线路差动保护保护配置和基本原理
母线差动保护、断路器失灵保护原理

交流电流断线检查: 1) 差流大于CT 断线闭锁定值IDX ,延时5 秒发CT 断线报
警信号。 2) 当发生CT 断线,随后电流回路恢复正常,须按屏上复
归按钮复归报警信号,母差保护才能恢复运行。
谢谢
母线差动保护、断路器失灵保 护原理
母线保护装置简介
水电站内500KV保护分别有两套装置,一套为 南瑞,一套为南自;
南瑞母线保护装置:
RCS—915GD 型微机母线保护装置,主要适 用于一个半断路器主接线方式;
母线上允许所接的线路与元件数最多为9 个 ;
RCS—915GD型微机母线保护装置设有母线差 动保护和断路器失灵保护功能。
南瑞母线差动保护原理
母线差动保护:
比率差动元件 a) 常规比率差动元件 动作判据为: 其中:K 为比率制动系数,固定取0.5; I j 为第j 个连接
元件的电流; I cdzd为差动保护启动电流定值。)
南瑞母线差动保护原理
CT 饱和检测元件: 为防止母线保护在母线近端发生区外故障时CT 严重饱
和的情况下发生误动,本装置根据CT 饱和波形特点设置了 两个CT 饱和检测元件,用以判别差动电流是否由区外故障 CT 饱和引起,如果是则闭锁差动保护出口,否则开放保护 出口。
l 母线差动保护 √ l 母联(分段)断路器失灵和盲区保护 l 断路器失灵保护 √ l 复合电压闭锁功能 l 运行方式识别功能 l CT断线告警及闭锁功能 l 母联(分段)充电过流保护(选配) l 母联(分段)非全相保护(选配)
南瑞母线差动保护原理
母线差动保护:
1)启动元件 a)电流工频变化量元件,当制动电流工频变化量大于门坎(由浮动门坎
和固定门坎构成)时电流工频变化量元件动作,其判据为: △si >△SIT +0.5IN 其中:△si 为制动电流工频变化量瞬时值;0.5IN 为固定门坎;△SIT
高压电动机差动保护原理及注意事项

高压电动机差动保护原理及注意事项差动保护是大型高压电气设备广泛采用的一种保护方式,2000KW以上的高压电动机一般采用差动保护,或2000kW(含2000kW)以下、具有六个引出线的重要电动机,当电流速断保护不能满足灵敏度的要求时,也装设纵差保护作为机间短路的主保护。
差动保护基于被保护设备的短路故障而设,快速反应于设备内部短路故障。
对被保护范围区外故障引起区内电流变化的、电动机启动瞬间的暂态峰值差流、首尾端CT不平衡电流等容易引起保护误判的电流,对于不同的差动保护原理,有不同的消除这些电流的措施。
差动保护的基本原理为检测电动机始末端的电流,比较始端电流和末端电流的相位和幅值的原理而构成的,正常情况下二者的差流为0,即流入电动机的电流等于流出电动机的电流。
当电动机内部发生短路故障时,二者之间产生差流,启动保护功能,出口跳电动机的断路器。
微机保护一般采用分相比差流方式。
图1 电动机差动保护单线原理接线图为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。
两组电流互感器之间,即为纵差保护的保护区。
电流互感器二次侧按循环电流法接线。
设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。
继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。
图1所示为电动机纵差保护单线原理接线图。
在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。
如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s的延时动作于跳闸。
如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。
电动机差动保护原理

电动机差动保护原理
电动机差动保护是一种保护电动机的措施,其原理是通过比较电动机的不同相电流,来检测是否存在故障。
差动保护通常包括两个主要部分:差动电流互感器和差动保护装置。
互感器位于电动机的供电线路中,用于检测电动机的相电流。
它通过感应电流的变化,将电流信号转化为电压信号。
互感器通常由多个线圈组成,其中一部分连接在供电线路的进线侧,另一部分连接在出线侧。
当电动机正常运行时,进线侧和出线侧的电流应该相等,因此互感器的输出电压应该接近零。
差动保护装置比较互感器的输出电压,如果发现有较大的差异,就会发出故障信号,并采取适当的措施来切断供电。
差异可能是由于电动机内部的故障或线路短路引起的。
差动保护装置通常包括了灵敏性调节装置,用于调整差动保护的动作灵敏度。
差动保护可靠性较高,可以有效地保护电动机不受损坏。
然而,差动保护也有一些限制。
例如,在启动电动机或者母线电压发生偏差时,差动保护可能会误动作。
因此,在设计和配置差动保护装置时,需要考虑这些因素,并进行相应的调整和保护配置。
总之,电动机差动保护通过比较电动机的不同相电流来检测故障,并采取措施来切断电源,以保护电动机的安全运行。
线路差动原理

线路差动原理
差动保护是一种常见的电力系统保护方式,通过对线路上的电流进行比较,以检测和判定故障发生的位置,从而实现对电力系统的保护。
差动保护原理基于电流的差值,通常应用于发电机、变压器和输电线路等高压电气设备中。
差动保护系统包括一对互相对称的电流互感器,在正常运行时,这对电流互感器输出的电流应相等。
当系统中发生故障时,导致相应位置的电流变化,从而引发差动保护系统的动作。
差动保护系统中的电流互感器将被保护电路线路上的电流转换为相应的电压信号。
这些电压信号经过变换、滤波和放大等处理后,输入到差动保护继电器中。
差动保护继电器通过比较输入的电压信号,判定是否存在电流差异。
当存在差异时,差动保护继电器将产生动作信号,触发保护动作装置,从而切断故障电路,保护被保护设备。
差动保护的触发条件主要有两种情况,即零序电流和非零序电流的差异。
对于三相对称故障,通常会产生零序电流,而对于非对称故障,将会产生非零序电流。
差动保护系统通过检测这些电流的差异,实现对不同类型故障的判断和保护。
差动保护系统具有快速响应、高可靠性和全方位保护等特点,是电力系统中重要的保护方式之一。
然而,差动保护系统也存在一些问题,例如对互感器特性的要求较高,对系统的耦合影
响较大等。
因此,在实际应用中,需要综合考虑差动保护系统的特点和限制,确保其应用效果和可靠性。
线路差动保护保护配置和基本原理.

2M速率与64K速率的区别
• 功率=功率谱密度×带宽,带宽越宽,噪声功率 越大,2M速率接收灵敏度较低,因此传输距离较 短
实现差动保护的几个关键问题
通讯系统的时钟问题
误码与滑码 准确、迅速、不失真地传输信号是继电保护 装置对通讯系统的最高要求,除误码率水平要保 持在一个适当的水平外,对通讯系统的时钟也要 有合理的设计,这样才能避免滑码的产生。 滑码实际上是发送时钟与接收时钟不同步产 生的。
线路保护及通通信
云南电力研究院
2017年10月 功果桥
王荣泰
email:happywrt@
云南电力研究院
2017年10月 昆明
保护用光纤通道的构成
一、保护用光纤通道的连接形式 二、保护与通道的接口 三、2M速率与64K速率的区别
保护用光纤通道的构成 一、保护用光纤通道的连接形式 保护用光纤通道按连接形式可分为专用通道和 复用通道,专用通道指光纤保护装置单独占用光 缆的两根纤芯,而复用通道指保护信息按G.703同 向接口形式,以64Kbit/s的速率复接到PCM交换机 ,和其它信息复用后一起传输,或单独以2M/s的 速率复接到SDH的E1口,传送保护数据。
专用光纤的连接形式
保护机房
光缆的一根纤芯 光缆
保护机房
RCS-931
RCS-931
复接PCM机的连接方式
保护 机房 通信 机房
SDH网 PCM 交换机 PCM 交换机
通信 机房
保护 机房
RCS -931
MUX -64B
MUX -64B
RCS -931
保护用光纤通道的构成 二、保护与通道的接口 专用通道:保护的尾纤与光缆的保护专用 芯直接融接或通过光纤分配屏连接(方便旁代 线路)。 复用通道:保护的尾纤直接与各种接口装 置连接,通过接口装置转换为电信号与PCM机 或E1接口连接,与PCM连接使用屏蔽双绞线, 与E1接口采用同轴RCS -901
线路的差动保护课件

பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。
线路差动保护原理

线路差动保护原理
线路差动保护是电力系统中常用的一种保护方式,它主要用于对输电线路进行
保护,能够有效地检测和定位线路中的故障,保障电网的安全稳定运行。
下面将对线路差动保护的原理进行详细介绍。
首先,线路差动保护的原理是基于比较两端电流的差值来实现的。
在正常情况下,线路两端的电流是相等的,而一旦出现故障,导致线路某一段的电流发生变化,这种差异就会被差动保护系统所检测到。
差动保护系统会对两端电流进行比较,一旦发现差值超出设定的范围,就会判定为线路发生了故障,并进行相应的保护动作。
其次,线路差动保护系统通常由主保护和备用保护组成。
主保护是指在发生线
路故障时,首先进行动作的保护装置,它的动作速度较快,能够快速切除故障段,避免故障扩大。
备用保护则是作为主保护的补充,当主保护失效时,备用保护能够及时接替主保护的功能,保证线路的安全可靠运行。
另外,线路差动保护系统还具有灵敏度高、动作速度快、可靠性强等特点。
它
能够对线路的各种故障进行快速准确的判断,并采取相应的保护动作,有效地保护了电力系统的设备和人员的安全。
此外,线路差动保护系统还能够实现远程通信和智能化管理,提高了电力系统的运行效率和管理水平。
总的来说,线路差动保护是电力系统中一种重要的保护方式,它通过比较线路
两端的电流差值来实现对线路的保护,具有灵敏度高、动作速度快、可靠性强等特点,能够有效地保障电网的安全稳定运行。
随着电力系统的不断发展和完善,相信线路差动保护技术会更加成熟和先进,为电力系统的安全运行做出更大的贡献。
线路保护的配置和基本原理

线路保护的配置和基本原理
线路保护是电力系统中的一项重要技术,其配置和基本原理包括以下几个方面:
1. 保护配置:
a. 选择保护器:根据线路的特点和要求选择合适的保护器,常见的有过流保护器、距离保护器、差动保护器等。
b. 选择保护区域:确定需要保护的线路区域范围,一般是线路的起点和终点之间的区域。
c. 设定保护参数:配置保护器的动作参数,如过流保护器的额定电流、距离保护器的整定值等。
2. 基本原理:
a. 过电流保护:通过检测电流的大小来判断线路是否存在过电流故障,当电流超过设定值时,保护器会发出动作信号,切断故障部分。
b. 距离保护:通过测量线路的电气距离来判断故障的位置,当故障发生时,保护器会根据故障距离和设定值的比较结果决定是否动作。
c. 差动保护:通过比较线路两端的电流差异来判断是否存在故障,当差流超过设定值时,保护器会动作切断故障。
线路保护的基本原理是通过检测和判断线路的电流、电压等参数的异常情况来实现保护动作,及时切断故障,保护电力系统的安全运行。
不同类型的线路保护器
适用于不同类型的线路故障,通过合理配置和设置保护参数,可以提高电力系统的可靠性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RCS-900系列 纵联差动保护 N
差动保护特点
• 差动保护采用两侧差动继电器交换允许信号的 方式,安全性高。装置异常或TA断线,本侧的 起动元件和差动继电器可能动作,但对侧不会 向本侧发允许信号,从而保证差动保护不会误 动
差动保护特点 • 变化量差动继电器,由于只反映故障分量,不反映 负荷电流,因此灵敏度高,动作速度快。 • 零差保护引入了低制动系数、经电容电流补偿的稳 态相差动选相元件,灵敏度高,在长线经高阻接地 时也能选相跳闸; • 所有差动继电器的制动系数均为0.75,并采用了浮 动的制动门槛,抗TA饱和能力强
保护机房
保护机房
RCS -901
FOX40F
FOX40F
RCS -901
RCS901
FOX-40F
MUX64B
通信机房
PCM 交换机
保护机房
RCS901
FOX-40F
MUX64B
PCM 交换机
保护用光纤通道的构成 三、2M速率与64K速率的区别
1. 2M速率省去两侧PCM交换机设备,通信链路上减少了 中间环节,减少了传输时延。 2. 2M速率增加了传输带宽,可以传输更多保护信息。 –同后备保护一样,差动保护也采用24点计算,动作速度快 且安全稳定 –由于在传输采样值的同时也传输了相量值,通道误码时稳 态量差动不受数据窗的影响,动作速度几乎不受影响
差动保护特点 • 装置采用了经差流开放的电压起动元件,负荷 侧装置能正常起动 • 差动保护能自动适应系统运行方式的改变 • 装置能实测电容电流,根据差动电流验证线路 容抗整定是否合理
光纤电流差动保护对通道的要求
• 通讯通道在收发两个方向上的传输延时应保 证一样,同时单向通道延时不能超过15ms。 • 通道经各环节后,保护装置接收到的光信号 要满足保护装置的最低接收灵敏度。
保护定值的整定与容抗的整定
与差动相关的几个定值: 线路正序容抗、线路零序容抗:按实测值整定 ,没有实测值也可以按估算值整定,这个定值与 差动保护的门槛有关,也与“容抗整定出错” 异 常信号有关。 当实测的电容电流与通过零序正序容抗计算出 的电容电容相差比较大时,装置报“容抗整定出 错”异常信号
运行中的注意事项
线路外部短路
• 动作电流:
MI M
N I N
I I I 0 I CD I M N K K
• 制动电流:
I I I 2I I R I M N K K K
I K
• 因为 I CD I R 继电器不动。 • 凡是穿越性的电流不产生 动作电流,只产生制动电 流。
差动投入条件
对侧差动允许信号
满足差流方程
差动压板投入 CT断线 分相差动投入标志 零序差动投入标志 启动
电压开放标志
差动投入条件 对侧差动允许信号 电流差动保护必须收到对侧的差动允许信号才 能动作,这是防止TA断线的措施。TA断线时,断 线侧的起动元件和差动继电器可能动作,但对侧 的起动元件不会动作,不会向本侧发差动允许信 号,从而保证纵联差动保护不会误动。
1.经常记录通道状态中的数据,以便前后比较, 监视 通道的运行状态。 2.新程序在打印报告中增加了通道自检项,若装置 报通道异常时,将其打印出来以便日后分析问题 。 3.经常观察差动电流 通道双向延时相等是采样同步的前提; • 一侧“主机方式” 为1,另一侧必须为0,且“主机方式 ”设置同系统方式无关; • 两侧装置采样同步与外接电气量无关,只要两侧装置通 信正常,即能 保证采样同步; • 只有在装置上电或失步后,才需要测通道延时,测定延 时后,装置不再需要传输时间信息; • 从机时刻调整采样间隔,保证两侧装置采样时刻在允许 的误差范围内;装置实时监测采样时刻误差,若超出范 围,需退出差动保护,重新进行同步过程。
电容电流补偿 电容电流补偿主要应用于零序差动继电器, 有电容电流补偿可以提高经大过渡电阻故障时 保护的灵敏度。 电容电流补偿由下式计算得到:
I C
U M U M U M 0 U N U N U N 0 2X 2 X 2 X 2 X C1 C0 C1 C0
线路保护及通通信
云南电力研究院
2016年7月 功果桥
王荣泰
email:happywrt@
云南电力研究院
2016年7月 昆明
保护用光纤通道的构成
一、保护用光纤通道的连接形式 二、保护与通道的接口 三、2M速率与64K速率的区别
保护用光纤通道的构成 一、保护用光纤通道的连接形式 保护用光纤通道按连接形式可分为专用通道和 复用通道,专用通道指光纤保护装置单独占用光 缆的两根纤芯,而复用通道指保护信息按G.703同 向接口形式,以64Kbit/s的速率复接到PCM交换机 ,和其它信息复用后一起传输,或单独以2M/s的 速率复接到SDH的E1口,传送保护数据。
开关量的传送
远跳、远传1、远传2
• 保护装置采样得到远跳开入为高电平时,经过专门的互补 校验处理,作为开关量,连同电流采样数据及CRC校验码 等,打包为完整的一帧信息,通过数字通道,传送给对侧 保护装置。对侧装置每收到一帧信息,都要进行CRC校验 ,经过CRC校验后再单独对开关量进行互补校验。只有通 过上述校验后,并且经过连续三次确认后,才认为收到的 远跳信号是可靠的。收到经校验确认的远跳信号后,若整 定控制字“远跳受起动控制”整定为“0”,则无条件置三 跳出口,起动A、B、C三相出口跳闸继电器,同时闭锁重 合闸;若整定为“1”,则需本装置起动才出口。
2M速率与64K速率的区别
• 功率=功率谱密度×带宽,带宽越宽,噪声功率 越大,2M速率接收灵敏度较低,因此传输距离较 短
实现差动保护的几个关键问题
通讯系统的时钟问题
误码与滑码 准确、迅速、不失真地传输信号是继电保护 装置对通讯系统的最高要求,除误码率水平要保 持在一个适当的水平外,对通讯系统的时钟也要 有合理的设计,这样才能避免滑码的产生。 滑码实际上是发送时钟与接收时钟不同步产 生的。
M I M
I N N
IC
⑴ 电容电流的影响 电容电流是从线路内部流出的 电流,因此它构成动作电流。 由于负荷电流是穿越性的电流, 它只产生制动电流。所以在空 载或轻载下电容电流最容易造 成保护误动。 解决方法: ① 用起动电流定值躲本线路 电容电流。 ②起动电流定值躲不了电容电 流时,进行电容电流补偿。
专用光纤的连接形式
保护机房
光缆的一根纤芯 光缆
保护机房
RCS-931
RCS-931
复接PCM机的连接方式
保护 机房 通信 机房
SDH网 PCM 交换机 PCM 交换机
通信 机房
保护 机房
RCS -931
MUX -64B
MUX -64B
RCS -931
保护用光纤通道的构成 二、保护与通道的接口 专用通道:保护的尾纤与光缆的保护专用 芯直接融接或通过光纤分配屏连接(方便旁代 线路)。 复用通道:保护的尾纤直接与各种接口装 置连接,通过接口装置转换为电信号与PCM机 或E1接口连接,与PCM连接使用屏蔽双绞线, 与E1接口采用同轴电缆连接。
采样同步 电流差动保护在算法上要求参加比较的各端电 流量必须同步采样或采样同步化处理得到,这是 实现差动保护的关键所在。目前常见的同步方法 主要有三类: 1.基于数据通道的同步方法 2.基于参考向量的同步方法 3.基于GPS的同步方法
采样同步 基于数据通道的同步方法主要有: 1. 采样时刻调整法 2. 采样数据修正法 3. 时钟校正法 其共同特点是均假定两个方向通道传输延时相等 ,若接收与发送的路由不同或通道切换造成两个 方向通道传输延时不相等时,均会导致保护测量 的延时与实际不符,影响差动保护的正确动作。
远跳、远传1、远传2
YC1-1 +24V(104) 开入 远传1(627) 开入 远传2(628) YC2-1 918 913 909 YC2-2 915 917 914 910 YC1-2 916
光 发
光纤
光 收
光 收
64Kb/s
光 发
远传1 (开出)
远传2 (开出)
RCS-900 系列纵联 差动保护 M
保护定值的整定与容抗的整定 与差动相关的几个定值: TA变比系数:按电流一次额定值大的一侧整定 为1,小的一侧整定为本侧电流一次额定值与对侧 电流一次额定值的比值,与二次额定值没有关系 。 差动电流高定值:按不小于4倍额定电容电流 整定,一般不小于0.2In。
保护定值的整定与容抗的整定
与差动相关的几个定值: 差动电流低定值:按不小于1.5倍额定电容电 流整定,一般不小于0.1In ,要考虑大于最大可 能过渡电阻情况下的短路电流。 TA断线差流定值:当TA断线不闭锁差动时,差 动保护的动作值。
差动投入条件 什么情况下发对侧差动允许信号? 1. 装置起动且有差流 2. 有TWJ开入且有差流 3. 低电压且有差流(不能有PTDX)
M
IM
IN
N
• 以母线流向被保护线路 方向为正方向。 • 动作电流(差动电流)为:
I I CD I M N
ICD
• 制动电流为:
I I R I M N
M I M
I N N
I K
⑵ 重负荷情况下线路内部经高 电阻接地短路,灵敏度可能不 够。 负荷电流是穿越性的电流, 它只产生制动电流而不产生动 作电流。 经高电阻短路,短路电流 IK 很小,因此动作电流很小 因而灵敏度可能不够。 解决方法: 采用工频变化量比率差动继 电器和零序差动继电器
各种接口设备 常用的接口设备有: MUX-64B:用于64Kbit/S传输速率的光纤差动保 护装置与PCM机复接 MUX-2M:用于2Mbit/S传输速率的光纤差动保护 装置与SDH设备的E1接口复接 FOX40F/ FOX41A :用于纵联距离或方向保护设 备利用光纤通道传输信号,还能与以上两种设备 与通讯设备实现复接