射频与微波电路设计低噪声放大器设计
射频低噪声放大器电路设计详解

射频低噪声放大器电路设计详解射频LNA 设计要求:低噪声放大器(LNA)作为射频信号传输链路的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为高性能射频接收电路的第一级LNA 的设计必须满足:(1)较高的线性度以抑制干扰和防止灵敏度下降;(2)足够高的增益,使其可以抑制后续级模块的噪声;(3)与输入输出阻抗的匹配,通常为50Ω;(4)尽可能低的功耗,这是无线通信设备的发展趋势所要求的。
InducTIve-degenerate cascode 结构是射频LNA 设计中使用比较多的结构之一,因为这种结构能够增加LNA 的增益,降低噪声系数,同时增加输入级和输出级之间的隔离度,提高稳定性。
InducTIve-degenerate cascode 结构在输入级MOS 管的栅极和源极分别引入两个电感Lg 和Ls,通过选择适当的电感值,使得输入回路在电路的工作频率附近产生谐振,从而抵消掉输入阻抗的虚部。
由分析可知应用InducTIve-degenerate cascode 结构输入阻抗得到一个50Ω的实部,但是这个实部并不是真正的电阻,因而不会产生噪声,所以很适合作为射频LNA 的输入极。
高稳定度的LNAcascode 结构在射频LNA 设计中得到广泛应用,但是当工作频率较高时由于不能忽略MOS 管的寄生电容Cgd,因而使得整个电路的稳定特性变差。
对于单个晶体管可通过在其输入端串联一个小的电阻或在输出端并联一个大的电阻来提高稳定度,但是由于新增加的电阻将使噪声值变坏,因此这一技术不能用于低噪声放大器。
文献对cascode 结构提出了改进,在其中ZLoad=jwLout//(jwCout)-。
射频与微波电路设计低噪声放大器设计PPT课件

放大器的稳定性
当放大器的输入和输出端的反射系数的模都小于 1(即 1 1, 2 1 )时,不
管源阻抗和负载阻抗如何,网络都是稳定的,称为绝对稳定;
当输入端或输出端的反射系数的模大于 1 时,网络是不稳定的,称为条件稳定。
对条件稳定的放大器,其负载阻抗和源阻抗不能任意选择,而是有一定的范围,
பைடு நூலகம்
P3
P1
P2
Z0
输入
a1
a2
微波
输出
匹配
b1 器 件 b2
匹配
电路
[S]
电路
P4 Z0
Zs Zin
Zout ZL
Γ sΓ 1
Γ 2Γ L
第11页/共41页
在圆图上表示噪声和增益——等噪声圆和等增益圆
• 2、输入、输出匹配时,噪声并非最佳。相反有一定失配,才能实现噪声最佳。 • 对于MES FET(金属半导体场效应晶体管)来说,其内部噪声源包括热噪声、闪
第7页/共41页
放大器技术指标—端口驻波比和反射损耗 • 低噪声放大器主要指标是噪声系数,所以输入匹配电路是按照噪声最佳来设计的, 其结果会偏离驻波比最佳的共扼匹配状态,因此驻波比不会很好。 • 此外,由于微波场效应晶体或双极性晶体管,其增益特性大体上都是按每倍频程 以6dB规律随频率升高而下降,为了获得工作频带内平坦增益特性,在输入匹配 电路和输出匹配电路都是无耗电抗性电路情况下,只能采用低频段失配的方法来 压低增益,以保持带内增益平坦,因此端口驻波比必然是随着频率降低而升高。
烁噪声和沟道噪声。这几类噪声是相互影响的,综合结果可归纳为本征FET栅极 端口的栅极感应噪声和漏极端口的漏极哭声两个等效噪声源。这两个等效噪声 源也是相关的,如果FET输入口(即P1面)有一定的失配,这样就可以调整栅极 感应噪声和漏极噪声之间的相位关系,使它们在输出端口上相互抵消,从而降 低了噪声系数。对于双极型晶体管也存在同样机理。 • 根据分析,为获得最小的FET本征噪声,从FET输入口P1面向信源方向视入的反 射系数有一个最佳值,用out表示。当改变输入匹配电路使呈现
射频通信电路:第五讲 低噪声放大器

场效应管等效电路
晶体管的放大特性主要由压控电流源 决定 放大器的输入阻抗由 决定,呈容性
放大器输出电阻由 和 决定,该值一般很大
放大器隔离度由 决定
极限工作频率受等效电路中的电容 = (
≈
分立低噪声放大器构成
电路组成:晶体管、偏置、输入匹配和输出负载四大部分
输入匹配网络
输出负载
偏置
晶体管 典型电路
把晶体管视为一个 双端口黑盒子,分 析其端口参数,适 用于特定频率、线 性参数,如S参数
应用不同的模型,分析设计低噪放的方法不同
低噪声放大器指标
Adobe Acrobat 文档
低噪声放大器指标分析
1.低功耗:移动通信的必然要求 低电源电压、低静态电流
2.工作频率:取决于晶体管的特征频率
fT
=
gm
低噪声放大器指标分析
F = 1+ (Vn + In RS )2
4kTRS B
对于高源阻抗, 是主要噪声源 对于低源阻抗, 是主要噪声源
系统最小噪声系数时,信号源阻抗满足:
2
R2 s ,opt
=
Vn
2
In
低噪声放大器指标分析
F = 1+ rbb' + 1 + gm RS ≈ 1+ rbb' + 1
高频等效电路--BJT
共射放大器原理图
V(BR)EBO ICBO ICEO
工作点Q由基极偏置VBEQ、集电极电源 VCC 负载电阻RL决定
iB(μA) 0
VCE( V)
11
0
VBE
+
iC 饱和区
临界饱和 线
截止区
击穿区 iB=iB5
高效低噪声射频放大器设计

高效低噪声射频放大器设计随着科技的发展和普及,现代人对于通信技术也有了更高的要求。
射频放大器是通信技术中非常重要的元器件,它承担着信号的放大和传输任务。
为了保证通信技术的高效稳定性,设计高效低噪声射频放大器已经成为研究者所关注的重点。
本文以高效低噪声射频放大器设计为主题,阐述了射频放大器工作原理、设计思路和优化方法等方面内容。
一、射频放大器工作原理射频放大器是将一定带宽的电信号进行放大的元器件。
根据增益系数的不同,又可分为低增益射频放大器、中等增益射频放大器和高增益射频放大器三类。
低增益射频放大器广泛应用在接收机中,中等增益射频放大器应用于本振、中频放大等电路,而高增益射频放大器则常用于驱动输出等级。
基于放大器原理,射频放大器一般由放大电路、滤波电路、稳定电路和整流电路等部分组成。
其中,放大电路是评估射频放大器性能的关键部分之一。
二、设计思路在射频放大器的设计中,设计思路非常重要。
设计思路具有指导性和概括性,可避免重复性工作和研究过程的冗余。
设计思路包括如下几个方面:(1)选择合适的放大器结构和器件。
对于低噪声放大器,应选择晶体管、场效应晶体管等器件,高功率放大器应该选择晶体管、静电复合晶体管等器件。
(2)提高射频放大器的增益。
增益是射频放大器最为重要的参数之一。
射频放大器的增益受到许多因素的影响,在设计中应该充分考虑电路参数对增益参数的影响,一般采用电容耦合、电感耦合、差动模式、共源共极等优化技术。
(3)提高射频放大器的线性度。
通信技术中要求射频放大器具有高的线性度,电路中采用线性化技术、负反馈技术、A级放大器等方式可提高线性度。
(4)选用合适的功率稳定电路。
功率稳定是射频放大器中一个非常重要的参数。
采用零稳态技术、瞬态保护、电流限制等稳定电路可充分保证射频放大器的工作性能稳定。
(5)选用合适的整流电路。
提高整流效率是射频放大器制作中的一个重要工作。
在设计时,要根据整流电路的差异,采用合适的元件、选择合适的工作方式等对整流效率进行优化。
射频和微波放大器设计

为B类工作旳放大器称为AB类放大器。
➢ C 类(丙类)放大器 • 放大器在整个信号周期内,晶体管在工作区工作旳时间
明显少于半个信号周期旳放大器为C类放大器。
小信号放大器设计
小信号放大器设计旳基 本环节
选择合适旳器件或芯片 o 工作频率 o 增益 o 噪声 o 功率电平
小信号放大器设计
窄带放大器设计 o 工作带宽不大于10%旳放大器可以为是窄带放大器
窄带放大器分类 最大增益放大器 高增益放大器 最低噪声放大器
高增益放大器设计举例
例 15.1 设计一工作频率为3GHz,增益为15dB旳放大器,选择如
下S参数旳双极晶体管(VCE=4V ,IC=5mA):
宽带放大器(BBA)设计 ——负反馈技术(分析)
➢ 取得最小输入和输出驻波比旳条件
➢ 设计举例
宽带放大器(BBA)设计 ——负反馈技术(高频情况)
伴随工作频率旳增长,S21旳相位将趋向于900, 也就是说可能出现正反馈旳成份,由此引起放 大器旳不稳定,为了确保放大器旳稳定性,能 够在并联反馈元件上附加一种串联电感,以变 化反馈分量旳相位。
功率放大器旳最小信号电平和动态范围
最小信号电平 放大率Po,mds,必须不小于放大器旳输出噪声功率。 • Po,mds定义为高于输出噪声功率电平 x 分贝。
或
功率放大器旳最小信号电平和动态范围
功率放大器旳动态范围 功率放大器旳动态范围定义为放大器旳线性最
交调对接受系统旳影响分析
对于窄带功率放大器,除了三阶交调项(即 2f1-f2和2f2-f1)外,全部附加旳频率分量都能 够经过滤波器被滤除掉。
07微波低噪声放大器设计测量

实验七微波低噪声放大器的设计与测量一、实验目的1.了解射频放大器的基本原理与设计方法。
2.利用实验模块实际测量以了解放大器的特性。
3.学会使用微波软件对射频放大器的设计并分析结果。
二、预习内容1.熟悉放大器原理等理论知识。
2.熟悉放大器设计相关理论知识。
三、实验设备四、理论分析一个射频晶体放大器电路可分为三大部分:二端口有源电路、输入匹配电路及输出匹配电路,如图4-1所示。
一般而言,二端口有源电路采用共射极(或共源极)三极管(BJT、FET)电路,此外,还包括直流偏压电路。
而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。
一般放大器电路,根据输入信号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。
而小信号放大器依增益参数及设计要求,可分成最大增益及固定增益两类。
而就S参数设计而言,则可有单向设计及双边设计两种。
本单元仅就小信号放大器来说明射频放大器之基本理论及设计方法。
(一) 单边放大器设计(Unilateral Amplifier Design )所谓单边设计即是忽略有源器件S 参数中的S 12,即是S 12=0。
此时可得: ΓIN = S 11 及 ΓOUT = S 22 则放大器之单边转换增益(Unilateral Transducer Gain,G TU )为:L O S TU G G G G =其中 222222121121111LLL O SSSS G S G S G Γ-Γ-==Γ-Γ-=假若电路又符合下列匹配条件:ΓS = S 11* 及 ΓL = S 22*则可得到此放大器电路之最大单边转换增益(Maximum Unilaterla Transducer Gain,G TU,max ):222221211max ,1111S S S G TU -⋅⋅-=(二) 双边放大器设计(Bilateral Amplifier Dseign)双边设计即是考虑有源器件S 参数中的S 12,即是S 12≠0。
MHz低噪声射频功率放大器的设计方案毕业设计方案开题报

毕业设计开题报告433MHz低噪声射频功率放大器的设计学院:班级:学生姓名:指导教师:职称:年月日433MHz低噪声射频功率放大器的设计一、研究的目的:低噪声微波放大器(LNA)已广泛应用于微波通信、GPS 接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。
低噪声放大器位于射频接收系统的前端,其主要功能是将来自天线的低电压信号进行小信号放大。
前级放大器的噪声系数对整个微波系统的噪声影响最大,它的增益将决定对后级电路的噪声抑制程度,它的线性度将对整个系统的线性度和共模噪声抑制比产生重要影响。
对低噪声放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定性好、足够的带宽和大的动态范围。
随着工作频率升高,低噪声放大器却因为其强烈的非线性而要依赖非线性模型来预测其电性能,且电路设计的精度取决于非线性模型的准确度。
厂商一般都是给出某个的s参数值,对于那些不是常用的频段获取参数相当的困难。
因此选择合适的仿真软件对器件进行建模仿真变得非常重要。
同时,由于晶体管在高频工作时,受到寄生效应的影响,要保持低噪声放大器的稳定性就需要电路板布局合理、输入输出匹配之间的有效配置都是设计射频放大器的关键。
着手分析并解决这些问题,为以后开展更深一步的研究做好铺垫。
二、主要研究内容功率放大器设计指标:工作频率:433MHz接选用晶体管:AT41511;工作频率:433MH ±50MHz ;带宽:100MHz ;偏置电压:5 V ;增益:20dB ;噪声系数<1.输入输出驻波比<2输出功率:1W.低噪声放大器的主要技术指标是噪声系数和增益,这些是研究射频低噪声放大器的关键。
本文对此进行了一些研究,主要包括下面几个方面:1.射频电路的噪声系数二端口的噪声系数定义为二端口输入端的信噪比与输出端的信噪比:用符号/S N P P (或 S/N)表示。
放大器噪声系数是指放大器输入端信号噪声功率比/SI NI P P 与输出端信号噪声功率比/SO NO P P 的比值,以分贝数表示噪声系数: NF=101g(F)。
低噪放的设计

1.023 1.047 1.072 1.096 1.122 1.148 1.175 1.202 1.230 1.259 6.825 13.81 20.96 28.27 35.75 43.41 51.24 59.26 67.47 75.87 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 10
在圆图上表示噪声和增益——等噪声圆和等增益圆 在圆图上表示噪声和增益——等噪声圆和等增益圆
15
等噪声源、等增益圆是我们设计输入输出匹配电路,尤其输入 匹配电路的依据。
低噪声放大器设计的依据与步骤 16
依据: 1. 满足规定的技术指标 噪声系数(或噪声温度);功率增益;增益平坦度;工作频 带;动态范围 2. 1. 2. 3. 4. 5. 输入、输出为标准微带线,其特征阻抗均为50 放大器级数 晶体管选择 电路拓朴结构 电路初步设计 用CAD软件进行设计、优化、仿真模拟 步骤:
9
放大器技术指标— 放大器技术指标—端口驻波比和反射损耗
9
低噪声放大器主要指标是噪声系数,所以输入匹配电 路是按照噪声最佳来设计的,其结果会偏离驻波比最 佳的共扼匹配状态,因此驻波比不会很好。 此外,由于微波场效应晶体或双极性晶体管,其增益 特性大体上都是按每倍频程以6dB规律随频率升高而 下降,为了获得工作频带内平坦增益特性,在输入匹 配电路和输出匹配电路都是无耗电抗性电路情况下, 只能采用低频段失配的方法来压低增益,以保持带内 增益平坦,因此端口驻波比必然是随着频率降低而升 高。
在圆图上表示噪声和增益——等噪声圆和等增益圆 在圆图上表示噪声和增益——等噪声圆和等增益圆
14
输入、输出不匹配时,增益将下降。因为负载 是复数,有可能在不同的负载下得到相同的输 出,经分析在圆图上,等增益线为一圆,这个 圆叫等增益圆。 当输入匹配电路不能使信源反射系数ΓS和最佳反