射频与微波技术原理及应用汇总

合集下载

射频与微波信号发生器工作原理

射频与微波信号发生器工作原理

射频与微波信号发生器工作原理射频与微波信号发生器的工作原理是基于射频电子学和微波工程的理论原理。

这些原理涉及到电磁学、电子器件、射频电路和信号处理等领域,需要深入的专业知识。

以下将从基本概念、工作原理、应用领域及发展趋势等方面展开介绍。

一、基本概念1.1 射频信号与微波信号射频(Radio Frequency,RF)信号通常指在300 kHz至1 GHz范围内的电磁波信号,而微波(Microwave)信号则指频率在1 GHz至300 GHz范围内的电磁波。

射频与微波信号的特点是在传输和处理过程中,有较高的频率、短波长和较高的传输能力。

1.2 信号发生器信号发生器是一种电子仪器,用于产生各种频率、振幅和波形的信号。

在射频与微波工程领域中,信号发生器通常用于产生射频和微波信号,包括正弦波、方波、脉冲等信号,以供射频测试、通信、雷达、微波加热等应用的需求。

二、工作原理2.1 振荡器原理射频与微波信号发生器的核心部件是振荡器。

振荡器实质上是一种能够产生连续振荡的电路,它能够将直流电能转换为无线电频率的交流电能输出,是信号发生器产生射频与微波信号的基础。

振荡器的振荡原理主要包括对振荡电路中的负反馈、放大元件(如晶体管、场效应管、二极管)、振荡电路的谐振条件等的分析。

当振荡电路处于稳定的谐振状态时,将会产生稳定的射频或微波信号输出。

2.2 频率合成原理在实际应用中,需要产生不同频率的射频与微波信号,这就需要用频率合成技术来实现。

频率合成技术通常采用数字频率合成(DDS)或模拟频率合成的方法,它能够通过对不同频率的信号进行合成从而获得所需频率的信号输出。

三、应用领域射频与微波信号发生器在通信、雷达、无线电测试、科学研究、医学成像、微波加热等领域有广泛的应用。

在通信领域,射频与微波信号发生器用于产生各种载波信号、调制信号,用于移动通信、卫星通信和无线局域网等系统。

在雷达系统中,信号发生器用于产生雷达脉冲信号和各种波形信号。

射频与微波技术期末总结

射频与微波技术期末总结

射频与微波技术期末总结一、引言射频与微波技术是电子工程的一个重要分支,它涉及到无线通信、雷达、卫星通信等许多领域。

在过去的几十年里,射频与微波技术经历了巨大的发展和创新,为我们的现代化生活和通信提供了巨大的便利。

本次期末总结将对射频与微波技术的相关知识做一个系统的回顾和总结。

二、射频与微波技术的概述1. 射频与微波技术的起源和发展射频与微波技术起源于20世纪初期,最初应用于无线电通信领域。

后来随着雷达和卫星通信技术的发展,射频与微波技术逐渐成为独立的学科领域,并广泛应用于各个领域。

2. 射频与微波技术的基本概念射频与微波技术是指在射频和微波频段工作的电子设备和系统的设计、分析和应用。

射频频段通常定义为3-3000 MHz,微波频段通常定义为1-300 GHz。

射频和微波波段有很多特殊的性质,例如衰减、穿透能力以及大气吸收等。

三、射频与微波技术的电路设计1. LNA设计低噪声放大器(LNA)是射频电路中非常重要的组成部分。

它的作用是放大输入信号并尽量减小噪声。

在LNA设计中,需要考虑噪声系数、增益和稳定性等因素。

2. 射频开关设计射频开关的设计是为了实现信号的路由和选择。

它对射频系统的性能和功能有着重要的影响。

在射频开关的设计中,需要考虑传输损耗、隔离度和插入损耗等。

3. 射频功率放大器设计射频功率放大器(PA)是将低功率信号放大到高功率的关键部分。

它在无线通信系统中起到提高信号传输距离和质量的作用。

在射频功率放大器的设计中,需要考虑效率、线性度和带宽等因素。

四、射频与微波技术的无线通信应用1. 无线电通信射频与微波技术在无线电通信中有着广泛的应用。

它可以用于手机、无线局域网和卫星通信等。

2. 雷达技术雷达是利用射频与微波技术实现目标探测、跟踪和测距的一种技术。

它在军事和民用领域都有广泛的应用。

3. 卫星通信卫星通信是通过射频与微波技术实现地球上不同地区之间的通信。

它在电视广播、互联网和军事通信等方面有着重要的应用。

电路中的射频与微波技术

电路中的射频与微波技术

电路中的射频与微波技术射频(Radio Frequency,简称RF)和微波(Microwave)技术在电路领域中起着重要的作用。

它们广泛应用于通信系统、雷达、无线电设备、卫星通信等领域。

本文将介绍电路中的射频与微波技术的基本概念、应用和发展趋势。

一、射频与微波技术的基本概念射频与微波技术是指在频率范围为300kHz至300GHz的无线电频段中进行电路设计和通信系统的构建。

射频技术通常涉及低于30MHz的频率范围,而微波技术通常指30MHz至300GHz的频率范围。

射频与微波信号具有高频高速的特点,对电路设计和传输要求严苛。

由于射频与微波信号的工作频率高,电路中的电感、电容等元件的参数会受到影响,因此需要采用特殊的电路设计和封装技术。

二、射频与微波技术的应用1. 通信系统射频与微波技术在通信系统中扮演着重要的角色。

无线通信、卫星通信、雷达等系统都需要使用射频与微波技术实现信号的传输和处理。

射频技术负责信号的调制、解调和放大,微波技术用于信号的传输和解码。

2. 雷达系统雷达系统是射频与微波技术的重要应用之一。

雷达利用射频与微波信号进行目标检测和测距,其工作频率通常在UHF至毫米波段。

射频与微波技术在雷达系统中起到了提高系统灵敏度和测距精度的关键作用。

3. 无线电设备射频与微波技术在无线电设备中广泛应用。

无线电设备包括无线电收发器、局域网无线接入点(WiFi)、蓝牙、ZigBee等。

这些设备利用射频与微波信号实现无线数据的传输和通信。

4. 医疗设备射频技术在医疗设备中有着广泛的应用。

磁共振成像(MRI)、体外早期癌症诊断、射频热消融治疗等都是利用射频技术实现的。

微波技术也有在医疗设备中的应用,如微波治疗和诊断设备。

三、射频与微波技术的发展趋势随着通信技术和无线电设备的迅速发展,射频与微波技术也在不断改进和创新。

以下是射频与微波技术的发展趋势:1. 高速、高频率射频与微波技术将继续朝向更高的速度和更高的频率发展,以满足日益增长的数据传输需求。

微波与射频技术的发展和应用

微波与射频技术的发展和应用

微波与射频技术的发展和应用微波和射频技术是现代通信和无线网络应用的重要组成部分。

虽然它们已经存在多年,但随着技术的不断发展和人们对更高速、更可靠、更安全通信需求的不断增加,微波和射频技术的应用范围也在不断扩展。

1. 微波和射频技术的起源微波和射频技术的起源可以追溯到20世纪初期,当时无线电通信技术正处于蓬勃发展的时期。

由于当时需要进行长距离的无线电通信,传统的低频无线电技术已经不能满足通信要求。

在这种情况下,微波和射频技术应运而生。

微波通信的理论基础在1914年就已被提出,但直到1940年代才开始得到实际应用。

射频技术的应用则更早,在20世纪初期已经开始被用于无线电通信。

2. 微波和射频技术的发展随着技术的不断发展,微波和射频技术的应用范围也在不断扩展。

在通信领域,微波技术已经广泛应用于卫星通信、雷达、导航等系统中。

射频技术则被广泛应用于移动通信、射频识别、无线电广播等领域中。

此外,微波和射频技术还被广泛应用于医疗、安防、航空航天、军事等领域中。

例如,在医疗领域,微波技术可以用于医学诊断和治疗。

在安防领域,微波和射频技术可以用于无线安防系统。

在航空航天领域,微波和射频技术可以用于卫星通信和导航系统。

在军事领域,微波和射频技术可以用于雷达和通信系统。

3. 微波和射频技术的应用在移动通信领域中,微波和射频技术的应用越来越广泛。

例如,在5G网络中,微波和射频技术可以使网络数据传输速度更快,同时也更加安全可靠。

在物联网领域中,微波和射频技术可以使设备间的通信更加便捷和高效。

除了通信领域外,微波和射频技术在工业和医疗领域中也有广泛应用。

在工业领域中,微波技术可以用于工业加热和干燥,使生产过程更加高效和可靠。

在医疗领域中,微波技术可以用于医学诊断和治疗,例如用于癌症治疗中的微波消融技术。

总的来说,微波和射频技术的发展和应用在现代通信和无线网络领域中起着重要的作用。

随着技术的不断发展和应用领域的不断扩展,微波和射频技术的应用前景将更加广阔。

射频与微波信号发生器工作原理

射频与微波信号发生器工作原理

射频与微波信号发生器工作原理射频(RF)和微波信号发生器是在射频和微波领域中常用的仪器,用于产生高频信号。

它们在通信、雷达、无线电等领域有着广泛的应用。

本文将详细介绍射频与微波信号发生器的工作原理,包括振荡电路、频率控制、放大器、调制解调和输出接口等方面。

1.振荡电路振荡电路是射频与微波信号发生器中产生高频信号的核心部分。

它能够在特定的条件下产生稳定的振荡信号。

以下是几种常见的振荡电路:1.1LC振荡电路LC振荡电路是最简单和常见的振荡电路之一。

它由一个电感(L)和一个电容(C)构成。

当电流通过电感时,会在电容上积累电荷,形成电场能量。

然后,电容中的电荷会通过电感释放,再次充电,如此往复。

这种周期性的充放电过程导致了振荡信号的产生。

1.2晶体振荡电路晶体振荡电路使用压电晶体(如石英晶体)作为振荡器的谐振元件。

压电晶体具有固有的机械振动频率,当施加电场或力时,它会以固定的频率振动。

这种振动可以转换为电信号,并通过适当的反馈网络来维持振荡。

1.3微带振荡电路微带振荡电路是一种使用微带传输线和衬底作为振荡器的谐振元件的振荡电路。

微带传输线是在介质基板上形成的导电金属条。

通过选择合适的谐振结构和尺寸,微带振荡电路可以实现特定频率的振荡。

2.频率控制射频与微波信号发生器可以通过外部输入或内部设置来控制输出信号的频率。

以下是一些常用的频率控制方法:2.1可变电容可变电容器是一种可以改变电容值的元件。

通过调节电容器的电容值,可以改变振荡电路的谐振频率,从而实现不同频率的信号输出。

2.2可变电感可变电感器是一种可以改变电感值的元件。

通过调节电感器的电感值,可以改变振荡电路的谐振频率,从而实现不同频率的信号输出。

2.3可变晶体振荡器可变晶体振荡器是一种使用可变电容器或可变电感器来调节晶体振荡器频率的电路。

通过改变电容或电感值,可以调整晶体振荡器的谐振频率。

3.放大器放大器在射频与微波信号发生器中起到增强振荡电路产生的低功率信号的作用。

射频与微波技术原理及应用总结归纳

射频与微波技术原理及应用总结归纳

精心整理射频与微波技术原理及应用培训教材华东师范大学微波研究所一、Maxwell(麦克斯韦)方程Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。

其微分形式为E DH J D B ρ∇⨯=∂∇⨯=+∇=∇= 对于各向同性介质,有D EB H J Eεμσ=== (1.2)其中D 为电流密度矢量。

方程,得到空间任何位置的电场、磁场分布。

对Maxwell 方程只有公司的Ensemble 和HFSS 、Agilent 公司的Momentum Remcom 公司的XFDTD 等。

0,0J ρ==时,有222200E k E H k H ∇+=∇+= (1.3)其中k 为传播波数,22k ωμε=。

二、传输线理论传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基础。

传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。

1、微波等效电路法低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。

在集总参数电路中,基本电路参数为L 、C 、R 。

由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。

射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U 、电流I 转化为频率f 、功率P 、驻波系数等,这是分布参数电路。

在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。

由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。

微波等效电路法的特点是:一定条件下“化场为路”(1)(2)(3)2、传输线方程及其解传输线方程是传输线理论的基本方程,的微分方程。

射频与微波技术原理和应用

射频与微波技术原理和应用

射频与微波技术原理及应用培训教材华东师范大学微波研究所一、Maxwell(麦克斯韦)方程Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。

其微分形式为 0BE tD H J tD B ρ∂∇⨯=-∂∂∇⨯=+∂∇=∇= (1.1) 对于各向同性介质,有D EB H J Eεμσ=== (1.2)其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。

电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。

对于规则边界条件,Maxwell 方程有严格的解析解。

但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。

目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。

由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。

当0,0J ρ==时,有222200E k E H k H ∇+=∇+= (1.3)其中k 为传播波数,22k ωμε=。

二、传输线理论传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基础。

传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。

1、微波等效电路法低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。

在集总参数电路中,基本电路参数为L、C、R。

由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。

射频与微波技术

射频与微波技术

射频与微波技术:让我们的世界更连通近年来,的发展和应用越来越受到关注。

从无线通讯到医疗设备,从航空航天到军事领域,这项技术已经渗透到了我们生活的各个方面。

那么,什么是射频和微波技术呢?它有哪些优点和应用呢?本文将探讨这些问题,为大家揭秘的奥秘。

一、的基本概念简单来说,射频就是指频率在几个千赫兹至几个千兆赫兹之间的无线电波。

而微波则是频率在1千兆赫兹至300千兆赫兹之间的电磁波。

与低频和中频相比,射频和微波的频率高,波长短,传输速度快,能量密度大,能够穿透障碍物并传输较远的距离。

这些特点使得射频和微波技术成为了一种重要的通信手段。

二、的优点1.高速传输:射频和微波技术的传输速度非常快,比起传统的有线传输方式,能够提高数据传输的效率。

2.节省空间:相对于有线传输方式而言,射频和微波技术的设备和器件体积小巧,节省了空间,适用于各种紧凑的应用场景。

3.维护成本低:无需担心线缆老化和损坏问题,也无需担心设备移动或更改位置带来的麻烦。

这样,射频和微波技术能够降低系统部署和维护的成本。

4.无干扰:射频和微波技术的传输方式可以减少噪音和干扰的影响,避免信息的损失和干扰。

三、的应用1.通讯领域:射频和微波技术在通讯领域的应用非常广泛,如手机、对讲机、卫星通讯等。

除此之外,无线电台、微波通道、通讯系统的天线等也都使用了这项技术。

2.医疗设备:射频和微波技术在医疗设备领域也有着广泛的应用,如磁共振成像、医疗诊断、治疗设备等。

3.航空航天:射频和微波技术在航空航天领域也有着广泛的应用,如雷达、导航设备等。

4.军事领域:射频和微波技术在军事领域的应用非常广泛,如合成孔径雷达、电子对抗等。

四、未来展望随着科技的不断发展,也将得到进一步的发展和应用。

例如,5G通讯技术的使用已经慢慢普及,机器人、智能家居等智能设备的开发也需要大量依赖射频和微波技术,这将为的发展提供更广阔的应用空间。

总之,的不断发展和应用,不仅让我们的生活更加便捷、舒适,而且也为人类社会的进步和发展作出了巨大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射频与微波技术原理及应用培训教材华东师范大学微波研究所一、Maxwell(麦克斯韦)方程Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。

其微分形式为 0BE tD H J tD B ρ∂∇⨯=-∂∂∇⨯=+∂∇=∇= (1.1) 对于各向同性介质,有D EB H J Eεμσ=== (1.2)其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。

电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。

对于规则边界条件,Maxwell 方程有严格的解析解。

但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。

目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。

由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。

当0,0J ρ==时,有222200E k E H k H ∇+=∇+= (1.3)其中k 为传播波数,22k ωμε=。

二、传输线理论传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基础。

传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。

1、微波等效电路法低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。

在集总参数电路中,基本电路参数为L、C、R。

由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。

射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U、电流I转化为频率f、功率P、驻波系数等,这是分布参数电路。

在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。

由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。

微波等效电路法的特点是:一定条件下“化场为路”。

具体内容包括:(1)、将均匀导波系统等效为具有分布参数的均匀传输线;(2)、将不均匀性等效为集总参数微波网络;(3)、确定均匀导波系统与不均匀区的参考面。

2、传输线方程及其解传输线方程是传输线理论的基本方程,是描述传输线上的电压、电流的变化规律及其相互关系的微分方程。

电路理论和传输线之间的关键不同处在于电尺寸。

集总参数电路和分布参数电路的分界线可认为是l/λ≥0.05。

以传输TEM模的均匀传输线作为模型,如图1所示。

在线上任取线元dz来分析(dz<<λ),其等效电路如图2所示。

终端负载处为坐标起点,向波源方向为正方向。

图1. 均匀传输线模型图2、线元及其等效电路根据等效电路,有11()()()()dU z Z I z dz dI z Y U z dz =={ (2.1)其中Z 1=R 1+j ωL 1, Y 1=G 1+j ωC 1其通解为z 1z 2U B I B z z e e e e γγγγ--++12(z)=A (z)=A { (2.2)结论:1.电压、电流具有波的形式;2.电压、电流由从信号源向负载传播的入射波和从负载向信号源传播的反射波叠加而成,即(),()U z U U I z I I +-+-=+=+。

3、传输线的特性参数主要包括特性阻抗Z c 、传播常数γ、相速度V p 、波导波长λg 。

(1)特性阻抗Z c (Characteristic impedance )定义:特性阻抗Z c 是传输线上任意处的入射波电压与入射波电流之比,即C U Z I++= (2.3)C Z == (2.4) 若传输线无损耗,R 1=G 1=0, 则C Z =(2.5) 举例,① 平行双线2120l n ==C D Z d(2.6) 典型数值:250Ω、400Ω、600Ω② 同轴线C b Z a== (2.7) 典型数值:50Ω、75Ω、100Ω(2)传播常数γ(Propagation constant)j g a b =+ (2.8)其中α为衰减常数,β为相位常数。

(3)相速度V p定义:等相位面向前移动的速度。

它可以大于光速(如金属波导中),可以小于光速(如介质波导中),也可以等于光速(如同轴线中)。

它与信号传播速度是两个概念,但在同轴线中相速度V p 和信号传播速度大小相等。

(4)波导波长λg (Waveguide wavelength)传输线中相邻同相位面之间的距离,称为波导波长,即g p V T l = (2.9) 在同轴线中,波导波长λg 等于自由空间的工作波长。

4、传输线的工作参数主要包括输入阻抗、反射系数(回波损耗、插入损耗等)、驻波系数(VSWR)、驻波相位等;(1)输入阻抗Z in (Input impedance )定义:从某处向终端负载看进去的阻抗,又称分布参数阻抗。

特点:不能直接测量()()()()1()()()1()L c in c c L in c c Z Z th z U z Z z Z I z Z Z th zU z U U U U z Z z Z Z I z I I U U z δδ+-+-+-+-+==++++Γ====+--Γ或 (2.10) 对于无耗线R 1=G 1=0,有()L c in c c L Z jZ tg z Z z Z Z jZ tg zββ+=+ (2.11) 结论①.输入阻抗Z in 随z 而变,且与负载有关,阻抗不能直接测量。

②.传输线段具有阻抗变换作用。

③.无耗线的阻抗呈周期性变化,具有λ/4变换性和λ/2重复性。

若z=n λ/2,则Z in =Z L ;若z=λ/4+ n λ/2,则2/in c L Z Z Z =。

阻抗的λ/4变换性可用于两段不同特性阻抗传输线之间的阻抗匹配中,即λ/4阻抗变换器。

单节λ/4阻抗变换器是窄带匹配器,两节或多节λ/4阻抗变换器是宽带匹配器。

(2) 反射系数Г (Reflection coefficient)定义:传输线上某点处的反射波电压(或电流)与该点的入射波电压(或电流)之比。

2()()()()L zL j L C L L L Cin Cin CU I z e U IZ Z e Z Z Z z Z z Z z Z γϕ---++Γ==-=Γ-Γ==Γ+-Γ=+ (2.12) ()1z Γ≤ (2.13) 某一点的输入阻抗和反射系数是一一对应的。

在传输线理论中,讨论任意一个参量都是对某一个参考面而言的。

在无耗均匀传输线中,反射系数的模处处相等,也就是说,反射系数的模在均匀传输线上是不变的。

回波损耗(return loss):回波损耗又称反射损耗,用L r 表示,即 10lg ()20lg ()r P L dB P dB +-= =-Γ (2.14)引入回波损耗概念以后,反射系数的大小就可用dB 形式来表示。

应当注意的是,由式(1.14)可见,回波损耗Lr (dB )为正值。

但在实际测量中,得到的结果常常用负值表示,这点要注意,例如回波损耗为-20dB 。

匹配负载(Г=0)的回波损耗为∞dB ,表示无反射波功率,负载吸收100%的入射功率;全反射负载(1G =)的回波损耗为0dB ,表示全部入射功率被反射掉,负载吸收的入射功率为零。

(3)传输系数T定义:通过传输线上某处的传输电压或电流与该处的入射电压或电流之比,即 tV T V+= (2.15) 传输系数T 与反射系数Г的关系: T=1+Г插入损耗(insertion loss)L I 常通过射频电路中两点之间的传输系数来表征,即20l g I L T =- (dB ) (2.16)(4)驻波系数ρ又称电压驻波比VSWR (voltage standing wave ratio )。

定义:传输线上电压最大值与电压最小值之比,即maxmin 1()11()U U Uz VSWR U z U U +-+-++Γ===≥-Γ- (2.17) 当0G =时,VSWR =1;当1G =时,VSWR=∞,驻波系数与反射系数一样,可用来描述传输线的工作状态。

当传输线的特性阻抗Z c 一定时,传输线终端的负载阻抗与驻波系数一一对应,即 min min1tg tg L c jVSWR l Z Z VSWR j l b b -=- (2.18) 其中l min 为距离负载出现第一个电压最小值的位置。

5、无耗传输线的三类工作状态传输线终端接不同负载阻抗时,有三种不同的工作状态,即行波状态、驻波状态和行驻波状态。

这些不同工作状态的特性对射频、微波电路的分析和设计极为有用。

(1)行波状态当终端负载等于传输线的特性阻抗时,即Z L =Z C , 传输线为行波状态,如图3所示。

图3.无耗传输线的行波特性此时ГL =0,VSWR=1。

特点:① 电压、电流的振幅沿线不变;② 沿线各点的Zin(z)均等于传输线的特性阻抗Z C ;③ 只有入射波,没有反射波,入射功率全被负载吸收;④ 沿线电压和电流的相位随z 增加连续滞后,电压和电流的相位相等。

行波状态是射频、微波系统的理想工作状态,实际上很难实现。

(2)驻波状态当终端短路、开路或纯电抗负载时,传输线上为驻波状态。

① 终端短路0L Z =,此时10,1,1L L L LZ ρ+Γ=Γ=-==∞-Γ,如图4所示。

终端为电压最小值,电流最大值,且最小值为零,驻波分布的周期为λ/2。

其输入阻抗:()tan in c Z z jZ z β= (2.19)图4 终端短路时的驻波状态② 终端开路L Z =∞,此时1,L ρΓ= =∞,如图5所示。

终端为电压最大值,电流最小值,且最小值为零,驻波分布的周期为λ/2。

其输入阻抗:()in c Z z jZ ctg z β=- (2.20)图5 终端开路时的驻波状态注: 理想的终端开路是在终端短路上接一λ/4传输线转换来实现。

(3)行驻波状态终端负载是一般负载时(R L ≠0),传输线上既有行波又有驻波的状态。

分四种情况,即L L c Z R Z =>、L L c Z R Z =<、L L L Z R jX =+和L L L Z R jX =-。

22222222()()L j L C L c L L c L L L C L c L L c L L Z Z R Z X j X Z e Z Z R Z X R Z X ϕ±--+Γ==±=Γ+++++Γ<1(2.21)当终端接一般负载时,传输线上电压、电流的最大点的振幅等于入射波振幅的(1L +G )倍,最小点的振幅不为零,而是(1L -G )倍。

相关文档
最新文档