分振幅干涉

合集下载

分振幅干涉

分振幅干涉

反过来,当屏与平行平板较远(x0较大)时,条纹对比度高。
观察面位于无穷远时,各组圆环—〉完全重合,V不受光 源影响,始终为1——理想定域面
进而,当屏与平行平板无穷远时,条纹间距无穷大,条纹完全 重合,条纹对比度为1。
SB
SA B A
MB MA
S M
Π
f
确定干涉条纹定域面的方法: 定域面是干涉条纹反衬度V最大的考察点的集合。
比较接近,可以产生对比度较
高的多光束干涉条纹。
Et1 Et 2
此时定域面是理想定域面,所以可以使用扩展光源;定 域面在无穷远处,在透镜的后焦面上观察条纹。
K 2 cos 1
界面反射率
Ir1
0.04(未镀膜) 0.04
0.9(镀高反膜) 0.9
Ir2
0.037
Ir3
Ir4
6×10-5 9×10-8
B
2nh cos2 2h n2 n '2 sin2 1
考虑到半波损失,两束 反射光的相位差:
4 h
n2 n '2 sin2 1
将位相差代入式:
I (r ) I1 I2 2
I1I2 cos()
即可求得干涉场强度分布。
等强度线即等相位差线,也即等光程差线。
③ 等倾圆环相邻条纹的间距
eN

rN 1
rN

f 2n '
n
h(N 1 q)
该式说明,愈向边缘(N愈大), 条纹愈密。
角宽度
1
e/
f

1 2n '
n
h(N 1 q)
考虑到(3.65)式,
1

n 2n '2 1h

光的干涉分振幅干涉实验报告

光的干涉分振幅干涉实验报告

光的干涉分振幅干涉实验报告实验目的:观察光的干涉现象,学习分振幅干涉实验的基本原理和方法。

实验原理:1. 光的干涉现象:当两束光波相遇时,根据它们的相位差,可以出现相干加强或相干削弱的情况,这种现象就称为光的干涉。

2. 分振幅干涉:分振幅干涉是一种光的干涉形式,它是利用两个或多个来源的光波,通过干涉器件进行干涉实验。

光波在空间中叠加,产生干涉以形成明暗条纹。

实验仪器:1. He-Ne激光器:用于产生单色光。

2. 记录台:用于固定和调整干涉仪器件。

3. 分光镜:用于将激光分成两束。

4. 透镜:用于调整光束的直径和准直度。

5. 双缝:用于产生两束相干光。

6. 照相胶片或光敏纸:用于记录干涉条纹。

7. 干涉仪:用于观察干涉条纹,包括一块透明玻璃片和一块反射玻璃片。

实验步骤:1. 将激光器放置在记录台上,并调整光束直径和准直度。

2. 将分光镜放置在激光器前方,照射光通过分光镜后,分成两束光。

3. 将透镜放置在分光镜后方,调整光束的直径和准直度。

4. 将双缝放置在透镜后方,使两束光经过双缝。

5. 调整双缝宽度和距离,观察干涉条纹的形成和变化情况。

6. 将干涉仪放置在干涉条纹的位置,观察和记录干涉条纹。

7. 根据实验记录,分析干涉条纹的特点和规律。

实验结果与分析:通过实验观察和记录,我们可以得到明暗交替的干涉条纹。

根据条纹的间隔和明暗变化规律,我们可以得到光的干涉条件和干涉定律。

不同干涉条件下,干涉条纹的形态和间隔会有所不同。

结论:通过分振幅干涉实验,我们观察到了光的干涉现象,并得到了干涉条纹的特点和规律。

实验结果验证了光的干涉理论,并加深了我们对光的干涉现象的理解。

分振幅干涉

分振幅干涉

k R
20 R
由此得平凸透镜的曲率半径
R
r2 k 20
rk2
20
(14.96 / 2)2 (11.75 / 2)2 20 589.3106
mm
1.818m
1.4 增透膜
• 光在空气中垂直射到玻璃表面时,反射光能约占入射光能 的 5%,反射损失并不大。
• 但在各种光学仪器中为了矫正像差或其他原因,常常要用 多个透镜。例如,照相机的物镜有的用 6 个透镜,变焦距 物镜有十几个透镜,潜水艇用的潜望镜中约有 20 个透镜。

sin
2nl
700 109 2 1.4 0.25102
1.0 104
rad
等厚干涉在光学测量中有很多应用。如测量微小角度、细小 的直径、微小的长度,以及检查光学元件表面的不平度,都 可以利用光的等厚干涉。
1.3 牛顿环
• 把一个曲率半径R很大的平凸透镜A放在一块平面玻璃板B 上,其间有一厚度逐渐变化的劈尖形空气薄层。
端互相叠合,另一端夹一细金 属丝或薄金属片,形成的空气 薄膜称为空气劈尖。
1.2 劈尖的等厚干涉
• 考虑到空气的折射率 n<n1,在下边的玻璃片的上表面反
射时有半波损失,而在上边的玻璃片的下表面反射光没有
半波损失,则劈尖上下表面反射的两束光的光程差应为
劈尖反射光干涉极大(明纹)的条件为
2ne k, k 1, 2,3,
• 暗条纹对应
2e n2 n12 sin2 i k
2e
n2
n12
sin2
i
2k
1
2
• 由于直接透射的光比经过两次或更多次反射后透射出的光 强大得多,所以透射光的干涉条纹不如反射光条纹清晰。

分振幅法干涉原理及应用

分振幅法干涉原理及应用

分振幅法干涉原理及应用分振幅法干涉是光学干涉现象中的一种干涉方式,它基于波的叠加原理,利用两个相干光源之间的干涉现象进行测量和分析。

该方法的原理和应用非常广泛,包括材料表面形貌测量、光栅测量、光学薄膜厚度测量等。

分振幅法干涉的基本原理是两个相干光源发出的光波在空间中叠加形成干涉图样,通过观察和记录干涉图样的变化来获得有关光学系统特征的信息。

在分振幅法干涉中,两束光源的光波通过半透明镜或分束器分开,分别经过不同的路径到达接收器。

由于路径不同,光波的相位也会发生变化,当两束光波到达接收器时,它们会产生干涉现象。

干涉图样的变化可以用来分析光学系统的特点,比如材料表面的形貌、薄膜的厚度等。

分振幅法干涉的应用非常广泛。

其中一个重要的应用是材料表面形貌测量。

通过测量材料表面的形貌,可以了解材料的几何形状、表面粗糙度等信息,这对于材料加工、制造和表面质量控制等方面具有重要意义。

分振幅法干涉可以通过分析干涉图样的变化来测量物体表面的高度差异,从而获得物体表面的形貌信息。

该方法具有高精度、非接触和无损测量等优点,广泛应用于航天、机械制造、电子器件等领域。

另一个重要的应用是光栅测量。

光栅是一种具有周期性结构的光学元件,对光的干涉具有很高的敏感性。

分振幅法干涉可以利用光栅的干涉现象来测量光栅的参数,比如周期、方位等。

这对于光栅的制造和使用具有重要意义。

光栅测量的结果可以用于光栅衍射效果的优化,提高光学系统的性能。

除了材料表面形貌测量和光栅测量,分振幅法干涉还广泛应用于光学薄膜厚度的测量。

光学薄膜是一种具有特殊光学性质的薄层材料,例如反射、透射等。

分振幅法干涉可以利用光的干涉现象来测量光学薄膜的厚度,这对于光学薄膜的研究和生产具有重要意义。

测量光学薄膜厚度的结果可以用于优化光学薄膜的制备过程,提高光学薄膜的性能。

总之,分振幅法干涉是一种基于波的叠加原理的具有高精度、非接触和无损测量的方法。

它在材料表面形貌测量、光栅测量、光学薄膜厚度测量等方面具有重要的应用价值。

§14-7 分振幅干涉

§14-7 分振幅干涉

d m
2
12
13
例1:在水面上飘浮着一层厚度为0.316 m的油膜,其折射率为 1.40。中午的阳光垂直照射在油膜上,问油膜呈现什么颜色?
解: 由图知光1和光2的光程差为
Δ 2ne
油膜颜色是干涉加强光波颜色满足
1
2
空气 油膜
2
k,k 1,2,3, 水 2 2ne 或 k 1 2 2 1.40 0.316 m 1.77 m 当k = 1时,干涉加强的波长为 0.5 Δ 2ne
rk2 (4.00 10 3 ) 2 k 4 6 R 10.0 0.400 10
15
例3:为了利用光的干涉作用减少玻璃表面对入射光的反射, 以增大透射光的强度,常在仪器镜头(折射率为1.50)表面涂敷 一层透明介质膜 (多用MgF2,折射率为1.38), 称为增透膜。 若使镜头对人眼和照相机底片最敏感的黄绿光( = 550 nm)反 射最小,试求介质膜的最小厚度。 a b 解: 因上、下表面反射光都有半波损失 所以有 = 2 e n2 由干涉相消条件得

明纹条件 暗纹条件
(明纹)
k 2
(暗纹)
5
相邻亮纹或暗纹对应的厚度差
1 1 ek 1 ek (k 1 ) (k ) 2 2 2 2 2
1 1 ek 1 ek ( k 1) k 2 2 2
b
n1 n
相邻条纹间距为l,θ很小,则有

16
(A.A.Michelson , 1852—1931)
点击深色键返回原处→
17
b上或下面。
干涉条纹
光线a、b的光程差
Δ 2ne

光的干涉分振幅干涉实验报告

光的干涉分振幅干涉实验报告

光的干涉分振幅干涉实验报告实验名称:光的干涉——分振幅干涉实验一、实验目的1.学习和掌握分振幅干涉的基本原理和方法。

2.通过实验观察和分析分振幅干涉现象,验证光的干涉现象。

3.运用波动理论解释实验现象,提高理论联系实际的能力。

二、实验原理分振幅干涉是指两列光波在空间某一点叠加,产生干涉现象。

干涉现象的产生需要满足相干条件,即两列光波的频率相同、相位差恒定、振动方向相同。

分振幅干涉实验是通过将一束光分成两束,使它们在空间某一点叠加,产生干涉现象。

本实验采用双缝干涉的方法,将一束光分成两束相干光,通过调节双缝之间的距离和角度,观察干涉条纹的变化。

三、实验步骤1.准备实验器材:激光器(或单色光源)、双缝装置、屏幕、尺子。

2.将激光器放置在双缝装置的一侧,屏幕放在双缝装置的另一侧。

3.打开激光器,调整激光器的位置,使光线正对双缝装置,并使光线恰好照射在双缝上。

4.观察屏幕上出现的干涉条纹,记录干涉条纹的位置和形状。

5.改变双缝之间的距离和角度,观察干涉条纹的变化,并记录实验数据。

6.根据干涉条纹的位置和形状,计算相干光的波长和波长差。

四、实验结果与分析1.实验结果:在实验中,我们观察到了明暗相间的干涉条纹。

随着双缝之间的距离和角度的变化,干涉条纹的位置和形状也会发生变化。

通过测量干涉条纹的位置和宽度,我们可以计算出相干光的波长和波长差。

2.结果分析:干涉条纹的位置取决于相干光的波长和双缝之间的距离。

当双缝之间的距离变化时,干涉条纹的位置会发生变化。

干涉条纹的宽度取决于相干光的波长和双缝之间的角度。

当双缝之间的角度变化时,干涉条纹的宽度会发生变化。

通过计算相干光的波长和波长差,我们可以进一步了解分振幅干涉现象的规律。

五、结论总结通过本次实验,我们验证了分振幅干涉现象的规律,深入了解了光的干涉原理和方法。

实验结果表明,当相干光的波长和双缝之间的距离、角度发生变化时,干涉条纹的位置和形状也会发生变化。

这一实验结果有助于我们更好地理解光的波动性质和光学现象。

大学物理学-分振幅干涉

大学物理学-分振幅干涉
(2)增反膜:原理与增透膜相同,使得反射光相干相长,透射光自然 相干相消。实例:宇航员的头盔、服装。
2、等厚干涉
扩展光源同一方向的光线照射到厚度不均匀的薄膜后,在无穷远处 (经透镜汇聚)产生的干涉。
特征为:(1) 具有相同入射角的入射光; (2) 薄膜厚度不均匀;
不同厚度对应不同 条纹级别
具体实例:劈尖干涉与牛顿环。
每移动一个条纹宽度,厚度变化为:
e ek 1 ek
k
1
1 2
2n
k1 2ຫໍສະໝຸດ 2nn2n 2
设条纹移动宽度为N个条纹宽度,厚度变化(即膨 胀变长)为:
l N 膨胀比例
2n
l
N
l0
2nl0
如果缩短,则条纹反向移动,计算原理相同。
大学物理学
章目录 节目录 上一页 下一页
12.3 分振幅干涉
射光干涉为削弱。
大学物理学
章目录 节目录
上一页
下一页
12.3 分振幅干涉
二、等倾干涉和等厚干涉
一般地讨论薄膜干涉在任意平面上的干涉图样是一个极为复杂的问题。
2e n22 n12 sin2 i
与之对应的两种特殊情形:等倾干涉、等厚干涉 1、等倾干涉
扩展光源不同方向的光线照射到厚度均匀的薄膜后,在无穷远处
1、分振幅法获取相干光
S
a
n1
n2
a1
a2
e
通过界面的反射与折射,将一束光分成两束,因为反射光和折 射光均来自同一光波,满足相干条件。
2、光程差的计算
两点说明: (1)透镜不会带来附加光程差:紫色虚线后没有光程差; (2)分开前没有光程差:黑色虚线前没有光程差。
大学物理学
章目录 节目录 上一页 下一页

分振幅干涉和分波面干涉

分振幅干涉和分波面干涉

分振幅干涉和分波面干涉
分振幅干涉和分波面干涉是光学干涉现象的两种主要类型,它们在光学实验和技术中有不同的应用。

以下是对这两种干涉的简要解释:
1.分振幅干涉(Amplitude Division Interference):
•原理:分振幅干涉是通过分割入射光波的振幅,使其沿不同光程传播,然后重新合成,产生干涉现象。

这通常涉
及将光波分成两个或多个振幅不同的部分。

•应用:分振幅干涉常用于Michelson干涉仪等设备中,用于测量光学元件的表面形状、厚度差异等。

2.分波面干涉(Wavefront Division Interference):
•原理:分波面干涉是通过分割入射光波的波面,使其沿不同光程传播,然后重新合成,产生干涉现象。

这涉及光
波的相位差异,而不是振幅。

•应用:分波面干涉广泛应用于干涉仪器,例如Twyman-Green干涉仪和Fizeau干涉仪。

它可用于测量光学表面
的平整度、透明膜的厚度、折射率差异等。

这两种干涉现象的共同点是都涉及将光波分成两个或多个部分,然后再合成,通过干涉条纹来测量光学性质。

区别在于分振幅干涉关注振幅差异,而分波面干涉关注波面差异。

在实际应用中,选择使用分振幅干涉还是分波面干涉取决于具体的实验需求和测量目标。

这两种方法都为光学领域提供了强大的工具,用于精密测量和实验研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

26
物理学
测量透镜的曲率半径
r kR
2 k
R
r
2 k m
(k m) R
r
2 k m
r
R
r m
2 k
2r
第十一章 光学
27
物理学
•检测光学镜头表面曲率是否合格
验规 将玻璃验规盖于 待测镜头上,两者间 形成空气薄层,因而 在验规的凹表面上出 现牛顿环,当某处光 圈偏离圆形时,则该 处有不规则起伏。
度, 则光程差为:
A
2n2e
2n2e
2
无半波损失
n2 n3
有半波损失
第十一章 光学
我们只考虑平 行光垂直入射 的情形
物理学
二、 劈 尖
T
L

点光源 两块平板

薄片或细丝
n
M
D
S
劈尖角
n1 n1
e
b
2ne

2
是指空气膜的上、下两界面处的反射光的干涉;而不 是上玻璃板的上、下两界面反射光的干涉。
L
n1
l
劈尖干涉
第十一章 光学
9
物理学
结论
2
=k 亮条纹满足: 2 ne
相邻条纹相差的厚度: 楔角:
ei 1 ei

2n
(对空气劈尖) 棱边处是暗条 纹


2nl
L
l

越小, L 越大, 条纹越稀; 越大, L 越小, 条纹越密。 当大到某一值,条纹密不可分,无干涉。
第十一章 光学
4
物理学
2ne

2
n1 n1
e
n
k k 1,2,3, (明) 2ne 2 2 k 1 k 0,1,2, (暗) 2
第十一章 光学
5
物理学
l
n1 n
讨论
(1)棱边处
D
e0
n

L
l
n1
为暗纹. 2 1
13
物理学
测量微小物体的厚度 将微小物体夹在两 薄玻璃片间,形成劈尖, 用单色平行光照射.
d

L
d L



2nl

L d 2nl
第十一章 光学
14
物理学
检验光学元件表面的平整度
h
b h l 2
l
b
1 3 2 6
由于同一条纹下的空气薄膜厚度相同 厚度值大的地方,级次应该高,但现在级次与厚度小 的地方相同,说明这个地方的厚度小了,所以该处为 突出部分,反之为凹处。
第十一章 光学
38
物理学
作业:11-12;11-18;
第十一章 光学
39
物理学
五.迈克耳孙干涉仪(选讲)
反射镜 M1
M1 移动导轨
单 色 光 源 分光板 G1
M1 M2
反 射 镜 M2 补偿板 G 2
成 45 角
40
G1//G 2 与 M1 , M2
第十一章 光学
物理学
M 2 的像 M'2
2nd
0
2
k 0
油膜 水
n=1.40 n=1.33
2ne 0 k1
2
物理学
2ne 2 1.4 0.316 103 884.8 0 k1 k1 k1 2 2 2
白光: 400nm--760nm
k 1: 0 1769.6nm(红外线) k 2 : 0 589.9nm(可见光:黄色) k 3: 0 177.0nm(紫外线)
第十一章 光学
28
物理学 例题八
已知:=0.4m, rk 4mm, rk 5 6mm,
求:(1)R=?
解: rk kR rk 5 (k 5) R
联立消除K:
R
r
2 k 5
r
5 第十一章 光学
2 k
10m
29
物理学
求:(2)k=?
解: rk kR

2

16
物理学
例 2 波长为680 nm的平行光照射到L=12 cm长的两块玻璃片上,两玻璃片的一边相互 接触 ,另一边被厚度D=0.048 mm的纸片隔开. 试问在这12 cm长度内会呈现多少条暗条纹 ? 解
2e

2 k 0,1,2,
(2k 1)

2
第十一章 光学
17
物理学
第十一章 光学
33
物理学
增反膜 利用薄膜干涉原理,使薄膜上、下表面对某种 色光的反射光发生相长干涉,其结果是增加了该光的 反射,减少了它的透射。
激光器谐振腔
第十一章 光学
宇航服
34
物理学
增透膜和增反膜
利用薄膜干涉可以提高光学器件 的透光率 .
第十一章 光学
35
例题11-5 照相机的表面常常涂有一层增透 膜,它是一层透明介质膜,其折射率为 n=1.38。如果要使可见光谱中的中 央部分(550nm)有最小的反射,问膜的 厚度应为多少?
(1)同心圆环,明暗相间; (2)中心为暗点; (3)条纹不是等距分布,越来越密;
第十一章 光学
25
物理学
•测量未知单色平行光的波长
五.应用
用读数显微镜测量第 k 级和第 m 级暗 环半径 rk、rm
rk kR
2 m 2 k
2 m 2 k
rm mR
r r mR kR
(r r ) (m k )R 第十一章 光学
2e 2D
km

2
(2k 1) (2k m 1)
141 .1

2 2
k 0,1,2,

2


2D
共有142条暗纹
第十一章 光学
18
物理学
二、牛顿环干涉实验
• 一平薄透 镜放在一平板 玻璃上, 平薄 透镜跟平玻璃 片间形成一上 表面弯曲的劈 尖。
第十一章 光学
解: 没有半波损失,反射减小:
( 1) 有 ( 2) 有
1 2nd k 0 2
0 99.6nm 2 d 2n 4n
0
例题六已知薄膜厚度为0.316m,折射率为 1.40,白光垂直照射其上,薄膜呈现什么 颜色?
解: 有半波损失,反射加强:
(1)有 (2)没有
第十一章 光学
e
e

2
h
10
物理学
干涉条纹的移动


2nl
当膜上某处光程差改变一个波长,则该处移过 一个条纹
第十一章 光学
11
物理学
劈尖条纹变化 l L / 2nd / 2n
第十一章 光学
12
物理学
应用:

检查工件的平整度; 测微小厚度; 测微小角度;

第十一章 光学
19
物理学
牛顿环
由一块平板玻璃和一平凸透镜组成
d

2
20
条件:垂直入射.
光程差
第十一章 光学
2d
物理学
牛顿环实验装置
显微镜 T L S M 半透 半反镜
R
r
d
牛顿环干涉图样
第十一章 光学
21
物理学
光程差
2d

2
明纹
R r d

k (k 1,2,)
(2k 1) (k 0,1, ) 暗纹 2
n

/ 2n
D
e l 2ntg tg
L
n1
tg 很小,
l

l
劈尖干涉
2ntg 2n

D 2 n l L
第十一章 光学
8

物理学
l
n1 n
(4)条纹间隔数:
n

/ 2n
D
L D n l e
条纹的位置是以条纹的中心线算起;
反射镜 M 1
单 色 光 源
d
M1 M2
反 射 镜 M2
G1
G2
光程差 2 d
第十一章 光学
41
物理学
M'2
反射镜 M1
当 M1不垂直于M 2 时,可形成劈尖 型等厚干涉条纹.
反 射 镜 M2
单 色 光 源
G1
G2
第十一章 光学
42
物理学
迈克耳孙干涉仪的主要特性
(1)两相干光束完全分开; (2)两光束的光程差可调. M'2 d M1 d
第十一章 光学
31
物理学
照相机镜头
第十一章 光学
眼镜
32
物理学
2、增反膜 在另一类光学元件中,又要求某些光学元件具
有较高的反射本领,例如,激光管中谐振腔内的反
射镜,宇航员的头盔和面甲等。为了增强反射能量,
常在玻璃表面上镀一层高反射率的透明薄膜,利用
薄膜上、下表面的反射光的光程差满足干涉相长条 件,从而使反射光增强,这种薄膜叫增反膜。
物理学
§11-3 分振幅干涉
第十一章 光学
1
物理学
蝉翅在阳光下
蜻蜓翅膀在阳光下
白光下的油膜
肥皂泡玩过吗? 第十一章 光学
2
物理学
等厚干涉:在同一干涉条纹下薄膜厚度相同. 由于单色光在薄膜上下两个表面
后形成 ①、 ② 两束反射光。当
单色光垂直射入薄膜表面时, ①
相关文档
最新文档