分振幅法干涉

合集下载

2011 物理光学2-03分振幅干涉

2011 物理光学2-03分振幅干涉
折射系数为 (1 − ρ ) 举个近似例子,i
1
2
, i2
很小(垂直入射)

i1 − i2 n1 − n2 = ρ= & i1 + i2 n1 + n2
2
2
如: 1 = 1.0 n2 = 1.5 则 ρ = n 光束1: I1 = 0.04A0
2
0.5 = 0.04 2.5
二、平行平板产生的等倾干涉
在阳光照射下, 在阳光照射下,肥皂膜或水面上的油膜上面呈现美丽的 彩色图案,这些都是常见的薄膜干涉现象。 彩色图案,这些都是常见的薄膜干涉现象。 利用薄膜上、下两个表面对入射光的反射和折射, 利用薄膜上、下两个表面对入射光的反射和折射,可 在反射方向(或透射方向)获得相干光束。 在反射方向(或透射方向)获得相干光束。 在一均匀透明介质n’中放入上 下表面平行,厚度为h 的均 下表面平行,厚度为h 匀介质n 两支相干光的光程差为: 两支相干光的光程差为: n’ n n’
图 2-12 观察等厚干涉的系统
2.等厚干涉条纹图样 不同形状的楔形板将得到不同形状的干涉条纹。 (a)楔 不同形状的楔形板将得到不同形状的干涉条纹。图(a)楔 形平板、 柱形表面平板、 (c)球形表面平板 (d)任意 球形表面平板、 形平板 、 (b) 柱形表面平板 、 (c) 球形表面平板 、 (d) 任意 形状表面平板的等厚干涉条纹。 形状表面平板的等厚干涉条纹 。 不管哪种形状的等厚干涉 条纹, 条纹 , 相邻两亮条纹或两暗条纹间对应的光程差均相差一 个波长, 所以从一个条纹过渡到另一个条纹, 个波长 , 所以从一个条纹过渡到另一个条纹 , 平板的厚度 均改变λ/ λ/( 均改变λ/(2n)。
检测待测平面的平整度

《分振幅干涉》PPT课件

《分振幅干涉》PPT课件

等倾干涉
(2) 入射角i 一定(平行光入射),随薄膜厚度d 变
化 薄膜同一厚度处对应同一干涉条纹
薄膜不同厚度处对应不同干涉条纹 等厚干涉 条纹形状与薄膜等厚线相同
半波损失
➢半波损失:光从光疏介质射向光密介质时, 反射光有π相位的突变,相当于反射光光程有半 个波长的损失。
➢n1>n2时, n1介质称为光密介质,n2介质称为
3)将牛顿环置于 n 1的液体中,条纹如何变?
4)应用例子:可以用来 测量光波波长,用于检测透镜 质量,曲率半径等.
工件 标准件
中心 e 0 暗斑
2
r k 条纹内疏外密
r 白光照射出现彩环
条纹的形状取决于等厚膜线的形状 等价于角度逐渐增大的劈尖
平凸透镜上(下)移动,将引起 条纹收缩(扩张)
10.0m
5
5 633nm
二、迈克耳孙干涉仪
反射镜 M1
M1 移动导轨
单 色 光 源
分光板 G1
M1 M2
反 射 镜
M2 补偿板 G2
G1//G 2 与 M1, M2 成 450角
M2 的像 M'2 反射镜 M1
单色 光 源
G1
d
M1 M2



G2
M2
光程差 Δ 2d
M'2
反射镜 M1
2
• 条纹特点:
l
形态: 平行于棱边,明、 暗相间条纹
讨论
d h
θ
dk dk+1
1) 楞边处 d = 0, ,为暗纹.
L
2
2) 相邻亮纹或暗纹对应薄膜的厚度差
d
d k 1
dk
1 2n

分振幅干涉

分振幅干涉

k R
20 R
由此得平凸透镜的曲率半径
R
r2 k 20
rk2
20
(14.96 / 2)2 (11.75 / 2)2 20 589.3106
mm
1.818m
1.4 增透膜
• 光在空气中垂直射到玻璃表面时,反射光能约占入射光能 的 5%,反射损失并不大。
• 但在各种光学仪器中为了矫正像差或其他原因,常常要用 多个透镜。例如,照相机的物镜有的用 6 个透镜,变焦距 物镜有十几个透镜,潜水艇用的潜望镜中约有 20 个透镜。

sin
2nl
700 109 2 1.4 0.25102
1.0 104
rad
等厚干涉在光学测量中有很多应用。如测量微小角度、细小 的直径、微小的长度,以及检查光学元件表面的不平度,都 可以利用光的等厚干涉。
1.3 牛顿环
• 把一个曲率半径R很大的平凸透镜A放在一块平面玻璃板B 上,其间有一厚度逐渐变化的劈尖形空气薄层。
端互相叠合,另一端夹一细金 属丝或薄金属片,形成的空气 薄膜称为空气劈尖。
1.2 劈尖的等厚干涉
• 考虑到空气的折射率 n<n1,在下边的玻璃片的上表面反
射时有半波损失,而在上边的玻璃片的下表面反射光没有
半波损失,则劈尖上下表面反射的两束光的光程差应为
劈尖反射光干涉极大(明纹)的条件为
2ne k, k 1, 2,3,
• 暗条纹对应
2e n2 n12 sin2 i k
2e
n2
n12
sin2
i
2k
1
2
• 由于直接透射的光比经过两次或更多次反射后透射出的光 强大得多,所以透射光的干涉条纹不如反射光条纹清晰。

分振幅干涉.ppt

分振幅干涉.ppt

明纹பைடு நூலகம்件 暗纹条件
在棱边处e=0, 由于半波2 损失而形成暗纹。 9
•应用 测波长 测折射率 测细小直径、厚度、微小变化
D
测表面不平度
等厚条纹
平晶
待测工件
L
λ
平晶 思考:
怎么判
标 准
待 测
Δh
断楔角




的位置?
10
(2)牛顿环
•干涉装置:
测量 显微镜
分束镜M
S.
平凸透镜 平晶

R
r
e
平凸透镜 平晶
均匀
光程差只取决于薄膜的 厚度
相同厚度的地方对应相 同的光程差
则相同倾角i 的光线光程差相 同
5
二、等厚条纹
入射光(单色平 行光垂直入射)
1.劈尖干涉 104 ~ 105 rad 反射光2 反射光1
· n A
平行光垂直入射到劈尖上
n
e
•光程差
Δ 2ne
2
n (设n > n )
2ne k, k=1, 2,3,
·
S
反射光2
单色
反射光1
n
·
A
n
e
n (设n > n )
透射光干涉
i
薄膜
ne
2
1
2necosr
3
薄膜干涉
4
Δ 2ne cos r 2e n2 sin2 i f (e,i),
2
2
两个特殊结果
1)等厚干涉
2)等倾干涉
在确定的角度下观察
或说:入射角固定
薄膜的厚度e
则在波长一定的情况下

分振幅法干涉原理及应用

分振幅法干涉原理及应用

分振幅法干涉原理及应用分振幅法干涉是光学干涉现象中的一种干涉方式,它基于波的叠加原理,利用两个相干光源之间的干涉现象进行测量和分析。

该方法的原理和应用非常广泛,包括材料表面形貌测量、光栅测量、光学薄膜厚度测量等。

分振幅法干涉的基本原理是两个相干光源发出的光波在空间中叠加形成干涉图样,通过观察和记录干涉图样的变化来获得有关光学系统特征的信息。

在分振幅法干涉中,两束光源的光波通过半透明镜或分束器分开,分别经过不同的路径到达接收器。

由于路径不同,光波的相位也会发生变化,当两束光波到达接收器时,它们会产生干涉现象。

干涉图样的变化可以用来分析光学系统的特点,比如材料表面的形貌、薄膜的厚度等。

分振幅法干涉的应用非常广泛。

其中一个重要的应用是材料表面形貌测量。

通过测量材料表面的形貌,可以了解材料的几何形状、表面粗糙度等信息,这对于材料加工、制造和表面质量控制等方面具有重要意义。

分振幅法干涉可以通过分析干涉图样的变化来测量物体表面的高度差异,从而获得物体表面的形貌信息。

该方法具有高精度、非接触和无损测量等优点,广泛应用于航天、机械制造、电子器件等领域。

另一个重要的应用是光栅测量。

光栅是一种具有周期性结构的光学元件,对光的干涉具有很高的敏感性。

分振幅法干涉可以利用光栅的干涉现象来测量光栅的参数,比如周期、方位等。

这对于光栅的制造和使用具有重要意义。

光栅测量的结果可以用于光栅衍射效果的优化,提高光学系统的性能。

除了材料表面形貌测量和光栅测量,分振幅法干涉还广泛应用于光学薄膜厚度的测量。

光学薄膜是一种具有特殊光学性质的薄层材料,例如反射、透射等。

分振幅法干涉可以利用光的干涉现象来测量光学薄膜的厚度,这对于光学薄膜的研究和生产具有重要意义。

测量光学薄膜厚度的结果可以用于优化光学薄膜的制备过程,提高光学薄膜的性能。

总之,分振幅法干涉是一种基于波的叠加原理的具有高精度、非接触和无损测量的方法。

它在材料表面形貌测量、光栅测量、光学薄膜厚度测量等方面具有重要的应用价值。

分振幅法

分振幅法

样品升高 h ,测得条纹移动了N 条,
则 h N
2
且 Δh hΔt
得: N
2 hΔ t
ⅱ) 薄膜厚度的测定
例:
练习十四 计算题 4
已知:AB 间共有 8 条暗纹。
n2= 1.50 ,n3= 3 .42,
= 600 nm,
0 12 34567
B
SiO2 e n2
求: SiO2 膜的厚度。

明暗相间的等厚干涉条纹。
(3) 相邻明(或暗)纹对应的膜厚之差
k 1
k
2nek
2
k
,
2nek1
2
(k 1)
n
ek
Δ e ek1 ek
Δe n
2n 2
Δe
ek1
(13-14)
⑷ 相邻明条纹(或暗条纹)间距l :
l
l Δe Δe
sin
k 1 k Δe
1
2n2
0
ek1 ek n
2
暗环半径 r k R , k 0,1,2,
§13 - 5 迈克耳逊干涉仪
★ 结论:
1) 辟尖干涉条纹是等间距的;
2)
l ,
l
1
在入射单色光一定时,θ 愈小,
, 则 l 愈大,干涉条纹愈疏;
3)当用白光照射时,将看到由劈尖边缘逐渐分开的
彩色直条纹。
(5)条纹平移 ★ 结论:
k
k1 4
23
1
ek
ek 1
2
2
膜厚每增加 ,条纹向棱边平移 1 条;
2
flash
膜厚每减少 ,条纹离开棱边平移 1 条。 flash
牛顿环干涉条纹的特征

光的干涉分振幅干涉实验报告

光的干涉分振幅干涉实验报告

光的干涉分振幅干涉实验报告实验名称:光的干涉——分振幅干涉实验一、实验目的1.学习和掌握分振幅干涉的基本原理和方法。

2.通过实验观察和分析分振幅干涉现象,验证光的干涉现象。

3.运用波动理论解释实验现象,提高理论联系实际的能力。

二、实验原理分振幅干涉是指两列光波在空间某一点叠加,产生干涉现象。

干涉现象的产生需要满足相干条件,即两列光波的频率相同、相位差恒定、振动方向相同。

分振幅干涉实验是通过将一束光分成两束,使它们在空间某一点叠加,产生干涉现象。

本实验采用双缝干涉的方法,将一束光分成两束相干光,通过调节双缝之间的距离和角度,观察干涉条纹的变化。

三、实验步骤1.准备实验器材:激光器(或单色光源)、双缝装置、屏幕、尺子。

2.将激光器放置在双缝装置的一侧,屏幕放在双缝装置的另一侧。

3.打开激光器,调整激光器的位置,使光线正对双缝装置,并使光线恰好照射在双缝上。

4.观察屏幕上出现的干涉条纹,记录干涉条纹的位置和形状。

5.改变双缝之间的距离和角度,观察干涉条纹的变化,并记录实验数据。

6.根据干涉条纹的位置和形状,计算相干光的波长和波长差。

四、实验结果与分析1.实验结果:在实验中,我们观察到了明暗相间的干涉条纹。

随着双缝之间的距离和角度的变化,干涉条纹的位置和形状也会发生变化。

通过测量干涉条纹的位置和宽度,我们可以计算出相干光的波长和波长差。

2.结果分析:干涉条纹的位置取决于相干光的波长和双缝之间的距离。

当双缝之间的距离变化时,干涉条纹的位置会发生变化。

干涉条纹的宽度取决于相干光的波长和双缝之间的角度。

当双缝之间的角度变化时,干涉条纹的宽度会发生变化。

通过计算相干光的波长和波长差,我们可以进一步了解分振幅干涉现象的规律。

五、结论总结通过本次实验,我们验证了分振幅干涉现象的规律,深入了解了光的干涉原理和方法。

实验结果表明,当相干光的波长和双缝之间的距离、角度发生变化时,干涉条纹的位置和形状也会发生变化。

这一实验结果有助于我们更好地理解光的波动性质和光学现象。

大学物理学-分振幅干涉

大学物理学-分振幅干涉
(2)增反膜:原理与增透膜相同,使得反射光相干相长,透射光自然 相干相消。实例:宇航员的头盔、服装。
2、等厚干涉
扩展光源同一方向的光线照射到厚度不均匀的薄膜后,在无穷远处 (经透镜汇聚)产生的干涉。
特征为:(1) 具有相同入射角的入射光; (2) 薄膜厚度不均匀;
不同厚度对应不同 条纹级别
具体实例:劈尖干涉与牛顿环。
每移动一个条纹宽度,厚度变化为:
e ek 1 ek
k
1
1 2
2n
k1 2ຫໍສະໝຸດ 2nn2n 2
设条纹移动宽度为N个条纹宽度,厚度变化(即膨 胀变长)为:
l N 膨胀比例
2n
l
N
l0
2nl0
如果缩短,则条纹反向移动,计算原理相同。
大学物理学
章目录 节目录 上一页 下一页
12.3 分振幅干涉
射光干涉为削弱。
大学物理学
章目录 节目录
上一页
下一页
12.3 分振幅干涉
二、等倾干涉和等厚干涉
一般地讨论薄膜干涉在任意平面上的干涉图样是一个极为复杂的问题。
2e n22 n12 sin2 i
与之对应的两种特殊情形:等倾干涉、等厚干涉 1、等倾干涉
扩展光源不同方向的光线照射到厚度均匀的薄膜后,在无穷远处
1、分振幅法获取相干光
S
a
n1
n2
a1
a2
e
通过界面的反射与折射,将一束光分成两束,因为反射光和折 射光均来自同一光波,满足相干条件。
2、光程差的计算
两点说明: (1)透镜不会带来附加光程差:紫色虚线后没有光程差; (2)分开前没有光程差:黑色虚线前没有光程差。
大学物理学
章目录 节目录 上一页 下一页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档