2018-2020年广西中考数学试题分类(10)——圆

合集下载

推荐-2019年中考数学复习第五章圆5.2与圆有关的计算试卷部分课件(2)

推荐-2019年中考数学复习第五章圆5.2与圆有关的计算试卷部分课件(2)

解析 设该半圆的半径长为x, 根据题意,得2πx÷2=2π×5, 解得x=10.
7.(2015贵港,17,3分)如图,已知圆锥的底面☉O的直径BC=6,高OA=4,则该圆锥的侧面展开图的
面积为
.
答案 15π
解析 ∵OA⊥BC,∴∠AOB=90°.在Rt△AOB中,OA=4,OB= 1 BC=3,∴AB= =O A2 OB2
备用图
解析 (1)设∠AOP=n°,则 n =1236π,得n=90,即∠AOP=90°.
180
段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是
.
答案
8
解析 设BF⊥AO于F,CG⊥BO于G.
∵ED是☉O的切线,∴∠D=90°.
又∠E=45°,∴在Rt△ODE中,∠EOD=90°-45°=45°.
∵B,C是 B ︵D的三等分点,∴ A=︵ B =B ︵C .

CD
∴∠AOB=∠BOC=∠COD=45°.
方法总结 求弧长一般需要两个条件,一个是圆心角度数,一个是圆半径.常用连接半径的方 法,构造等腰三角形,或加上弦心距,构造直角三角形求解.
2.(2018四川成都,9,3分)如图,在▱ABCD中,∠B=60°,☉C的半径为3,则图中阴影部分的面积是 ( )
A.π B.2π C.3π D.6π 答案 C 在▱ABCD中,∠B=60°,∴∠C=120°. ∵☉C的半径为3,
答案 A 设扇形的弧长为l,半径为r,则l=圆锥的底面周长=2π×10=20π cm,∴扇形的面积= 1 lr
2
= 1 ×20π×24=240π cm2,故选A.
2
5.(2018梧州,17,3分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此

2020年中考数学一轮复习基础考点及题型专题23 圆(解析版)

2020年中考数学一轮复习基础考点及题型专题23 圆(解析版)

专题23 圆考点总结【思维导图】【知识要点】知识点一与圆有关的概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或等弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧, 小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距. 弦心距、半径、弦长的关系:(考点)圆心角概念:顶点在圆心的角叫做圆心角.圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 三角形的外接圆1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. 2)三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.3)锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).圆内接四边形概念:如果一个四边形的所有顶点都在一个圆上,那么这个四边形叫做圆内接四边形。

中考数学常考的圆的六种题型

中考数学常考的圆的六种题型

中考题中常考的圆的六种解题策略第一种场景:遇到弦。

轴对称性是圆的基本性质,垂径定理及其推论就是根据圆的轴对称性总结出来的,它们是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据.遇弦作弦心距是圆中常用的辅助线.当圆的题目中出现弦的知识点的时候,我们需要迅速联想到弦相关的定理和一些性质,比如垂径定理、弦心距、勾股定理等.例1.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,且PD∥CB,弦PB与CD交于点F(1)求证:FC=FB;(2)若CD=24,BE=8,求⊙O的直径.【分析】(1)根据两平行弦所夹的弧相等,得到弧PC=弧BD,然后由等弧所对的圆周角相等及等角对等边,可以证明FC=FB.(2)连接OC,在Rt△OCE中用勾股定理计算出半径,然后求出直径.【解答】(1)证明:∵PD∥CB,∴弧PC=弧BD,∴∠FBC=∠FCB,∴FC=FB.(2)解:如图:连接OC,设圆的半径为r,在Rt△OCE中,OC=r,OE=r﹣8,CE=12,∴r²=(r﹣8)²+12²,解方程得:r=13.所以⊙O的直径为26.【点评】本题考查的是垂径定理,(1)题根据平行弦所夹的弧相等,等弧所对的圆周角相等,等角对等边,可以证明两条线段相等.(2)题根据垂径定理得到CE=12,然后在直角三角形中用勾股定理求出半径,再确定圆的直径.当出现直径的条件时,我们也要快速联想圆心角、圆周角等性质,进而构造等腰三角形、直角三角形等图形,从而求解后面的问题。

例2.如图,在⊙O中,将弧BC沿弦BC所在直线折叠,折叠后的弧与直径AB相交于点D,连接CD.(1)若点D恰好与点O重合,则∠ABC=______ °;(2)延长CD交⊙O于点M,连接BM.猜想∠ABC与∠ABM的数量关系,并说明理由.【分析】(1)根据折叠的性质和圆周角定理解答即可;(2)作点D关于BC的对称点D',利用对称的性质和圆周角定理解答.【解答】(1)∵由折叠可知:∠OBC=∠CBD,∵点D恰好与点O重合,∴∠COD=60°,∴∠ABC=∠OBC=12∠COD=30°;故答案为:30;(2)∠ABM=2∠ABC,理由如下:作点D关于BC的对称点D',连接CD',BD',∵对称,∴∠DBC=∠D'BC,DC=D'C,连接CO,D'O,AC,∴∠AOC=2∠ABC,∠D'OC=2∠D'BC,∴∠AOC=∠D'OC,∴AC=D'C,∵DC=D'C,∴AC=DC,∴∠CAD=∠CDA,∵AB是直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,设∠ABC=α,则∠CAD=∠CDA=90°-α,∴∠ACD=180°﹣∠CAD﹣∠CDA=2α,即∠ACD=2∠ABC,∵∠ABM=∠ACD,∴∠ABM=2∠ABC.切线的定义是:一直线若与一圆有且只有一个交点,那么这条直线就是圆的切线。

【2018中考数学真题+分类汇编】二期32正多边形与圆试题含解析3113【2018数学中考真题分项汇编系列】

【2018中考数学真题+分类汇编】二期32正多边形与圆试题含解析3113【2018数学中考真题分项汇编系列】

正多边形与圆一.选择题1. (2018•资阳•3分)如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2 C.2D.()a2【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=(圆的面积﹣正六边形的面积)×,即可得出结果.【解答】解:∵正六边形的边长为a,∴⊙O的半径为a,∴⊙O的面积为π×a2=πa2,∵空白正六边形为六个边长为a的正三角形,∴每个三角形面积为×a×a×sin60°=a2,∴正六边形面积为a2,∴阴影面积为(πa2﹣a2)×=(﹣)a2,故选:B.【点评】本题主要考查了正多边形和圆的面积公式,注意到阴影面积=(圆的面积﹣正六边形的面积)×是解答此题的关键.2. (2018•湖州•3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. rB. (1+)rC. (1+)rD. r【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG=r,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.3. (2018·黑龙江大庆·3分)一个正n边形的每一个外角都是36°,则n=()A.7 B.8 C.9 D.10【分析】由多边形的外角和为360°结合每个外角的度数,即可求出n值,此题得解.【解答】解:∵一个正n边形的每一个外角都是36°,∴n=360°÷36°=10.故选:D.二.填空题1.(2018•山东烟台市•3分)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2= :2 .【分析】根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.【解答】解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,OM=∵正六边形中心角为60°∴∠MON=120°∴扇形MON的弧长为: a则r1= a同理:扇形DEF的弧长为:则r2=r1:r2=故答案为::2【点评】本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.2. (2018•广西玉林•3分)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= 9+4.【分析】设△AFB的内切圆的半径为r,过A作AM⊥BF于M,连接O1F、O1A.O1B,解直角三角形求出AM、FM、BM,根据三角形的面积求出r,即可求出答案.【解答】解:过A作AM⊥BF于M,连接O1F、O1A.O1B,∵六边形ABCDEF是正六边形,∴∠A==120°,AF=AB,∴∠AFB=∠ABF=(180°﹣120°)=30°,∴△AFB边BF上的高AM=AF=(6+4)=3+2,FM=BM=AM=3+6,∴BF=3+6+3+6=12+6,设△AFB的内切圆的半径为r,∵S △AFB=S+S+S,∴×(3+2)×(3+6)=×r+×r+×(12+6)×r,解得:r=,即O1M=r=,∴O1O2=2×+6+4=9+4,故答案为:9+4.。

2018中考数学试题双向细目表

2018中考数学试题双向细目表

选择题
3
8

一元二次方程判别式

选择题
3
5

方程应用题

填空题
3
25(1)

解由两个一元一次不等式组成的不等式组及解集的表示方法

解答题
7
25(2)

数与代数
函数
与一元二次函数相关的实际问题

解答题
6
23(2)

二次函数及表达式,二次函数的图象及性质的综合运用

解答题
13
26

反比例函数与面积

填空题

选择题
3
6

旋转
利用旋转解决角度

填空题
3
5

轴对称
利用轴对称

选择题
3
2

图形的变换平移与旋转
填空题
3
17

统计与概率
统计
分析数据、方差

解答题
3
22

条形统计图、扇形统计图综合应用

选择题
8
7

概率
求概率问题

选择题
3
8

填空题
3
15

本试卷满分为120分,易:中:难=6:3:1 难度系数0.6
考察
水平
内容
了解
理解
掌握
题型
分值
题号
难度

与代数
有理数
有理数的绝对值

选择题
3
1

代数式

2018年中考数学试题分项版解析汇编:专题14+几何三大变换问题(第01期)(广西专版)

2018年中考数学试题分项版解析汇编:专题14+几何三大变换问题(第01期)(广西专版)

一、选择题1.(2018南宁)(3分)如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N 是弧MB的中点,P是直径AB上的一动点.若MN=1,则△PMN周长的最小值为()A.4B.5C.6D.72.(2018来宾)(3分)如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,﹣1) B.(2,3) C.(0,1) D.(4,1)3.(2018钦州)(3分)下列图形中,是轴对称图形的是()A.B.C.D.4.(2018钦州)(3分)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5) B.(﹣8,5) C.(﹣8,﹣1) D.(2,﹣1)5.( 2018梧州)(3分)在下列图形中,是轴对称图形的是()A.B.C.D.6.(2018玉林防城港)(3分)如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则AEEB等于()A B.2C.1.5D7.(2018北海)(3分)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A 与点D重合,OD与BC交于点E,则点D的坐标是()A.(4,8) B.(5,8) C.(245,325) D.(225,365)8.(2018贵港)(3分)在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限。

[中考12年]福州市2018-2019年中考数学试题分类解析专题11:圆

[中考12年]福州市2018-2019年中考数学试题分类解析专题11:圆

1. (2001年福建福州4分) 如果两个圆只有两条公切线,那么这两个圆的位置关系是【 】A. 外离B. 外切C. 相交D. 内切【答案】C 。

【考点】圆与圆的位置关系。

【分析】两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线。

因此,两圆相交时才有2条公切线。

故选C 。

2. (2002年福建福州4分)如图:PA 切⊙O 于点A ,PBC 是⊙O 的一条割线,且PA =23,PB =BC ,那么BC 的长是【 】(A )3(B )23(C )3(D )23【答案】A 。

【考点】切割线定理。

【分析】∵PA 切⊙O 于点A ,PBC 是⊙O 的一条割线,∴2PA PB PC =⋅(或连接AB ,AC ,由△PAB∽△PCA 得到)。

∵PA =PB =BC ,∴(2BC 2BC =⋅,解得BC =3。

故选A 。

3. (2003年福建福州4分)如图,⊙Ο的直径AB 垂直于弦CD ,垂足为H ,点 P 是A C 上一点(点P 不与A 、C 两点重合)。

连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F 。

给出下列四个结论:(1)2CH AH BH =⋅;(2)AD=AC ;(3)2AD DF DP =⋅;(4)∠EPC=∠APD。

其中正确的个数是【】(A) 1 (B) 2 (C) 3 (D) 44. (2004年福建福州4分)如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、,A上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;Q分别是AM BM②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是【】A、①②③B、①③⑤C、④⑤D、①②⑤【答案】B。

5. (2005年福建福州大纲卷3分)一个底面半径为5cm,母线长为16cm的圆锥,它的侧面展开图的面积是【】A.80πcm2 B.40πcm2 C.80cm2 D.40cm2【答案】A。

2020年广西桂林中考数学试题及参考答案(word解析版)

2020年广西桂林中考数学试题及参考答案(word解析版)

2020年桂林市初中学业水平考试试卷数学(全卷满分120分,考试用时120分钟)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数2,1,﹣1,0中,最小的数是()A.2 B.1 C.﹣1 D.02.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40° B.50° C.60° D.70°3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命 B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率 D.调查全班同学的身高4.下面四个几何体中,左视图为圆的是()A. B. C. D.5.若=0,则x的值是()A.﹣1 B.0 C.1 D.26.因式分解a2﹣4的结果是()A.(a+2)(a﹣2) B.(a﹣2)2 C.(a+2)2 D.a(a﹣2)7.下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6 D.(2x)2=2x28.直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2 B.﹣1 C.1 D.29.不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60° B.65° C.70° D.75°11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110 C.x(x+1)=110 D.x(x﹣1)=11012.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.π B.π C.2π D.2π二、填空题(本大题共6小题,每小题3分,共18分)13.2020的相反数是.14.计算:ab•(a+1)=.15.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是.16.一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.17.反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.18.如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.20.(6分)解二元一次方程组:.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗为什么(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.答案与解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数2,1,﹣1,0中,最小的数是()A.2 B.1 C.﹣1 D.0【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣1<0<1<2,∴在2,1,﹣1,0这四个数中,最小的数是﹣1.故选:C.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40° B.50° C.60° D.70°【知识考点】平行线的性质.【思路分析】根据平行线的性质和∠1的度数,可以得到∠2的度数,本题得以解决.【解题过程】解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.【总结归纳】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命 B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率 D.调查全班同学的身高【知识考点】全面调查与抽样调查.【思路分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解题过程】解:A、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意;B、调查漓江流域水质情况,应当采用抽样调查的方式,故本选项不合题意;C、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意.D、调查全班同学的身高,应当采用全面调查,故本选项符合题意.故选:D.【总结归纳】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下面四个几何体中,左视图为圆的是()A. B. C. D.【知识考点】简单几何体的三视图.【思路分析】根据四个几何体的左视图进行判断即可.【解题过程】解:下面四个几何体中,A的左视图为矩形;B的左视图为三角形;C的左视图为矩形;D的左视图为圆.故选:D.【总结归纳】本题考查了简单几何体的三视图,解决本题的关键是掌握几何体的三视图.5.若=0,则x的值是()A.﹣1 B.0 C.1 D.2【知识考点】算术平方根.【思路分析】利用算术平方根性质确定出x的值即可.【解题过程】解:∵=0,∴x﹣1=0,解得:x=1,则x的值是1.故选:C.【总结归纳】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.6.因式分解a2﹣4的结果是()A.(a+2)(a﹣2) B.(a﹣2)2 C.(a+2)2 D.a(a﹣2)【知识考点】因式分解﹣运用公式法.【思路分析】利用平方差公式进行分解即可.【解题过程】解:原式=(a+2)(a﹣2),故选:A.【总结归纳】此题主要考查了公式法分解因式,关键是掌握平方差公式a2﹣b2=(a+b)(a﹣b).7.下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6 D.(2x)2=2x2【知识考点】合并同类项;幂的乘方与积的乘方.【思路分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.x•x=x2,故本选项不合题意;B.x+x=2x,故本选项符合题意;C.(x3)3=x9,故本选项不合题意;D.(2x)2=4x2,故本选项不合题意.故选:B.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.8.直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2 B.﹣1 C.1 D.2【知识考点】一次函数图象上点的坐标特征.【思路分析】由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k值.【解题过程】解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.【总结归纳】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.9.不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个【知识考点】一元一次不等式组的整数解.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解题过程】解:解不等式x﹣1>0,得:x>1,解不等式5﹣x≥1,得:x≤4,则不等式组的解集为1<x≤4,所以不等式组的整数解有2、3、4这3个,故选:C.【总结归纳】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60° B.65° C.70° D.75°【知识考点】切线的性质.【思路分析】由“AC与⊙O相切于点A“得出AC⊥OA,根据等边对等角得出∠OAB=∠OBA.求出∠OAC及∠OAB即可解决问题.【解题过程】解:∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB==25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.【总结归纳】本题考查切线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110 C.x(x+1)=110 D.x(x﹣1)=110【知识考点】由实际问题抽象出一元二次方程.【思路分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行两场比赛,共要比赛110场,可列出方程.【解题过程】解:设有x个队参赛,则x(x﹣1)=110.故选:D.【总结归纳】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.12.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.π B.π C.2π D.2π【知识考点】勾股定理;垂径定理;圆心角、弧、弦的关系;轨迹;旋转的性质.【思路分析】根据已知的半径为5,所对的弦AB长为8,点P是的中点,利用垂径定理可得AC=4,PO⊥AB,再根据勾股定理可得AP的长,利用弧长公式即可求出点P的运动路径长.【解题过程】解:如图,设的圆心为O,连接OP,OA,AP',AP,AB'∵圆O半径为5,所对的弦AB长为8,点P是的中点,根据垂径定理,得AC=AB=4,PO⊥AB,OC==3,∴PC=OP﹣OC=5﹣3=2,∴AP==2,∵将绕点A逆时针旋转90°后得到,∴∠PAP′=∠BAB′=90°,∴L PP′==π.则在该旋转过程中,点P的运动路径长是π.故选:B.【总结归纳】本题考查了轨迹、垂径定理、勾股定理、圆心角、弧、弦的关系、弧长计算、旋转的性质,解决本题的关键是综合运用以上知识.二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.2020的相反数是.【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解题过程】解:2020的相反数是:﹣2020.故答案为:﹣2020.【总结归纳】本题考查相反数.熟练掌握相反数的求法是解题的关键.14.计算:ab•(a+1)=.【知识考点】单项式乘多项式.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:原式=a2b+ab,故答案为:a2b+ab.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.15.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是.【知识考点】勾股定理;锐角三角函数的定义.【思路分析】根据余弦的定义解答即可.【解题过程】解:在Rt△ABC中,cosA==,故答案为:.【总结归纳】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.16.一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.【知识考点】几何体的展开图;概率公式.【思路分析】根据概率公式解答就可求出任选该正方体的一面出现“我”字的概率.【解题过程】解:∵共有六个字,“我”字有2个,∴P(“我”)==.故答案为:.【总结归纳】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x <0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.【知识考点】正比例函数的性质;反比例函数的图象;反比例函数的性质;反比例函数图象上点的坐标特征;轴对称的性质.【思路分析】观察反比例函数y=(x<0)的图象可得,图象过第二象限,然后根据反比例函数的图象和性质即可进行判断.【解题过程】解:观察反比例函数y=(x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.【总结归纳】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质、轴对称的性质,解决本题的关键是掌握反比例函数的性质.18.如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.【知识考点】等腰直角三角形;相似三角形的判定与性质.【思路分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明△PAT∽△BAP,推出==,推出PT=PB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【解题过程】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=AT•AB,∴=,∵∠PAT=∠PAB,∴△PAT∽△BAP,∴==,∴PT=PB,∴PB+CP=CP+PT,∵PC+PT≥TC,在Rt△ACT中,∵∠CAT=90°,AT=1,AC=4,∴CT==,∴PB+PC≥,∴PB+PC的最小值为.故答案为.【总结归纳】本题考查等腰直角三角形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.【知识考点】实数的运算;零指数幂;特殊角的三角函数值.【思路分析】原式利用零指数幂、乘方运算法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解题过程】解:原式=1+4+﹣=5.【总结归纳】此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)解二元一次方程组:.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解题过程】解:①+②得:6x=6,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.【知识考点】作图﹣平移变换;作图﹣旋转变换.【思路分析】(1)依据平移的方向和距离,即可得到平移后的△A1B1C1;(2)依据△ABC绕原点O旋转180°,即可画出旋转后的△A2B2C2;(3)依据对称点连线的中点的位置,即可得到对称中心的坐标.【解题过程】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)由图可得,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.故答案为:﹣2,0.【总结归纳】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗为什么(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.【知识考点】用样本估计总体;条形统计图;中位数.【思路分析】(1)由材料1中的统计图中的信息即可得到结论;(2)由材料1中的统计图的信息即可得到结论;(3)根据统计图中的信息即可得到结论;(4)根据题意列式计算即可.【解题过程】解:(1)由材料1中的统计图可得:2018年,全国快递业务量是亿件,比2017年增长了%;(2)由材料1中的统计图可得:2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)不赞同,理由:由图1中的信息可得,2016﹣2019年全国快递业务量增长速度逐年放缓,但是快递业务量却逐年增加;(4)×(1+50%)=(亿件),答:2020年的快递业务量为亿件.故答案为:,,.【总结归纳】本题考查了条形统计图,中位数的定义,正确的理解题意是解题的关键.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质.【思路分析】(1)由SAS证明△ABE≌△ADF即可;(2)证△ABD是等边三角形,得出BE⊥AD,求出AD即可.【解题过程】(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.【总结归纳】本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的性质是解题的关键.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋【知识考点】分式方程的应用;一元一次不等式的应用.【思路分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.【解题过程】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.答:每副围棋18元,则每副象棋10元;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意,得18m+10(40﹣m)≤600.解得m≤25.故m最大值是25.答:该校最多可再购买25副围棋.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.【知识考点】圆的综合题.【思路分析】(1)利用直角三角形斜边的中线等于斜边的一半,判断出OA=OB=OC=OD,即可得出结论;(2)利用等弧所对的圆周角相等,即可得出结论;(3)先判断出△DEF∽△BDF,得出DF2=BF•EF,再利用勾股定理得出OD2+OF2=DF2,即可得出结论.【解题过程】证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,∴OC=OA=OB,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,∴DF2=BF•EF,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.【总结归纳】此题是圆的综合题,主要考查了四点共圆的判断方法,相似三角形的判定和性质,直角三角形斜边的中线等于斜边的一半的性质,等腰三角形的判定和性质,勾股定理,三角形内角和定理,判断出∠BDF=∠AED是解本题的关键.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.【知识考点】二次函数综合题.【思路分析】(1)将点C坐标代入抛物线解析式中,即可得出结论;(2)分三种情况:直接利用等腰三角形的性质,即可得出结论;(3)先判断出△PQE≌△P'Q'E(AAS),得出PQ=P'Q',EQ=EQ',进而得出P'Q'=n,EQ'=QE =m+2,确定出点P'(n﹣2,2+m),将点P'的坐标代入直线AD的解析式中,和点P代入抛物线解析式中,联立方程组,求解即可得出结论.【解题过程】解:(1)∵抛物线y=a(x+6)(x﹣2)过点C(0,2),∴2=a(0+6)(0﹣2),∴a=﹣,∴抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴抛物线的对称轴为直线x=﹣2;针对于抛物线的解析式为y=﹣(x+6)(x﹣2),令y=0,则﹣(x+6)(x﹣2)=0,∴x=2或x=﹣6,∴A(﹣6,0);(2)如图1,由(1)知,抛物线的对称轴为x=﹣2,∴E(﹣2,0),∵C(0,2),∴OC=OE=2,∴CE=OC=2,∠CED=45°,∵△CME是等腰三角形,∴①当ME=MC时,∴∠ECM=∠CED=45°,∴∠CME=90°,∴M(﹣2,2),②当CE=CM时,∴MM1=CM=2,∴EM1=4,∴M1(﹣2,4),③当EM=CE时,∴EM2=EM3=2,∴M2(﹣2,﹣2),M3(﹣2,2),即满足条件的点M的坐标为(﹣2,2)或(﹣2,4)或(﹣2,2)或(﹣2,﹣2);(3)如图2,由(1)知,抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴D(﹣2,),令y=0,则(x+6)(x﹣2)=0,∴x=﹣6或x=2,∴点A(﹣6,0),∴直线AD的解析式为y=x+4,过点P作PQ⊥x轴于Q,过点P'作P'Q'⊥DE于Q',∴∠EQ'P'=∠EQP=90°,由(2)知,∠CED=∠CEB=45°,由折叠知,EP'=EP,∠CEP'=∠CEP,∴△PQE≌△P'Q'E(AAS),∴PQ=P'Q',EQ=EQ',设点P(m,n),∴OQ=m,PQ=n,∴P'Q'=n,EQ'=QE=m+2,∴点P'(n﹣2,2+m),∵点P'在直线AD上,∴2+m=(n﹣2)+4①,∵点P在抛物线上,∴n=﹣(m+6)(m﹣2)②,联立①②解得,m=或m=,即点P的横坐标为或.【总结归纳】此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,全等三角形的判定和性质,用分类讨论的思想解决问题是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2020年广西中考数学试题分类(10)——圆 一.垂径定理(共1小题) 1.(2019•梧州)如图,在半径为√13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )

A.2√6 B.2√10 C.2√11 D.4√3 二.垂径定理的应用(共2小题) 2.(2019•广西)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为 寸.

3.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是 cm.

三.圆周角定理(共7小题) 4.(2019•柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是( )

A.∠B B.∠C C.∠DEB D.∠D 5.(2019•贵港)如图,AD是⊙O的直径,𝐴𝐴̂=𝐴𝐴̂,若∠AOB=40°,则圆周角∠BPC的度数是( )

A.40° B.50° C.60° D.70° 6.(2018•河池)如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为( ) A.20° B.25° C.50° D.100° 7.(2018•柳州)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C的度数为( )

A.84° B.60° C.36° D.24° 8.(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是( )

A.24° B.28° C.33° D.48° 9.(2020•河池)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2= °.

10.(2018•梧州)如图,已知在⊙O中,半径OA=√2,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO= 度.

四.三角形的外接圆与外心(共1小题) 11.(2019•广西)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连接BD. (1)求证:∠BAD=∠CBD; (2)若∠AEB=125°,求𝐴𝐴̂的长(结果保留π). 五.切线的性质(共7小题) 12.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是( )

A.60° B.65° C.70° D.75° 13.(2019•玉林)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )

A.5 B.6 C.7 D.8 14.(2019•贺州)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=√3OD,AB=12,CD的长是( )

A.2√3 B.2 C.3√3 D.4√3 15.(2018•河池)如图,等边△ABC的边长为2,⊙A的半径为1,D是BC上的动点,DE与⊙A相切于E,DE的最小值是( )

A.1 B.√2 C.√3 D.2 16.(2019•玉林)如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD. (1)求证:EF是△CDB的中位线; (2)求EF的长. 17.(2019•河池)如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F. (1)若AE=DC,∠E=∠BCD,求证:DE=BC; (2)若OB=2,AB=BD=DA,∠F=45°,求CF的长.

18.(2019•贺州)如图,BD是⊙O的直径,弦BC与OA相交于点E,AF与⊙O相切于点A,交DB的延长线于点F,∠F=30°,∠BAC=120°,BC=8. (1)求∠ADB的度数; (2)求AC的长度.

六.切线的判定与性质(共3小题) 19.(2020•河池)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是𝐴𝐴̂的

中点,EF∥BC,交OC的延长线于点F. (1)求证:EF是⊙O的切线; (2)CG∥OD,交AB于点G,求CG的长.

20.(2020•玉林)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC. (1)求证:EF是⊙O的切线; (2)若D是OA的中点,AB=4,求CF的长. 21.(2019•贵港)如图,在矩形ABCD中,以BC边为直径作半圆O,OE⊥OA交CD边于点E,对角线AC与半圆O的另一个交点为P,连接AE. (1)求证:AE是半圆O的切线; (2)若PA=2,PC=4,求AE的长.

七.切线长定理(共1小题) 22.(2019•河池)如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P= °.

八.正多边形和圆(共4小题) 23.(2019•河池)如图,在正六边形ABCDEF中,AC=2√3,则它的边长是( )

A.1 B.√2 C.√3 D.2 24.(2020•玉林)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是 .

25.(2019•柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为 . 26.(2018•玉林)如图,正六边形ABCDEF的边长是6+4√3,点O1,O2分别是△ABF,△CDE的内心,则O1O2= . 九.扇形面积的计算(共4小题) 27.(2018•南宁)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )

A.𝐴+√3 B.𝐴−√3 C.2𝐴−√3 D.2𝐴−2√3 28.(2019•梧州)如图,已知半径为1的⊙O上有三点A、B、C,OC与AB交于点D,∠ADO=85°,∠CAB=20°,则阴影部分的扇形OAC面积是 .

29.(2018•百色)如图,把腰长为8的等腰直角三角板OAB的一直角边OA放在直线l上,按顺时针方向在l上转动两次,使得它的斜边转到l上,则直角边OA两次转动所扫过的面积为 .

30.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为 (结果保留π).

一十.圆锥的计算(共3小题) 31.(2019•贺州)已知圆锥的底面半径是1,高是√15,则该圆锥的侧面展开图的圆心角是 度. 32.(2019•贵港)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2√3,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为 . 33.(2018•梧州)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是 .

一十一.圆的综合题(共4小题) 34.(2020•桂林)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E. (1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上; (2)求证:CD平分∠ACB; (3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.

35.(2020•广西)如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B. (1)求证:AP是⊙O的切线; (2)连接AB交OP于点F,求证:△FAD∽△DAE;

(3)若tan∠OAF=12,求𝐴𝐴𝐴𝐴的值.

36.(2019•桂林)如图,BM是以AB为直径的⊙O的切线,B为切点,BC平分∠ABM,弦CD交AB于点E,DE=OE. (1)求证:△ACB是等腰直角三角形; (2)求证:OA2=OE•DC; (3)求tan∠ACD的值.

37.(2019•柳州)如图,AB是⊙O的直径,弦CD⊥AB于点E,点F是⊙O上一点,且𝐴𝐴̂=𝐴𝐴̂,连接FB,

FD,FD交AB于点N. (1)若AE=1,CD=6,求⊙O的半径; (2)求证:△BNF为等腰三角形; (3)连接FC并延长,交BA的延长线于点P,过点D作⊙O的切线,交BA的延长线于点M.求证:ON•OP=OE•OM. 2018-2020年广西中考数学试题分类(10)——圆 参考答案与试题解析 一.垂径定理(共1小题)

1.【解答】解:过点O作OF⊥CD于点F,OG⊥AB于G,连接OB、OD、OE,如图所示:

则DF=CF,AG=BG=12AB=3,

∴EG=AG﹣AE=2, 在Rt△BOG中,OG=√𝐴𝐴2−𝐴𝐴2=√13−9=2,

∴EG=OG, ∴△EOG是等腰直角三角形, ∴∠OEG=45°,OE=√2OG=2√2, ∵∠DEB=75°, ∴∠OEF=30°,

∴OF=12OE=√2,

在Rt△ODF中,DF=√𝐴𝐴2−𝐴𝐴2=√13−2=√11,

∴CD=2DF=2√11; 故选:C. 二.垂径定理的应用(共2小题) 2.【解答】解:设⊙O的半径为r. 在Rt△ADO中,AD=5寸,OD=r﹣1,OA=r, 则有r2=52+(r﹣1)2, 解得r=13寸, ∴⊙O的直径为26寸, 故答案为:26.

3.【解答】解:如图, 记圆的圆心为O,连接OB,OC交AB于D, ∴OC⊥AB,BD=12AB,

由图知,AB=16﹣4=12cm,CD=2cm, ∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r, 在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,

相关文档
最新文档