工程光学课程设计

工程光学课程设计
工程光学课程设计

课程设计说明书

课程设计名称:工程光学课程设计

课程设计题目:三片式数码物镜的优化设计

学院名称:理学院

专业班级:光电信息科学与工程激光一班

学生学号:1409090119

学生姓名:夏志高

学生成绩:

指导教师:梁春雷

课程设计时间: 2016/06/27 至2016/07/03

课程设计任务书

一、课程设计的任务和基本要求

1.查阅相关资料,光学设计的基本概念、光学玻璃的相关知识和软件的使用。

2.学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。

3.本课题要求设计出一个三片式数码照相物镜,要求的光学特性为:mm f 6=',

41='f D , 502=ω;像质主要以调制传递函数MTF 衡量,具体要求是对于低频(17lp/mm),视场中心的MTF ≥0.9,视场边缘的MTF ≥0.80;对于高频(51lp/mm),视场中心的MTF ≥0.3,视场边缘的MTF ≥0.20,另外,最大相对畸变dist ≤4%。该物镜对d 光校正单色像差,对F 、C 光为校正色差。

4.学习使用ZEMAX 进行数据录入和报表输出,分析各种初级像差并设置优化函数;设计三片式数码照相物镜并优化,对像差做简单的分析之后,撰写课程设计论文。

5.课题设计(论文)难度适中,工作努力,遵守纪律,工作作风严谨务实,按期圆满完成规定的任务。

6.综述简练完整,有见解;立论正确,论述充分,结论严谨合理;文字通顺,技术用语准确,符号统一,编号齐全,书写工整规范,图表完备、整洁、正确;论文(设计)结果有一定的参考价值。

二、进度安排

1.6月27日:了解光学设计的基本概念、光学玻璃的相关知识和软件的使用。以单透镜的设计为例学习数据的录入,基本概念和设计思想在软件中的实现,初步掌握ZEMAX 的分析工具和数据含义及输出。

2.6月28日至6月29日:学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。

3.6月30日:学习查找文献资料,选择合适的数码物镜初始结构,用缩放法进行缩放,缓慢调整有关参数并优化,并最终得到比较好的设计参数。学习光学玻璃材料知识,通过选择合适的玻璃,校正像差。

4.7月1日:整理思路,撰写课程设计论文,论文中要体现像差概念和评价、体现zemax 评价函数的构造及优化过程像差的变化;检查格式,符合课程设计论文格式要求。

5.7月2日至7月3日:课程设计答辩并上交论文;

三、参考资料或参考文献

[1]胡玉禧.应用光学[M].2版,合肥:中国科学技术大学出版社,2015.2

[2]张以谟.应用光学[M].3版,北京:电子工业出版社,2010.7

[3]郁道银,谈恒英.工程光学[M].3版北京:机械工业出版社,2011.

[4]李晓彤,岑兆丰.几何光学像差光学设计[M],杭州:浙江大学出版社,2003.

[5]王之江,实用光学技术手册[M],北京:机械工业出版社,2007.

[6]王朝晖,焦斌亮,徐朝鹏编著.光学系统设计教程[M].北京:北京邮电大学出版社,2013.8

[7]毛文炜.现代光学镜头设计方法与实例[M].北京:机械工业出版社,2013.4.

[8]林晓阳.ZEMAX光学设计超级学习手册[M].北京:人民邮电出版社,2014.4

本科生课程设计成绩评定表

目录

1.照相机物镜的发展历程0

2.技术要求1

3.光学系统成像评价2

3.1概述2

3.2几何像差及其相应校正方法2

3.2.1球差2

3.2.2彗差3

3.2.3像散3

3.2.4场曲3

3.2.5畸变4

3.2.6色差4

4.三片型照相物镜的设计4

4.1定义系统参数4

4.1.1入瞳直径4

4.1.2 孔径值5

4.1.3 视场6

4.1.4波长6

4.2校正及优化11

4.2.1调试过程11

4.2.2最终优化结果12

5.设计总结19

6.心得体会20

1.照相机物镜的发展历程

很早就有透镜的相关记载,比如出现在古希腊阿里斯托芬的戏剧云彩中的烧玻璃;古罗马老普林尼的文字叙述中也表示罗马帝国知道烧玻璃,并且提及矫正透镜第一个可能的用途:说是尼禄用于观看格斗比赛使用的绿宝石。阿拉伯的数学家Ibn Sahl使用所知的史奈尔定律计算透镜的形状。最古老的人工制品是在美索不达米亚的尼尼微被挖掘出来的石英透镜,大约出现在纪元前640年。

中国战国时期的《墨子》一书,叙述了透镜成像规律。《墨子·经下》及《墨子·经说下》的第二四、二五条,便分别叙述了凹透镜和凸透镜的成像规律。

眼镜大约在1280年的意大利被发明,之后透镜才被普遍的利用。尼古拉斯·库沙则被认为是第一位将凹透镜用于治疗近视的人,时间则是1451年。

恩斯特·阿贝(1860年)提出的阿贝正弦条件,描述了透镜或其他光学系统要能在离开光轴的区域上产生如同在光轴上一样清晰的影像所必须要的条件。他改革了光学仪器,例如显微镜的设计,主导了光学仪器的研究与发展。

在日常生活中,照相机是人们必不可少的,他历史悠久,发展迅速,给人们的往日生活带来了美好的回忆。1500年意大利人发明用暗室能观察影像,到十八世纪初出现了木制暗箱。1812年英国人渥拉斯顿用新月形凹透镜作为暗箱的镜头,能获得较好的影像,这就是后来的照相机镜头的雏形。

1727年德国人发现硝酸银和白粉的混合物具有感光性。1839年法国人达盖尔发明了银版法,得出了逼真的正像,感光性能有了明显的改进。法国机械商将带有渥拉斯顿型镜头的木制暗箱装上银版感光片,第一次摄下了人像,成为人类历史上第一架可供使用的照相机。从第一架照相机问世至今的一百多年来,照相机有了飞速的发展,它的演变历史大致可分为三个阶段:

1.从1839年到1938年这近百年的时间,为照相机的初级阶段。其特点是适应摄影实践的需求,提高照相机的技术性能和发展照相机的品种。这个阶段后期,形成了照相机工业,并进入了光学机械制造行业。

2.从1939年到五十年代末,为照相机的发展中阶段。特点是光学机械结构进一步完善,电子技术开始应用在照相机上,这个阶段也是120和135照相机并行发展的时代。

3.从六十年代开始至今,为照相机发展的第三阶段。照相机已经进入光学精密机

械与电子相结合的时代,或称为高级阶段。

2.技术要求

',设计出一个三片式数码照相物镜,要求的光学特性为:mm

f6

=

ω;像质主要以调制传递函数MTF衡量,具体要求是对于低频

D,

1

='f

4

50

2=

(17lp/mm),视场中心的MTF≥0.9,视场边缘的MTF≥0.80;对于高频(51lp/mm),视场中心的MTF≥0.3,视场边缘的MTF≥0.20,另外,最大相对畸变dist≤4%。该物镜对d 光校正单色像差,对F、C光为校正色差。

3.光学系统成像评价

3.1概述

光学设计必须校正光学系统的像差,但既不可能也无必要把像差校正到完全理想的程度,因此需要选择像差的最佳校正也需要确定校正到怎样的程度才能满足使用要求,即确定像差容限。对光学系统成像性能的要求主要有两个方面:第一方面是光学特性,包括焦距、像距、放大率、入瞳位置、入瞳距离等;第二方面是成像质量,光学系统所成的像应该足够清晰,并且物像相似,变形要小

3.2几何像差及其相应校正方法

像差指在光学系统中由透镜材料的特性或折射(或反射)表面的几何形状引起实际

像与理想像的偏差。理想像就是由理想光学系统所成的像。实际的光学系统,只有在近轴区域以很小的孔径角的光束所生成的像才是完善的。但在实际应用中,须有一定大小的成像空间和光束孔径,同时还由于成像光束多是有不同颜色的光组成的,同一介质的折射率随颜色而异。因此实际光学系统的成像具有一系列缺陷,这就是像差。像差的大小反映了光学系统质量的优劣。几何像差主要有七种:其中单色光像差有五种,即球差、彗差、像散、场曲和畸变;在实际的光学系统中,各种像差是同时存在的。它影响了光学系统成像的清晰度、相似性和色彩逼真等,降低了成像质量。

3.2.1球差

球差亦称球面像差。轴上物点发出的光束,经光学系统以后,与光轴夹不同角度的光线交光轴于不同位置,因此,在像面上形成一个圆形弥散斑,这就是球差。一般是以实际光线在像方与光轴的交点相对于近轴光线与光轴交点(即高斯像点)的轴向距离来

度量它。

对于单色光而言,球差是轴上点成像时唯一存在的像差。轴外点成像时,存在许多种像差,球差只是其中的一种。除特殊情况外,一般而言,单个球面透镜不能校正球差,正透镜产生负球差,负透镜产生正球差。对一定位置的物点而言,当保持透镜的孔径和焦距不变时,球差的大小随透镜的形状而异。

单透镜自身不能校正球差。单正透镜产生的球差是负值,如图2-3(a),单负透镜则产生正球差。为获得消球差系统,必须采用正负透镜的组合,最简单的形式有正负胶合

在一起的双胶合透镜以及正负胶之间有一定的空气间隔的双分离透镜

3.2.2彗差

光轴外的某一物点向镜头发出一束平行光线,经光学系统后,在象平面上会形成不对称的弥散光斑,这种弥散光斑的形状呈彗星形,即由中心到边缘拖着一个由细到粗的尾巴,其首端明亮、清晰,尾端宽大、暗淡、模糊。这种轴外光束引起的像差称为彗差。

彗差的大小是以它所形成的弥散光斑的不对称程度来表示。彗差的大小既与孔径有关,也与视场有关。

由于慧差是垂轴像差,且彗差大小与光束宽度、物体大小、光阑位置、光组内部结构(透镜的折射率、曲率、孔径等)有关。改变透镜的形状或组合,可较好地消除彗差。如能对该透镜消除球差,则彗差亦得到改善。另外当系统结构完全对称,孔径光阑置于系统的中央,且物像放大率为β=-1时,整个光束结构关于系统的中心点对称,如图2-7所示,系统前半部产生的慧差与后半部产生的慧差绝对值相同、符号相反,慧差完全自动消除。

对于彗差的校正:可以利用合适的视场和孔径,但不宜过大;合理选择玻璃材料,改变球面曲率半径;采用对称结构。

3.2.3像散

由于发光物点不在光学系统的光轴上,它所发出的光束与光轴有一倾斜角。该光束经透镜折射后,其子午细光束与弧矢细光束的汇聚点不在一个点上。即光束不能聚焦于一点,成像不清晰,故产生像散。

像散也是影响清晰度的轴外点单色像差。当视场很大时,边缘上的物点离光轴远,光束倾斜大,经光学系统后则引起像散。像散使原来的物点在成像后变成两个分离并且相互垂直的短线,在理想像平面上综合后,形成一个椭圆形的斑点。像散是通过复杂的透镜组合来消除,对于像散的校正,有以下方法:可以控制视场,小为宜;改变球面曲率;适当透镜材料;合理设置光阑的位置。

3.2.4场曲

垂直于主轴的平面物体经光学系统所结成的清晰影像,若不在一垂直于主轴的像平面内,而在一以主轴为对称的弯曲表面上,即最佳像面为一曲面,则此光学系统的成像误差称为场曲。

像散和场曲既有区别又有联系。有像散必然存在场曲,但场曲存在时不一定有像散。

对于场曲的校正,可以采用弯月型厚透镜,或者采用正负透镜分离的方法。

3.2.5畸变

被摄物平面内的主轴外直线,经光学系统成像后变为曲线,则此光学系统的成像误差称为畸变[2]。

畸变是指物所成的像在形状上的变形。畸变并不会影响像的清晰度,而只影响像与物的相似性。这是畸变与球差、慧差、像散、场曲之间的根本区别。由于畸变的存在,物方的一条直线在像方就变成了一条曲线,造成像的失真畸变与其他像差不同,它仅由主光线的光路决定,引起像的变形,并不影响成像清晰度。对于畸变的校正:可以选择合适的光阑;如果是垂轴像差,当β=-1时,这种像差可以自动校正。

3.2.6色差

大多数情况下,物体都以复色光成像,白光包含了各种不同波长的单色光,光学材料对不同波长的谱线有不同的折射率。当白光经过光学系统时,系统对不同波长有不同的焦距,各谱线将形成各自的像点,导致一个物点对应有许许多多不同波长的像点位置和放大率,这种成像的色差异我们统称为色差

4.三片型照相物镜的设计

4.1定义系统参数

4.1.1入瞳直径

启动ZEMAX,输入原始数据。通常,在开始设计一个新系统时,定义的第一个参数是系统孔径。在ZEAMX中,系统孔径的作用有两个方面,一是规定在整个光学系统中,ZEMAX需要追迹的的光束的宽度;二是规定在OBJ面上,由每个场点所发出的光线的初始方向余弦。系统孔径可用不同的方式定义,可心定义为Entrance Pupil Diameter (EPD,入瞳直径),Image Space F/#(像空间F数),Object Space NA(物空间数值孔径),Float By Stop Size(大小可变的浮动光阑),等等。

对我们这个单透镜,确定其EPD值很容易。如前所述,这是一个F/4透镜,意即4#F。同时,有效焦距为100mm。#F定义为,当物和像都位于无穷远时,近轴有效焦距同近轴入瞳直径之比。据此,我们这个单透镜的EPD应为4mm:

#

图4.1.1入瞳直径的设定

4.1.2 孔径值

在ZEMAX中,透镜单位有millimeters(毫米)、centimeters(厘米)、inches(英寸),或meters(米)四种选择。对我们这个单透镜,将采用millimeters。在System General dialog的Units框内,选择Millimeters作为透镜单位

图4.1.2透镜单位的设定

4.1.3视场

图4.1.3视场的设定4.1.4波长

图4.1.4入射光波长的设定设置好后的系统数据如下:

原始数据:System/Prescription Data

File : D:\qq文件\1948602543\FileRecv\SANPIAN0.ZMX

Title:

Date : THU JUN 30 2016

GENERAL LENS DATA:

Surfaces : 9

Stop : 4

System Aperture : Image Space F/# = 4.5

Glass Catalogs : SCHOTT

Ray Aiming : Off

Apodization : Uniform, factor = 0.00000E+000

Effective Focal Length : 100 (in air at system temperature and pressure)

Effective Focal Length : 100 (in image space)

Back Focal Length : 86.38925

Total Track : 143.807

Image Space F/# : 4.5

Paraxial Working F/# : 4.5

Working F/# : 4.500112

Image Space NA : 0.1104315

Object Space NA : 1.111111e-009

Stop Radius : 8.673456

Paraxial Image Height : 36.39702

Paraxial Magnification : 0

Entrance Pupil Diameter : 22.22222

Entrance Pupil Position : 43.64339

Exit Pupil Diameter : 23.21977

Exit Pupil Position : -104.489

设置好之后在Zemax中显示图形如下:

图4.1.5设计好之后的光路图

图4.1.6优化之前的波像差

图4.1.7优化前的像差最大值图 4.1.8优化前的场曲和畸变

图4.1.9优化前的弥散半径

图4.1.10优化前视场中心和边缘的MTF

4.2校正及优化

4.2.1调试过程

在光学设计时,要满足给定的约束条件,两种方法:

1.将对约束条件有影响的参数设为变量,并且在Merit Function Editor(评价函数编辑器,将在稍后介绍)中,添加边界约束条件。

2.采用特殊的solves,以强化约束条件,同时消除不必要的变量。在这两种方法,后一种更好。虽然两种方法都能通过调整透镜参数,达到维持特定边界条件的目的,但额外添加的边界约束条件,会减慢评价函数的运行速度。

1.插入优化函数。

图4.2.1插入的优化函数

2.将玻璃设为模型。

3.改变面之间厚度,优化,直到各种像差都达到最优。

4.将模型玻璃变成实际玻璃,再改变厚度以及玻璃类型,变动一次优化一次,直到符合要求。

图4.2.2确定好的玻璃类型和厚度

4.2.2最终优化结果

系统数据:

System/Prescription Data

File : G:\SANPIAN011213.ZMX

Title:

Date : THU JUN 30 2016

GENERAL LENS DATA:

Surfaces : 9

Stop : 4

System Aperture : Image Space F/# = 4

Glass Catalogs : SCHOTT

Ray Aiming : Off

Apodization : Uniform, factor = 0.00000E+000

Effective Focal Length : 5.999979 (in air at system temperature and pressure)

Effective Focal Length : 5.999979 (in image space)

Back Focal Length : 4.737781

Total Track : 8.785474

Image Space F/# : 4

Paraxial Working F/# : 4

Working F/# : 4.014838

Image Space NA : 0.1240347

Object Space NA : 7.499974e-011

Stop Radius : 0.5824492

Paraxial Image Height : 2.797836

Paraxial Magnification : 0

Entrance Pupil Diameter : 1.499995

Entrance Pupil Position : 2.750199

Exit Pupil Diameter : 1.523187

Exit Pupil Position : -6.092749

Field Type : Angle in degrees

Maximum Field : 25

Primary Wave : 0.5875618

Lens Units : Millimeters

Angular Magnification : 0.9847738

优化后的图:

图4.2.3优化后的光路图

二维图的说明:九条光线经过一个三片式透镜,第一个和第三个为凸透镜,第二个位凹透镜,光线经过优化集中到三点。

图4.2.4优化后的RAY图

像差RAY图的分析:EX表示子午像差,EY 表示弧矢像差,横坐标是光学系统的入瞳标量,因此总是从-1到+1之间。显然0的位置对应就是光轴在入瞳中心的焦点。纵坐标则是针对主光线(发光点直穿光阑中心点的那条光线)在像面上的位置的相对数值。

像差最大值由优化前的200微米到50微米,符合要求。

相关主题
相关文档
最新文档