去除信号中的一些不必要的噪音,提高信号的清晰度和可读性。
去伪影是指对信号进行相位校正,去除运动伪影等影响。
三、信号分类生物医学信号可分为多种类型,如生物电信号、生物磁信号、超声信号、光学信号、心电图等。
每种信号都有其特定的处理方法,因此对生物医学信号进行分类十分重要。
1.生物电信号生物电信号是由生物体内的电生理活动所产生的信号。
例如电脑图(ECG)、脑电图(EEG)、肌电图(EMG)等都属于生物电信号。
对生物电信号的处理一般包括信号滤波、归一化和频域分析等。
2.生物磁信号生物磁信号是由人体内的生物产生的磁场所产生的信号。
例如脑磁图(MEG)和磁共振成像(MRI)就属于生物磁信号。
对生物磁信号的处理一般包括信号滤波、磁场校正和图像重建等。
3.超声信号超声信号是一种通过对人体组织进行超声波辐射进行成像的技术。
超声信号在检测妊娠、乳腺癌和肿瘤方面都有广泛应用。
对超声信号的处理一般包括信号滤波、噪声去除以及图像重建等。
单片机中的模拟信号采集与处理技术

单片机中的模拟信号采集与处理技术单片机(Microcontroller)是一种集成了处理器核心、内存和外设功能的微型计算机系统,广泛应用于各种电子设备和嵌入式系统中。
而模拟信号则是连续变化的信号,与数字信号(离散变化的信号)不同。
在许多应用场景中,需要将模拟信号通过单片机进行采集和处理,以实现各种控制和监测功能。
本文将对单片机中的模拟信号采集与处理技术进行详细讨论。
1. 模拟信号的采集在单片机中,模拟信号的采集指的是将外部模拟信号转换为数字信号,以便单片机进行处理和计算。
常用的模拟信号采集方法是使用模数转换器(ADC)将模拟信号转换为数字信号。
ADC是一种将模拟信号转换为数字信号的电路。
它通过一系列的采样和量化操作,将连续变化的模拟信号转换为离散的数字信号。
ADC的输入通常连接到模拟信号的源,如传感器或测量设备。
根据需求,可以选择不同分辨率和采样速率的ADC。
对于单片机中的模拟信号采集,可以通过ADC引脚将模拟信号输入到单片机的模拟输入引脚。
然后,单片机通过控制ADC的时钟和采样周期来实现对模拟信号的采样。
采样完成后,ADC将模拟信号转换为对应的数字值,供单片机进一步处理。
2. 模拟信号的处理在模拟信号采集完成后,单片机需要对数字信号进行处理,以满足具体应用的要求。
常见的模拟信号处理包括滤波、放大、增益调整等操作。
滤波是指在模拟信号中去除不需要的频率成分,以减少噪声和干扰。
常用的滤波方法包括低通滤波、高通滤波、带通滤波等。
在单片机中,可以使用数字滤波器来实现滤波操作。
数字滤波器基于数字信号处理技术,对数字信号进行运算和滤波,从而实现模拟信号的滤波效果。
放大是指通过增加信号的幅度,使信号能够更好地适应后续电路的要求。
在单片机中,可以使用运算放大器(Op-Amp)来实现信号的放大操作。
通过合适的电路连接和运算放大器的参数调整,可以使模拟信号得到适当的幅度增益。
增益调整是指根据实际需求,对信号进行放大或减小的操作。
通信电子行业中的信号采集与处理技术

通信电子行业中的信号采集与处理技术在当今数字化时代,信号采集与处理技术已经成为了通信电子行业当中最为重要的一部分。
这种技术用于收集电子信号、将其转换成易于处理和储存的数字信号,并且在整个系统中传输和处理这些数字信号。
信号采集与处理技术在应用领域非常广泛,比如无线通信、智能交通、机器人、医疗设备、航空航天等等。
本篇文章将对信号采集与处理技术的定义、应用和未来趋势三个方面进行论述。
一、信号采集与处理技术的定义信号采集与处理技术是指通过对源信号的采集系统进行数字化处理,将其转换成数据并将其储存到计算机中。
信号采集技术涉及到的传感器类型有很多,比如加速度传感器、温度传感器、压力传感器、振动传感器等等。
而信号处理技术则包括了滤波、降噪、处理复杂信号等多个方面。
信号采集和处理的目的是提高处理器的运行效率、提高数据准确性,并且减少采集系统的复杂度。
二、信号采集与处理技术的应用1. 无线通信无线通信是信号采集与处理技术最为重要的应用领域之一。
在无线通信过程当中,不同频段的信号需要经过频率滤波、解调器和调制器的处理,才能够转换成语音、数据和视频信息。
在物联网应用中,采集传感器信号并实现可远程访问已经成为了一个十分重要的应用程序。
2. 智能交通智能交通就是采用智能化的技术来提高交通安全、提高交通效率和保护环境。
信号采集与处理技术被大量应用在智能化平台上,可以实现交通状况的监控、视频数据传输和车辆追踪等功用。
例如,在现代城市的红绿灯信号控制系统中,信号采集与处理技术可以帮助监控交通流量、进行数据处理、提供道路布局与绿灯时间的优化方案。
3. 机器人机器人技术中的信号采集和处理起到了至关重要的作用。
机器人的感知能力是根据传感器捕获的环境信息而来的。
信号采集和处理技术可以处理机器人感知点的数据,包括位置、姿态和位姿等信息,从而可以实现类人的智能行为。
4. 医疗设备信号采集和处理技术也可以被大量应用在医疗设备领域,如心电图、血压测量器以及超声检测器等。
电子电路中的信号采集与处理技术

电子电路中的信号采集与处理技术在现代电子设备中,信号采集与处理技术是十分重要的一环。
无论是通信设备、医疗仪器还是工业自动化系统,都离不开对信号的采集和处理。
本文将介绍一些常见的信号采集与处理技术,包括模数转换、滤波、放大、调理等。
一、模数转换模数转换是将模拟信号转换成数字信号的过程。
它的主要作用是将连续变化的模拟信号转换为离散的数字形式,从而便于数字系统的处理和传输。
常见的模数转换方法有脉冲编码调制(PCM)、脉冲密度调制(PDM)和脉冲幅度调制(PAM)等。
其中,PCM是最常用的模数转换方法之一,它将模拟信号按照一定的采样频率进行采样,并将每个采样值转换成对应的二进制码。
二、滤波滤波是对信号进行频域或时域的处理,以去除掉不需要的频率分量或噪声,使信号更加清晰和稳定。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
低通滤波器可以通过筛选大于某个频率的信号分量,只保留小于该频率的分量,对于去除高频噪声十分有效。
高通滤波器则相反,可以去除低频分量。
带通滤波器和带阻滤波器则是同时具有低通和高通效果的滤波器。
三、放大放大是对信号幅度进行增强的过程。
在信号采集和处理中,常常需要对微弱的信号进行放大,以提高信号的可靠性和可读性。
常见的放大电路有运放(Operational Amplifier)放大器、差分放大器等。
运放是一种常用的放大器电路,具有高增益、低失真、宽带宽等优点,在信号采集和处理中应用广泛。
四、调理调理是对信号进行修正和调整的过程。
在信号采集和处理中,常常需要根据具体的需求对信号进行修正,以适应后续电路的工作要求。
例如,对于传感器输出的信号,可能需要进行增益调节、偏置调整、温度补偿等。
这些调理操作可以通过电阻、电容、电位器等被动元件,也可以通过运放、数字信号处理器等主动元件实现。
总结信号采集与处理技术在电子电路中起着至关重要的作用。
模数转换将模拟信号转换为数字信号,滤波器可以去除噪声和不需要的频率分量,放大器可以增强信号幅度,调理操作可以对信号进行修正和调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.激励
信号调理也能够为某些传感器提供工作电流。RTDS(温度/电阻)需要电流 将电阻变化反映出来,而应变片需要一个完备的桥式电路及电源。很多设备都 提供电流源以便使用这些传感器。
5.线性化
多传感器对被测量的量都有非线性响应,因而需要对输出信号进行线性化 。
备注: 1:数据采集
采样保持器
A/D转换器完成一次转换需要一定的时间,而在转换期间希望A/D转换器输 入端的模拟信号电压保持不变,才能保证正确的转换。当输入信号的频率较高时 ,就会产生较大的误差,为了防止这种误差的产生,必须在A/D转换器开始转换 之前将信号的电平保持,转换之后又能跟踪输入信号的变化,保证较高的转换精 度。为此,需要利用采样保持器来实现。
信号的采集与处理
主讲人:王坚
引 言
随着数字信号处理理论和计算机的不断发展,现代工业和科学技术 研究全都需要借助数字处理方法,而进行数字处理方法的先决条件是将 所有的研究对象进行数字化,也就是所谓的数据采集与处理。 数据采集技术是以前段的模拟信号处理、数字化、数字信号处理和 计算机等高科技为技术形成的一门综合技术。它现在被广泛应用于图像 处理、振动测试、语音信号分析和瞬态信号分析等多个领域。所以它也 成为研究领域中必不可少的一门技术。
1.采样保持
采样保持是利用切断电容器的输入 后,电容器能保持其原有电压值的原理 实现的(图3—33)。 采样保持动作由两种模式构成;一 种是采样模式,即采样保持的输出跟踪 输入值;另一种是保持模式,即保持输 出值。
采样保持器
1.采样保持
在采样模式中,从保持模式移到采样模式的瞬间,输入值和输出值不一样, 需经过一段时间,两值才能达到一致,这就是滞后现象,如图3—34所示,图中Ts 表示开关滞后,TA表示稳定时间。进入跟踪状态后,一转换到保持模式、这时的输 入值便被保持,这种场合伴有各种误差。
RF Av 1 R1
R1一般取几十千欧。耦合电容C1、C3可根据交流放大器的下限频率fL来 确定。
C1 C3 (3 ~ 10) /(2RL f L )
调理通道
2.滤波电路
滤波可以消除噪声和不必要的干扰,噪声滤波器通常用于输入的信号是直流信号 。许多仪器信号调理模块都有合适的低通滤波器。交流信号通常需要抗失真的低通滤 波器,因为这样的滤波器有一个陡峭的截止频率,因而几乎能够完全消除高频干扰信 号。
电 信 号
AD 转 换 器
数 字 信 号
单 片 机
电 平 转 换 电 路
计 算 机
数据采集系统的构成
• 传感器:将非电量转换成电信号输出。 • 调理通道:完成模拟信号的衰减、放大、隔离、滤波 、传感器激励和线性化等功能。 • 采样保持器:保证A/D转换过程中信号的稳定。 • A/D转换器:将模拟量转换成数子量。 • 单片机:进行数据采集。 • 电平转换电路:将TTL电平1转换成RS232C 2电平。 • 计算机:接收数据并进行处理。
信 号
模拟信号
模拟信号是指信息参数在给定范围内表现为连续的信号。 或在一段连续的 时间间隔内,其代表信息的特征量可以在任意瞬间呈现为任意数值的信号。模 拟信号分布于自然界的各个角落,如每天温度的变化。电学上的模拟信号主要 是指幅度和相位都连续的电信号,此信号可以被模拟电路进行各种运算,如放 大,相加,相乘等。
双积分式A/D转换的抗干扰能力比较强,性能稳定,但是转换速度比较慢。
Vi 比较器 标准电压 积分器 积分器电压 放电斜率固定
•
控制逻辑
固定积分 标准放电 时间 时间T1
时间
计数器
双积分式A/D转换原理图
待测放电 时间T2
A/D转换器
2. A/D转换器的主要参数
• 量程,指所能转换的模拟输入电压范围,可以分为单极型和双极型 两种。 • 分辨率(LSB),指A/D转换器所分辩的最小模拟输入量。n位A/D转换 器能反应1/2n满量程的模拟输入电平。 • 精度,包括绝对精度和相对精度两种。其中绝对精度是指在A/D转 换器输出端产生给定的数字量时,其实际模拟输入值同理想值之差 ,相对精度是指在满量程值已经校准的情况下,在量程范围内任意 数字量输出,所对应的模拟量输入值与理论值之差。 • 转换时间,指从发出启动命令到转换结束获得整个数字信号为止所 需要的时间间隔。
采样保持器
3.采样方式
实时采样
数字化采样方式
顺序采样
等效采样
随机采样
A/D转换器
什么是A/D转换?
• A/D转换是外部世界模拟信号和计算机之间联系的接口。它将连续 变化的模拟信号转换为数字信号,以便计算机和数字系统进行处理 、存储、控制和显示。
A/D转换的实现方式?
• A/D转换器件的种类非常多,其实现方式主要有逐次逼近式,双积 分式,计数式、并行式等。比较常用的有双积分和逐次逼近式两种 。
3) RC带通滤波器
可以看作为低通滤波器和高通滤波器的串联
调理通道
3.隔离(屏蔽 ) 隔离也是信号调理中的一种。从安全的角度把传感器信号同计算机隔离开
,因为被监测系统可能产生瞬时高电压。另一个原因是隔离可使从数据采集板 出来的数据不受地电位和输入模式的响。当输入DAQ1板的信号与得到的信号不 共地时,可能产生较大误差甚至损坏系统,而用隔离办法就能保证信号的准确 。
A/D转换器
2. A/D转换器的主要参数
例1:S3C2410中的A/D转换器 • • 8路10位,并支持触摸屏功能。 精度位1.5位,量程为0~3.3V,最 大转换速率为500K。
例1
例2: 8位模数(A/D) 转换器 ADC0809
例2
A/D转换器
3.模数(A/D) 转换器选用举例
• 采集一个频率为20KHz的信号,要求要分辨到2mV电压,信号电压的输入范 围是0-5V,试根据下表确定A/D转换器的型号 芯片 型号 AD C08 09 AD5 74A AD 679 分 辨 率 8 位 转 换 时 间 100 s 25 s 10 s 模拟输入范 围
Vi Vo + 比较器 控制电路 转换结束 转换启动信号
8位D/A 转换器
逐次逼近 寄存器
•
逐次逼近式A/D转换器的特点是转换速 度比较快,分辨率也较高,但是抗干 扰能力比较差。
缓冲寄存器 结果输出
逐次逼近A/D转换原理图
A/D转换器
1. A/D转换器类型
1.2双积分式A/D转换器
•
转换过程包括两步:1)对输入电压进行固定时间的积分,获得一个输出电压V0 ;2)对V0通过参考电压进行反积分,使其降低为0V,并统计反积分时间。
8
调理通道
1.放大电路
1.1直流放大电路
1) 同向放大器 同相放大器也是最基本的电路 ,其闭 环电压增益Av为:
RF Av 1 R1
同相放大器具有输入阻抗非常高,输出阻抗很低的特点,广泛用于前置 放大级。
调理通道
1.放大电路
1.2交流放大电路
若只需要放大交流信号,可采用图示的集成运放交流电压同相放大器。其 中电容C1、C2及C3为隔直电容。
两者区别
①模拟信号是用模拟量的电压或电流来表示的信号,时间上是连续的,幅度变 化也是连续的。 ②数字信号是通过0和1的数字串所构成的数字流来传输的,幅度变化是跳变的 。
数据采集系统的构成
一个典型的数据采集系统的处理步骤如下:
对 象
物 理 信 号
传 感 器
调 电 理 信 通 号 道
采 电 样 信 保 号 持 器
采样保持器
2.采样定理
2.1 采样信号的频谱 采样过程是将采样 脉冲序列p(t)与信号x(t) 相乘来.
采样脉冲序列p(t)与信号x(t)图谱
采样保持器
2.采样定理
2.2 频混现象
频域解释
时域解释
采样保持器
2.采样定理
2.3 采样定理 为保证采样后信号能真实地保留原始模拟信号信息,信号采样频率 必须至少为原信号中最高频率成分的2倍。这是采样的基本法则,称为采样 定理。
(介绍 ) (介绍 )
频率域 低频保留,高频截止 高频保留,低频截止
幅度增大 幅度增大 电荷增大 △Z Vቤተ መጻሕፍቲ ባይዱ
放大器
电桥
备注: 1:数模转换
调理通道
1.放大电路
1.1直流放大电路
1) 反相放大器 反相放大器是最基本的电路,其闭环 电压增益Av为:
Av RF R1
反馈电阻RF值不能太大,否则会产生较大的噪声及漂移,一般为几十千 欧至几百千欧。R1的取值应远大于信号源Ui的内阻。
6
调理通道
1.放大电路
微弱信号都要进行放大以提高分辨率和降低噪声,也就是使调理后信号的最大电 压值和ADC1的最大输入值相等,这样可以提高精度。同时,高分辨率可以降低高放 大倍数要求并可以提高较宽的动态范围。仪器信号调理的前端系统有几种放大模式, 靠近传感器的微弱信号经过放大增益,最后只把大信号送给计算机,以使噪声影响减 到最小。 时间域 直流放大器 交流放大器 电荷放大器
A/D转换器
1. A/D转换器类型
1.1逐次逼近式A/D转换器 • 包括比较器、控制电路、逐次逼近寄 存器、D/A转换器构成。其基本原理是 逐次逼近寄存器各位首先清”0”,然 后设置最高位为”1”形成第一个试探 值。该试探值通过D/A转换器后与待测 量电压进行比较。如果待测量电压高 于试探电压,则保持最高位不变;反 之,则将最高位设置为”0”。然后将 逼近寄存器的次高位设置为”1”,继 续上述试探过程。通过从高位到低位 地不断试探逼近寄存器各位值,最后 得到转换结果。
低通滤波器
高通滤波器 带通滤波器 带阻滤波器 低通 带通
滤波器
高通
带阻
调理通道
2.滤波电路
2.1 RC无源滤波器 在测试系统中,常用RC滤波器。因为这一领域中信号频率相对来说不高。 而RC滤波器电路简单,抗干扰强,有较好的低频性能,并且选用标准阻容 元件 。 1) 一阶RC低通滤波器