金刚石合成
合成金刚石选择石墨的原则

合成金刚石选择石墨的原则咱们今天来讲一讲合成金刚石时选择石墨的事儿。
这就像是我们做手工挑材料一样,可讲究啦。
金刚石可漂亮啦,它亮晶晶的,特别坚硬。
那怎么把石墨变成金刚石呢?这就像变魔术,但是这个魔术得选对石墨这个“小助手”。
有一种情况呀,就像我们挑水果一样,得挑新鲜的。
石墨要是很纯净的那种就特别好。
比如说,假如有一堆石墨,里面有很多杂质,就像我们吃的糖果里面混进了小石子,那可不行。
这些杂质就会捣乱,让合成金刚石的过程变得乱七八糟。
就像我们搭积木,如果积木块有坏的,那我们的小房子就搭不好啦。
纯净的石墨就像崭新的、没有一点破损的积木块,这样才有可能顺利变成金刚石呢。
还有哦,石墨的结构也很重要。
咱们可以把石墨想象成是一群小蚂蚁排着队。
如果小蚂蚁们排得整整齐齐,规规矩矩的,这样的结构就比较适合变成金刚石。
比如说,有的石墨就像是小蚂蚁们乱成一团,这样在要把它变成金刚石的时候,就像要把乱成一团的小蚂蚁重新整齐地排好队,可困难啦。
但是如果小蚂蚁本来就排得很整齐,就像训练有素的小士兵,那把它们变成金刚石这个新的“小队伍”就容易得多啦。
另外呀,石墨的大小也有讲究。
如果石墨太大块了,就像一个超级大的蛋糕,要把它整个变成金刚石可不容易呢。
这就好比我们想把一个大大的泥巴团捏成一个小小的精致的陶俑,很难做到每一处都变好。
可是如果石墨是小块小块的,就像小饼干一样,那我们就可以一块一块地把它们变成金刚石,这样就容易操作多啦。
我们再来说说价格。
就像我们买玩具一样,太贵的玩具可能爸爸妈妈就不会给我们买啦。
选择石墨也是这样,如果太贵的话,合成金刚石的成本就会变得特别高。
那就不划算了呀。
比如说有两种石墨,一种价格像天价一样,另一种价格比较合理,那当然是选择价格合理的那种啦,这样我们就能用比较少的钱来做合成金刚石这个有趣的事儿啦。
所以呀,在合成金刚石选择石墨的时候,就像我们挑选做游戏的小伙伴一样,要考虑很多方面呢,这样才能顺利地把石墨变成漂亮又坚硬的金刚石。
二氧化碳和金属钠生成金刚石的方程式

题目:二氧化碳和金属钠生成金刚石的方程式正文:一、引言金刚石是一种具有极高硬度的矿物,常被用于工业领域中切削、磨削等加工工艺中。
而金刚石的合成方法也一直备受人们关注。
其中,通过二氧化碳和金属钠生成金刚石的化学合成方法备受关注。
该方法不仅具有一定的工业应用价值,同时也对其化学反应机理进行了深入的研究。
二、二氧化碳和金属钠生成金刚石的化学反应1. 反应式在常温常压下,二氧化碳和金属钠可以生成金刚石的反应式如下:3Na + 4CO2 → 2Na2CO3 + C2. 反应机理该化学反应是一个高温高压下进行的复杂反应过程。
在高温下,二氧化碳会首先和金属钠发生反应,生成碳酸钠和碳,然后碳再进一步转化为金刚石。
金刚石的合成过程经历了多个阶段,首先是碳的生长阶段,碳原子在高温高压的条件下沉积在晶格上,形成大块的金刚石晶体;其次是金刚石的生长过程,碳原子被不断地添加到金刚石晶格中,使其晶粒逐渐增大;最后是金刚石的稳定阶段,金刚石晶体的生长逐渐停止,形成最终的金刚石晶体。
三、该方法的工业应用价值二氧化碳和金属钠生成金刚石的合成方法具有一定的工业应用价值。
相比于天然产出的金刚石,化学合成的金刚石能够更好地控制其晶体结构和质量,满足工业上不同领域对金刚石的不同需求。
在切削加工领域,金刚石具有极高的硬度和耐磨性,能够更好地应用于高强度材料的切削加工中。
特别是对于金属钢材的加工,使用金刚石刀具能够有效提高切削效率,降低加工成本。
在电子领域,金刚石的导热性能较好,常被应用于高功率电子器件的散热材料中。
其晶格完整、稳定的特性,也使得金刚石可用于制备高频电子元件和半导体器件。
在磨削领域,金刚石具有超强的磨削能力和耐磨性,能够应用于各种硬质材料的磨削加工中。
通过二氧化碳和金属钠生成金刚石的化学合成方法,为满足工业上对金刚石的不同需求提供了一种可行的途径。
结论通过二氧化碳和金属钠生成金刚石的化学合成方法,不仅具有一定的工业应用价值,同时也为金刚石的化学合成和应用研究提供了更广阔的发展空间。
高温高压法合成金刚石的原理

高温高压法合成金刚石的原理高温高压法合成金刚石的原理引言金刚石是目前已知最坚硬的物质之一,具有极高的热导率、优异的化学稳定性和光学性能。
其在工业领域有着广泛的应用,如切割、磨削、钻石冶炼等。
早在20世纪50年代,科学家们就通过高温高压法成功地合成了金刚石,并对金刚石的合成原理进行了深入研究。
本文将详细介绍高温高压法合成金刚石的原理及其过程。
一、高温高压法合成金刚石的基本原理高温高压法合成金刚石是通过将高纯度的石墨置于高温高压环境中,在一定压力和温度条件下,使其发生相变转化为金刚石结构体。
其基本原理可以归纳为以下两个方面:1. 高压作用原理在高压下,石墨的层状结构发生变化,碳原子排列发生重组,形成更加紧密的结构,其中碳原子两两成对。
同时,高压还有利于碳原子间的共价键形成,促使石墨向金刚石的结构转变。
高压作用使得原有的石墨层结构中的芳香六元环断裂,重新构建出新的碳原子构型,形成金刚石的晶粒。
2. 高温作用原理高温下,由于碳与金属元素(如钴、铁等)有较好的相容性,这些金属元素在纯碳体系中具有催化作用,可以促进石墨向金刚石的相变。
此外,高温还可以提高反应速率,并减小金刚石晶核形成的能垒。
因此,高温作用在金刚石的合成过程中起到了至关重要的作用。
二、高温高压法合成金刚石的过程高温高压法合成金刚石的过程可以分为以下几个步骤:1. 制备金刚石晶体的种子层首先,需要在高温高压容器内的金刚石粉末层上制备金刚石晶体的种子层。
金刚石粉末的颗粒与金刚石晶种产生化学反应,形成金刚石表面晶体的结构。
种子层是金刚石晶体生长的起始核心,为后续金刚石的形成提供了必要的条件。
2. 加入高纯度石墨粉在高温高压容器中加入高纯度石墨粉末,使其与种子层接触。
石墨粉末需要达到足够高纯度,以保证金刚石晶体的纯度。
3. 施加高温高压施加高温高压条件,使得石墨发生相变,转化为金刚石晶体。
一般来说,需要施加高压数GPa(1 GPa=1亿帕)和高温约1500-2000摄氏度的条件。
人造金刚石生产工艺流程

人造金刚石生产工艺流程人造金刚石是一种人工合成的具有极高硬度和热导率的材料,广泛应用于切割、磨削和研磨等工业领域。
其生产工艺流程包括原料选择、合成、成长和加工等多个步骤。
原料选择是人造金刚石生产的第一步。
通常使用的原料是高纯度的石墨,通过石墨的高温高压合成来获得人造金刚石。
高纯度的石墨可以确保合成金刚石的质量和性能。
合成是人造金刚石生产的关键步骤。
合成金刚石的方法有多种,其中最常用的是高温高压合成法。
该法将石墨置于高温高压容器中,然后通过加热和施加高压使其发生化学反应,最终形成金刚石结构。
在合成过程中,需要精确控制温度、压力和时间等参数,以确保金刚石的合成效果和质量。
接下来是金刚石的成长过程。
合成金刚石的方式有两种:一种是单晶生长,另一种是多晶生长。
单晶生长是指在合成过程中,金刚石晶核逐渐生长并形成一个完整的单晶体。
多晶生长则是指金刚石晶核同时生长形成多个晶体。
不同的生长方式决定了金刚石的晶体结构和性能。
合成的金刚石需要进行加工。
加工的目的是将金刚石切割成所需的形状和尺寸,并进行表面处理以提高其性能。
加工工艺包括切割、磨削、抛光和镶嵌等步骤。
切割是指将合成金刚石切割成所需的形状,常用的切割工具有金刚石刀片和线锯等。
磨削是指对金刚石进行精细加工,以获得平滑的表面和精确的尺寸。
抛光是将金刚石表面进行处理,提高其光洁度和亮度。
镶嵌是将金刚石嵌入到合适的基座或工具中,以便于使用和固定。
人造金刚石的生产工艺流程是一个复杂而严谨的过程,需要精确的控制和操作。
每个步骤都对最终产品的质量和性能产生重要影响。
通过不断优化和改进工艺流程,可以获得更高质量的人造金刚石,满足不同领域的需求。
总结起来,人造金刚石的生产工艺流程包括原料选择、合成、成长和加工等多个步骤。
原料选择是选择高纯度石墨作为合成金刚石的原料;合成是通过高温高压合成反应得到金刚石;成长是金刚石晶核逐渐生长形成单晶或多晶体;加工是将金刚石切割、磨削、抛光和镶嵌等工艺处理,最终获得所需的金刚石制品。
合成金刚石

d.火焰沉积法: 该法所用的碳源气体一般为工业乙炔气,助燃气为氧气.乙炔和氧 发生燃烧时产生的等离子体气流在基底表面沉积形成金刚石薄膜.该 方法可以在开放的大气条件下形成金刚石薄膜,并且设备简单,生长速 率快。 这种方法于20世纪80年代初期到中期在制备金刚石膜方面作为 一种独特的技术而得到一定程度的发展。在氧乙炔系统中,乙炔的流 量略高于氧气流量,火焰中(称为乙炔焰)含有高浓度的含碳激发态粒 子。如果将基片置于火焰中,金刚石膜将以200μm· h-1的速率在其上 生长。氧乙炔燃烧法的主要缺点类同于等离子体炬,沉积面积较小,薄 膜的均匀性较差,冷却难度较大,杂质含量较高。
图3 CVD中反应气体激发示意图
图4 CVD金刚石沉积过程示意图
(1)反应气体的激发
①反应气体的选择 ②反应气体的裂化
①反应气体的选择
所有制备CVD金刚石薄膜的 CVD技术都要求反应气是能激发 含碳反应物的气相分子,反应气 可以是脂肪烃、芳香烃、醇以及 酮。烃的化学性质是关键性的。
②反应气体的裂化
高速飞行对机体材料尤其是飞机机头 部锥形的雷达罩材料提出了高要求。 金刚石薄膜以其优异的性能将在这方 便发挥重要作用。
表1 天然金刚石的物理化学性质
(1)力学性能 金刚石具有极其优异的力学性能,它是目前已知材料 中硬度最高的材料。现今,研究出来的金刚石薄膜的硬 度已经基本上达到天然金刚石的硬度,加之其低摩擦系 数,因此金刚石膜是优异的切削刀具,模具的涂镀材料 和真空条件下需要用的干摩擦材料。 金刚石摩擦系数低,散热快,可作为宇航高速旋转的特 殊轴承,加上它优良的抗辐射性能和碳原子在金刚石中 键能密度高于其他所有物质,因此能承受高能加速器内 接近光速移动的基本粒子的撞击,可以作为其控测材料, 它的高散热性,低摩擦系数和透光性,还可以作为军用 导弹的整流罩材料。
高温高压合成金刚石的工艺

高温高压合成金刚石的工艺高温高压合成金刚石的工艺引言:金刚石是一种非常重要且广泛应用的超硬材料,具有出色的物理和化学性质。
高温高压合成金刚石工艺是目前制备金刚石的主要方法之一。
本文将介绍高温高压合成金刚石的基本原理、工艺流程以及对其进行的改进。
一、高温高压合成金刚石的基本原理高温高压合成金刚石是利用静压装置和高温炉对碳源和金属催化剂进行加热和压制,通过超高压和高温下,使碳与金属反应从而形成金刚石。
该过程主要依靠碳源的高温高压下的热学和动力学条件以及金属催化剂的催化作用。
二、高温高压合成金刚石的工艺流程1. 材料准备:准备金刚石合成所需的原料,主要包括碳源(例如石墨)、金属催化剂(如铁、钴)以及溶剂(如钴、霓虹气体)等。
2. 压制装备搭建:搭建静压装置,将所需材料置于高压容器中,并将容器密封。
3. 进行高温高压处理:通过扩散法和液相法制备金刚石,利用高温高压,将碳和金属催化剂反应生成金刚石。
4. 降温和压力释放:待金刚石合成完成后,将高温高压装置自然冷却,降温至室温,并释放容器内部压力。
5. 金刚石材料处理与加工:取出合成的金刚石材料,进行后续的形状修整、切割、抛光等处理。
三、高温高压合成金刚石的工艺改进1. 压制条件优化:通过改变压力、温度、时间等参数,优化合成金刚石的质量和产率。
2. 添加助熔剂:在高温高压过程中,添加助熔剂可以降低石墨结构中的晶界能量,从而促进金刚石的形成。
3. 催化剂设计:改进金属催化剂的种类和组成,提高合成金刚石的效率和质量。
4. 新型杂质控制:通过控制合成过程中的杂质含量和分布,减少合成金刚石中的缺陷和不纯物质。
5. 辅助技术应用:引入电磁场、超声波等辅助技术,提高金刚石合成的效果和速度。
四、高温高压合成金刚石的应用1. 工具领域:高速切削工具、磨料、磨具等。
2. 光学领域:窗口材料、透镜、激光器元件等。
3. 电子领域:半导体材料、电子器件、芯片加工等。
4. 超硬材料领域:用于加工高硬度材料的切削工具、磨料工具等。
温度梯度生长方法合成大体积金刚石晶体

温度梯度生长方法合成大体积金刚石晶体金刚石是一种重要的超硬材料,具有优异的物理和化学性质,在工业、科研及高端技术领域有着广泛的应用。
在金刚石的制备过程中,温度梯度生长方法因其能够合成大体积金刚石晶体而备受关注。
本文将介绍温度梯度生长方法合成大体积金刚石晶体的原理、步骤和主要应用。
一、原理温度梯度生长方法是一种利用高温下金刚石晶种在金刚石合成高压高温装置内,在金刚石的晶种表面形成一定的温度梯度,而后通过化学气相沉积在此温度梯度上生长出大面积金刚石晶体的方法。
这一方法能够有效克服传统金刚石合成方法难以合成大体积金刚石晶体的难题,成为金刚石制备领域的重要突破。
二、步骤1. 晶种准备:将高质量的金刚石晶种装在高压高温装置内,保证其表面光滑、完整,并且在高温高压条件下不会发生形变或破裂。
2. 温度梯度形成:通过对高压高温装置的温度、压力和气氛的控制,使晶种表面形成一定的温度梯度,通常温度梯度的形成需要借助于金刚石晶种表面的缺陷或者微观结构。
3. 化学气相沉积:在温度梯度形成的情况下,引入金刚石晶体生长所需的化学气相,通过化学反应在晶种表面逐渐成核并生长出金刚石晶体。
4. 温度控制:在生长过程中需要对温度梯度和总体温度进行严格控制,以确保金刚石晶体的良好质量和生长速率。
三、主要应用温度梯度生长方法合成大体积金刚石晶体在聚焦透镜、高功率激光器、高压实验和宽带超材料等领域有着广泛的应用。
在激光器领域,大体积金刚石晶体具有较高的光学均匀性和热导率,能够提高激光器的性能和稳定性;在高压实验领域,大体积金刚石晶体能够作为高压装置的窗口,承受极高的压力,并且具有较低的吸收和散射;在超材料领域,金刚石的光学和热学性质使其成为一种理想的基底材料,可用于制备高效的红外、紫外光子晶体。
温度梯度生长方法合成大体积金刚石晶体具有重要的科学意义和应用价值,对推动金刚石材料技术的发展和应用具有重要的意义。
希望通过本文的介绍,能够进一步推动该方法在金刚石合成领域的研究和应用。
高温高压法合成金刚石过程

高温高压法合成金刚石过程高温高压法合成金刚石过程引言:金刚石作为一种重要的超硬材料,具有极高的硬度和热导率,广泛应用于工业和科学领域。
然而,金刚石在大自然中的生成非常罕见,因此,人工合成金刚石成为了满足市场需求的重要途径之一。
其中,高温高压法合成金刚石是最常用的方法之一。
一、高温高压法合成金刚石的原理高温高压法合成金刚石是通过模拟地球深部的高温高压条件,在实验室中促使石墨发生结构转变,形成金刚石晶体。
该反应基于以下两个原理:1. 高温条件:金刚石的形成需要极高的温度条件,通常在1500°C~2500°C之间。
这是因为石墨的结晶结构比金刚石的结构更稳定,而高温能够打破石墨结构,并促使分子重新排列,形成金刚石晶体。
2. 高压条件:金刚石的形成还需要极高的压力条件,通常在50,000大气压(5GPa)以上。
在高压下,石墨的原子之间的距离会变得更近,从而促使原子重新排列形成金刚石晶体。
二、高温高压法合成金刚石的步骤高温高压法合成金刚石的过程通常包括以下几个步骤:1. 准备石墨和金刚石种子:首先,需要准备高纯度的石墨粉末和金刚石种子。
石墨粉末应该具有高度结晶的纯度,并且没有其他掺杂物。
金刚石种子通常是由天然金刚石晶体制备而成。
2. 反应室装填:将石墨粉末和金刚石种子放入反应室中,并加入金属催化剂,如钴、镍或铁。
金属催化剂在反应中起到促进石墨结构转变的作用。
3. 加热:将反应室置于高温炉中,升温至所需的温度。
一般情况下,加热速度较慢,以确保温度均匀分布。
4. 施加压力:加热后,开始施加极高的压力。
通常使用的压力来源是金刚石压机,它能产生足够的压力将石墨转变为金刚石。
5. 保持温度和压力:在一定的时间范围内,保持所需的温度和压力,使金刚石晶体得以长大。
通常,该过程需要几分钟到数小时的时间。
6. 冷却和释放压力:保持温度和压力一段时间后,将反应室从高温高压环境中取出,迅速冷却至室温,并释放压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 热丝CVD(HFCVD)法
热丝化学气相沉积法是利用高温(2200℃左右)热丝(钨丝 或钽丝)将CH4和H2混合气体解理激发,得到大量反应粒子、 原子、电子离子,反应粒子混合后并经历一系列复杂化学反应 到达基体表面,经过吸附和脱附进入气相,扩散到基体近表面 并徘徊至合适反应点,达到适宜条件,沉积为所需物质的方法 。 热丝化学气相沉积对本底真空压强的要求相对要高,其腔体 内的真空环境配置了一台旋转式机械泵,并且对进行反应的各 种混合气体是严格控制的(气体流量单位为标准每立方厘米每 分钟,简称SCCM)。还配有一微量流量计用以来监控并维持 真空腔体内的反应压力变化,反应时,其工作压强一般为3.0~ 5.0 kPa,同时,对基片进行加热,升温至700~900 ℃。
1、大自然赐予人类的礼物 早在公元前1000年,人们就发现并知道金刚石 很硬。长期以来,她无论是在科学家还是在普通 老百姓心目中都占据着重要地位。一直以来,人 们都热衷于收藏各式各样的钻石(加工过的金刚 石),因为精美华丽的钻石不仅是富贵的象征, 更是权利和地位的象征,所以,钻石的价值早已 超出了它的实际价格。
• 火山爆发时,它们夹在岩浆中,上升到接近地表 时冷却,形成含有少量钻石的原生矿床——金伯 利岩。 • 自然界中天然钻石少之又少,大颗粒钻石更是凤 毛麟角。一般说来,人们从1吨金刚石砂矿中,只 能得到0.5克拉钻石,所以它们远不能满足人们日 益增长的需求。
2、天然金刚石形成机理探讨 地球里有大量CO2和碳酸盐,并且地球内部是还原 性的(远古时还原性更强),实际上天然金刚石很 有可能是CO2或碳酸盐在地球内部合适的地方通 过化学还原而形成的,根据合成金刚石的压力和 温度条件推断天然金刚石在地表以下30公里左右 就能形成。
1.2.1 燃烧火焰法
燃烧火焰也是一种等离子体,其也有两种形式的装置:一种 通常是用于开放式的火焰;另一种适用于腔体的火焰,其电子密 度在106~108 cm-3;电子能量在0.05~1 eV 范围内。火焰法采 用本生式燃烧,即在碳源气体中预先混合氧气,再进行扩散燃 烧。只要氧气适量,就能形成由焰心、内焰(还原焰)、外焰 (氧化焰)构成的本生火焰。这样,选用适当的材料作为基板 ,将基板设置在内焰中,并保持一定的温度,内焰等离子体中 形成的部分碳的游离基团(如C2等)就可以在基板上生长出金 刚石。虽然燃烧火焰法不适宜外延高品质、大尺寸的单晶金刚 石膜,但作为一种研究手段,还是简捷易行的。
1.1 高温高压(HTHP)法 高温高压法泛指温度超过1500℃,压强超过109Pa 的 条件下制备金刚石的方法,国外一般称作温度梯度法 ,国内称作温度差法,简称HTHP。1967年,美国通 用公司(GE)研究小组首次提出HTHP法,经过几年 的研究工作,在1971年时,合成出世界上首颗5mm( 约1克拉)单晶金刚石(Ib型),其颜色为黄色,整个 生长过程中晶体的平均生长速率大约为2.5 mg/h,随 后,又研究并制备出了无色(IIa型)和蓝色(IIb型) 大单晶金刚石。但是,这并没有实现大批量的生产, 首先是由于实验设备较大,其次要想长出再现性比较 好的单晶所花费的成本是比较巨大的。
除了作为宝石装饰品外,金刚石广泛运用于精密仪 器、磨料、切割工具、钻探、航天和军事等工业 领域。
• 金刚石的导热性很好,在常温下,它的导热率是 铜的五倍,因此它被用作微波器件和固体激光器 的散热片以及能够在高温(500-700℃)、高频、 高功率或强辐射条件下稳定工作的大规模集成电 路;
• 金刚石晶体的电子亲和势小,是理想的场发射阴 极材料; • 金刚石又是一种宽带隙半导体(Eg=5.5eV),击 穿电压(107V)和饱和电流(2.7x107cm s-1)都远远 高于Si, GaAs, InP等常用的半导体材料,结合其优 异的高温性能,在微电子领域,基于金刚石的集 成电路是现有硅基集成电路强有力的竞争者; • 从深紫外到远红外全透明,可应用于巡航导弹红 外探测器的窗口; • 耐磨性能好,可用于太空梭中的铰链、轴承等活动 连接部位。
MPCVD 法被认为是最理想的生长单晶金刚石的方 法,所以国内外许多人都在进行研究。通过改变工艺 条件如:气体流量、样品的预处理、掺入气体等都会 对制备的单晶金刚石的尺寸及速率产生影响。
通过以上各种方法的介绍可以看出,CVD法相对HTHP法而 言主要的优势如下:1)金刚石纯度高。在HTHP法中,因为金 刚石是在一个经高温处理后熔融的触媒里生长的,其晶格中不 可避免的会掺进构成触媒的金属原子。而在CVD法中,通入腔 体的原料气体的纯度一般会很高, 所以生成高纯度的金刚石膜 是有可能的。2)理想情况下可以将金刚石膜的尺寸面积做大。 CVD的反应装置是一个配有真空系统的谐振腔体,将腔体无穷 的走向大型化是有可能的。目前用CVD法制备大尺寸的单晶需 要选用同样大尺寸单晶作为晶种, 原则上所制备的膜会和所提 供的晶种大小一样。一旦谐振腔能够做到一定的尺寸,所制备 的膜的尺寸也会相应扩大,而且可以有效地减低生产成本, 实 现多颗单晶的同时生长。
二、石墨 一种深灰色的有金 属光泽而不透明的细 鳞片状固体。 石墨很软,有滑腻感 。在纸上画过能留下 深灰色的痕迹。 此外,石墨还具有优 良的导电性能。
同一类原子,排列方式不同,所形成的单质不同。
金刚石
石墨
金刚石晶体属于立方晶系,晶格常数0.3566nm 。金刚石的所有优异性质,都得益于它的碳-碳四面 体连接的三维网络结构,即中心碳原子以四个sp3杂 化轨道与四个邻近的碳原子成键(键长0.154nm,键 角109°28′),形成四个σ键。
MPCVD法制备金刚石膜具有许多优点,如反应过程中无电极 ,就不会发生HFCVD 法中因金属丝蒸发、游离到沉积的金刚石 表面,而产生污染问题;直流等离子喷射CVD法中,在电弧的 产生过程中,点火和熄灭所引起的热冲击非常容易造成金刚石 从基片表面脱落;微波激发的等离子体,其电离密度较高等, 因此MPCVD法是众多CVD 法制备金刚石膜中研究者们的首选 。 MPCVD方法制备的金刚石在成核、结晶及生长特性方面与传 统的热丝化学气相沉积(HFCVD)方法有着基本类似的规律。 但对其生长速率而言,比HFCVD法要慢,一般只有0.5~1.0 μm/h。但是,由于MPCVD 方法所制备的金刚石膜有着以上叙 述的优点, 所以一度成为研究学者们制备高品质金刚石薄膜的 主要方法。由此装置可以制备出面积较大、晶体良好、杂质少 、比较纯净的高质量金刚石薄膜。
目前,主要有两种制备合成单晶金刚石的方法:一 种是高温高压法,简称HTHP; 另外一种就是化学气 相沉积法,简称CVD。经过几十年的技术改进,虽然 高温高压法是人工合成金刚石单晶的重要方法, 但其本 身仍存在一些解决不了的问题。CVD法和HTHP法相 比的优势是合成的金刚石尺寸在理论上讲不受限制, 且合成的金刚石纯度高,因此必将取代现有HTHP 方 法而成为单晶金刚石的最佳方法。
然而,HFபைடு நூலகம்VD 也存在一定的缺点,如热丝容易被氧 化并被腐蚀性气体所腐蚀,这就决定了参与反应的原 料气体的种类;又因为热丝是金属材料,造成金刚石 膜的污染也必不可少。如果制备的金刚石薄膜是用于 机械加工行业,一些金属掺入的污染并不是致命的问 题,但若是应用于微电子或光学窗口领域,这种问题 将是不可以被接受的。如果要提高金刚石薄膜的生长 速率并实现一定取向的生长,热激发所产生的密度不 高的等离子体是不够的,还要通过施加偏压来改善。
据说, 1953年瑞士的一个研究组曾经合成了钻石,但没 有发表有关结果. 1954年12月8日,美国GE (通用电器) 公司宣布H. Tracy Hall等人成功地合成了金刚石, 158 年的苦苦探索终于结出了成功的果实,从此人工合成金 刚石的产量逐渐超过了天然金刚石的产量. 工业化合 成金刚石需要1400℃的高温和5万—10万个大气压的 超高压条件,由于合成条件限制,此种方法很难生长大 晶体,尽管国外有些报道,但由于条件苛刻未能商业化 生产. 对于尖端技术上(如巡航导弹的红外探测器窗口) 所用的金刚石,就要求它的尺寸较大. 而且高温高压方 法成本高,设备复杂,尤其是产品颗粒尺寸小、颜色黄, 也很难制成宝石级金刚石.
碳-碳共价键网络赋予金刚石优异的性能
1
天然金刚石
金刚石人工合成 影响金刚石晶体生长速度的主要因素 国内外研究成果及最新研究进展
2 3 4 5
• 一、金刚石
• 纯净的金刚石是无色、 透明、正八面体形状 的固体。是天然最硬 的物质。加工琢磨后 璀璨、夺目有光泽。
金刚石很硬——切割大理石 钻探机钻头 玻璃刀刻画玻璃 饰品——钻石
目前工业上主要还是利用HPHT法制备单晶金刚石, 其最大优点是制造工艺较简单,金刚石的生长速度快 ,通常在10~20 min 内就能合成出 1 mm 以下的金刚 石单晶,从而满足各种工业需要。随着生长技术的发 展,现在通过控制成核可以生长出粒径达 2 mm 的金 刚石。
但HTHP 法也有不足之处:如制备的单个颗粒尺 寸较小, 不能有效地进行重复生长,难以进行半导 体掺杂, 设备的不稳定性导致不能合成比较大尺寸 的单晶,实验过程中的参数难以控制;另外 HTHP 法合成的单晶金刚石中还会带有一些杂质 ,如触媒、金属催化剂中的属颗粒等;长时间的 高温高压对设备的要求极为苛刻, 由此产生了巨 大的生产成本; 而且用目前HTHP 制备合成的金 刚石的尺寸限制了金刚石作为功能材料的大规模 应用,其尺寸仅仅最大也就能做到几个毫米。
HTHP法中,目前有两种设备可用以制备金刚石 :一种是用六面顶压机,它主要是将石墨相的碳转 化为金刚石相的碳;另外一种设备是两段式分球压 机设备,它是由前苏联科学家Boris Feigelson 等人在 90年代初研制开发的。 就目前的HTHP法生长技术而言,要想合成大颗粒 单晶金刚石还需要经历一段时间,一般也就只能合 成小颗粒的金刚石, 而在大单晶金刚石合成技术上 ,实验人员采用的是晶种法,即在更高压力和温度 下(6000 MPa,1520 ℃),经过数天的生长,种 子颗粒大小就可以达到几个毫米宝石级金刚石, 其 重量达到约几个克拉。