0135.模拟信号隔离采集AD 转换器

0135.模拟信号隔离采集AD 转换器
0135.模拟信号隔离采集AD 转换器

模拟信号隔离采集AD 转换器

4-20mA 转RS485模拟量隔离变送器:ISO 4021系列

概述

ISO 4021系列产品实现传感器和主机之间的信号采集,用以检测模拟信号或控制远程设备。通过软件的配置,可用于多种传感器类型,包括:模拟信号输入,模拟信号输出,和数字信号输入/输出(I/O ),ISO 4021系列产品可应用在RS232或RS485总线工业自动化控制系统,4-20mA /0-5V 信号测量、监视和控制,小信号的测量以及工业现场信号隔离及长线传输等等。

产品包括电源隔离,信号隔离、线性化,AD 转换和RS485串行通信。每个串口最多可接256只ISO 4021系列模块,通讯方式采用ASCII 码通讯协议或Modbus RTU 通讯协议,其指令集兼容于ADAM 模块,波特率可由代码设置,能与其他厂家的控制模块挂在同一RS-485总线上,便于计算机编程。

ISO 4021系列产品是基于单片机的智能监测和控制系统,所有的用户设定的校准值,地址,波特率,数据格式,校验和状态等配置信息都储存在非易失性存储器EEPROM 里。

ISO 4021系列产品按工业标准设计、制造,信号输入/输出之间隔离,可承受3000VDC 隔离电压,抗干扰能力强,可靠性高。工作温度范围-25℃~+70℃。

图1.ISO 4021产品原理框图

ISO 4021功能简介

ISO 4021信号隔离采集模块,可以用来测量一路电压或电流信号,也可以用来测量两路可以共地且不会互相干扰的电流或电压信号。

1、模拟信号输入24位采集精度,产品出厂前所有信号输入范围已全部校准。在使用时,用户也可以很方便的自行编程校准。

具体电流或电压输入量程请看产品选型,测量两路信号时两路输入选型必须相同。

产品特点

典型应用:●低成本、小体积模块化设计●模拟信号采集,隔离转换RS485或RS232输出●测量精度优于0.05%●自动选择RS485或RS232输出,可程控校准模块精度●信号输入与输出之间隔离电压3000VDC ●宽电源供电范围:8~50VDC ●可靠性高,编程方便,易于安装和布线●用户可编程设置模块地址、波特率等●支持Modbus RTU 总线通讯协议●PLC 、DCS 信号远程测量、监视和控制●智能楼宇控制、安防工程等PC 监测系统●RS232或RS485总线工业自动化控制系统●工业现场数据采集、隔离及长线传输●设备安全运行调控与监视●多路传感器模拟信号的采集、测量与远传●工业现场数据的获取与记录●电力设备、医疗仪器、工控产品开发●4-20mA 信号采集转换及远程变送

2、通讯协议

通讯接口:1路标准的RS485通讯接口或1路标准的RS232通讯接口,订货选型时注明。

通讯协议:支持两种协议,命令集定义的字符协议和Modbus RTU通讯协议。可通过编程设定使用那种通讯协议,能实现与多种品牌的PLC、RTU或计算机监控系统进行网络通讯。

数据格式:10位。1位起始位,8位数据位,1位停止位。

通讯地址(0~255)和波特率(300、600、1200、2400、4800、9600、19200、38400bps)均可设定;通讯网络最长距离可达1200米,通过双绞屏蔽电缆连接。

通讯接口高抗干扰设计,±15KV ESD保护,通信响应时间小于100mS。

3、抗干扰

可根据需要设置校验和。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数字滤波,也可以很好的抑制来自电网的工频干扰。

产品选型

ISO4021U(A)□-□

输入电压或电流信号值通讯接口

U1:0-5V A1:0-1mA485:输出为RS-485接口

U2:0-10V A2:0-10mA232:输出为RS-232接口

U3:0-75mV A3:0-20mA232/485:输出为一路RS-232或RS-485接口

U4:0-2.5V A4:4-20mA(自动选择其中一路)

U5:0-±5V A5:0-±1mA

U6:0-±10V A6:0-±10mA

U7:0-±100mV A7:0-±20mA

U8:用户自定义A8:用户自定义

选型举例1:型号:ISO4021A4-485表示4-20mA信号输入,输出为RS485接口

选型举例2:型号:ISO4021A7-232表示0-±20mA信号输入,输出为RS232接口

选型举例3:型号:ISO4021U1-232/485表示0-5V信号输入,输出为RS232或RS485接口(自动选择)

ISO4021通用参数

(typical@+25℃,Vs为24VDC)

输入类型:电流输入/电压输入

精度:0.05%

输入失调:±0.1uA/℃

温度漂移:±15ppm/℃(±30ppm/℃,最大)

输入电阻:50Ω(4-20mA/0-20mA/0-±20mA电流输入)

100Ω(0-10mA/0-±10mA电流输入)

1KΩ(0-1mA/0-±1mA电流输入)

大于1MΩ(电压输入)

带宽:-3dB10Hz

转换速率:10Sps

共模抑制(CMR):120dB(1kΩSource Imbalance@50/60Hz)

常模抑制(NMR):60dB(1kΩSource Imbalance@50/60Hz)

输入端保护:过压保护,过流保护

通讯:协议RS485或RS232标准字符协议和Modbus RTU通讯协议

波特率(300、600、1200、2400、4800、9600、19200、38400bps)可软件选择

地址(0~255)可软件选择

通讯响应时间:100ms最大

工作电源:+8~50VDC宽供电范围,内部有防反接和过压保护电路

功率消耗:小于1W

模拟量信号干扰分析及11种解决秘诀

模拟量信号干扰分析及11种解决秘诀 关键词:PLC 模拟量信号干扰 1、概述 随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。 2、电磁干扰源及对系统的干扰 影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。 干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。 3、PLC 控制系统中电磁干扰的主要来源有哪些呢? (1) 来自空间的辐射干扰: 空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。若PLC 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC 内部的辐射,由电路感应产生干扰;而是对PLC 通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。 (2) 来自系统外引线的干扰: 主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。 (3)来自电源的干扰:

四通道数据采集系统

四通道数据采集系统 姓名:□□□ 学号:113110000918 摘要:数据采集技术是信息科学的一个重要分支,它研究信息数据的采集、存储、处理及控制等工作,一个数据采集系统通常是由数据采集、信号调理、数据转换以及存储等4个主要部分组成。本文主要研究了一种基于AD7934-6的数据采集系统的整体实现,具体包括信号调理电路设计、ADC外围电路设计及ADC驱动设计。设计了信号调理电路,高性能的信号调理电路是实现良好测量精度的重要条件,合理且简单的数据采集前端处理既是对硬件电路的简化,提高硬件系统可靠性,也简化处理器软设计、减小软件处理时间。给出了ADC驱动时序,处理器对ADC的合理驱动使ADC在合理的时序工作,确保ADC转换的可靠性。 关键字:数据采集、调理电路、ADC驱动 1本文完成的工作 在查阅了相关数据采集系统文献的基础上,本文设计了信号调理电路、ADC 外围电路以及CPU对ADC的驱动逻辑。基本完整地设计了一种基于AD7934-6的数据采集系统的硬件电路原理图及软件驱动。 2 硬件原理图设计 2.1 信号调理电路 数据采集前端信号调理电路就是在数模转换前对信号调理的过程。送入数据采集系统的模拟信号经过传感器转换成电信号,电信号必须经过合理的信号调理电路才能达到较好的测量精度,而合理的数据采集前端处理结构能简化电路,降低实现难度,保证系统的可靠运行。信号调理电路就是从信号输入到ADC转换之间的模拟电路,包括输入电路、前置放大器、电源电路等。 本数据采集系统需对压力传感器输出的标准4~20mA电流进行采样。系统中电流采样是通过采样电阻将小电流信号转换成电压信号并且经过调理电路后进行采样。由于电流信号是通过AD7934-6模数转换器来完成,当参考电平设置为2.5V时,ADC采样口只能输入0~2.5V电压,所以调理电路输出应该不大于2.5V。本系统所设计的调理电路由单个运算放大器构成。本系统的采样电阻选择100Ω电阻,运算放大器选择的是LM358,其内部包含两个独立的、高增益、内部频率补偿的运算放大器。调理电压输出经过低通无源滤波输出,考虑到传感器输出频率<1kHz,滤波频率选择略大于1kHz。电流采样调理电路设计如图2.1所示。

基于Ucos的多通道数据采集系统(DOC)(可编辑修改word版)

课程设计(论文)任务书 信息工程学院物联网专业2014-2 班 一、课程设计(论文)题目基于Ucos 的多通道数据采集系统 二、课程设计(论文)工作自2017 年06 月26 日起至2017 年06 月30 日止。三、 课程设计(论文) 地点:嵌入式系统实验室 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)使学生掌握嵌入式开发板(实验箱)各功能模块的基本工作原理; (2)培养嵌入式系统的应用能力及嵌入式软件的开发能力; (3)使学生较熟练地应用嵌入式操作系统及其API 开发嵌入式应用软件; (4)培养学生分析、解决问题的能力; (5)提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)分析所设计嵌入式软件系统中各功能模块的实现机制; (2)选用合适嵌入式操作系统及其API; (3)编码实现最终的嵌入式软件系统; (4)在实验箱上调试、测试并获得最终结果。 2)创新要求: 在基本要求达到后,可进行创新设计,如改善嵌入式软件实时性能;扩展嵌入式软件功能及改善其图形用户界面。 3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文。 (2)论文包括目录、正文、小结、参考文献、谢辞、附录等(以上可作微调)。 (3)课程设计论文装订按学校的统一要求完成。 4)课程设计评分标准: (1)学习态度:20 分; (2)回答问题及系统演示:30 分 (3)课程设计报告书论文质量:50 分。 成绩评定实行优秀、良好、中等、及格和不及格五个等级。不及格者需重做。 5)参考文献: (1)罗蕾.《嵌入式实时操作系统及应用开发》北京航空航天大学出版社 (2)Jean https://www.360docs.net/doc/9e1889108.html,brosse. 《嵌入式实时操作系统uC/OS-II》北京航空航天大学出版社 (3)王田苗.《嵌入式设计与开发实例》.北京航空航天大学出版社 (4)北京博创科技公司. 《嵌入式系统实验指导书》

基于LabVIEW的多通道数据采集系统信号处理

目:基于LabVIEW的多通道数据采集系统 2010 年 03 月 20 日 互联网会议PPT资料大全技术大会产品经理大会网络营销大会交互体验大会 毕业设计开题报告 1.结合毕业论文课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1. 本课题的研究背景及意义 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置原来越多的被个人计算机所占据。其中,软件系统是计算机系统的核心,设置是整个测控系统的灵魂,应用于测控领域的软件系统成为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统在很多领域得到了广泛的应用,并形成了一套完整的理论。 2. 本课题国内外研究现状 早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机系统是以计算机为主体,加上检测装置、执行机构与被控对象共同构成的整体。系统中的计算机实现生产过程的检测、监督和控制功能。由于通信协议的不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互联。随着科学技术的发展,在我国国防、通信、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此提出了测控现场化、远程化、网络化的要求。传统的单机仪器已远远不能适应大数量、高质量的信息采集要求,产生由计算机控制的测控系统,系统内单元通过各种总线互联,进行信息的传输。 网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布的测控的大量需求背景下发展起来,主要分为以下几个阶段:第一阶段: 起始于20世纪70年代通用仪器总线的出现,GPIB实现了计算机与测控系统的首次 结合,使得测量仪器从独立的手工操作单台仪器开始总线计算机控制的多台仪器的测控系统。此阶段是网络化测控系统的雏形与起始阶段。第二阶段:

模拟量信号控制伺服电机

模拟量信号控制伺服电机 试验1 1.接线方式 2.实验设备 R88D-KT02H R88M-K20030H-S2-Z CP1H-XA40DT-D 3.实验参数设定 Pn000=1 (伺服旋转方向选择0:CW方向-右转1:CCW方向-左转)Pn001=1 (伺服控制方式选择1:速度控制—模拟量控制) Pn300=0 (速度控制选择0:模拟量力矩控制) Pn301=0 (速度控制方向选择0:正方向1:反方向) Pn302=600 (速度控制精度 600r/min) Pn303=0 (模拟量速度控制方向切换方式0:CW方向切换) Pn312=1000 (加速时间 1000ms) Pn313=1000 (减速时间 1000ms) Pn314=250 (S曲线加减速时间 250ms)

4.实验过程 使用CP1H-XA40DT-D的模拟量输出功能,使用G5模拟量速度控制功能。 模拟量与速度对应关系如下图所示: 在实验过程中,发现当模拟量输入为0v时,电机以一个很缓慢的速度向CW方向旋转,即发生了“零漂”现象。 在闭环控制中,“零漂”现象对精度的控制有一定的影响,需要抑制住“零漂”现象。 什么叫“零漂”,及如何解决“零漂”现象? 零点漂移可描述为:输入电压为零,输出电压偏离零值的变化。它又被简称为:零漂。 零点漂移是怎样形成的:运算放大器均是采用直接耦合的方式,我们知道直接耦合式放大电路的各级的Q点是相互影响的,由于各级的放大作用,第一级的微弱变化,会使输出极产生很大的变化。当输入短路时(由于一些原因使输入级的Q点发生微弱变化,比如:温度),输出将随时间缓慢变化,这样就形成了零点漂移。 解决“零漂”最有效的方式:随着三极管的导通工作,其温度会上升,导致扩散运动加剧Ic、Ie电流增大,随之Re两端电压增大,Vbe的电压就减小,Ib也随之减小,从而使Ic减小,形成了负反馈,这就是其抑制零漂的原理。 针对G5伺服驱动器而言,需要修改里面参数来起到抑制“零漂”的现象。 对应调整参数: 修改Pn422的数值,默认为0. 此参数的作用是模拟量偏置,以0.359mv为单位,+为CW方向,-为CCW方向。

基于单片机的多路信号采集

信号采集输入电路的设计 与实现 电信1302班 刘志威 0121309340310

摘要 本设计主要完成了基于AT89S51单片机控制的数据采集系统的硬件电路设计以及相应的软件设计。 本系统的硬件设计主要包括:多路转换开关及前置放大电路的设计,采样保持电路的设计,模数转换电路的设计,PC机通信的技术,键盘和显示的设计,系统电源的设计。多路转换开关及前置放大电路的设计中重点介绍了多路开关的选择、AD521放大倍数的计算以及多路开关CD4051和放大器AD521硬件连接电路。采样保持电路的设计中重点介绍了采样保持电路的原理和主要参数以及采样保持器的选择和连接电路。模数转换电路的设计中重点介绍了系统A/D通道的选择和A/D转换器的各项误差分析以及A/D转换器AD574的介绍、输入方式和连接电路。单片机与pc机通信主要是利用MAX232单芯片RC-232标准的接口通信电路。键盘和显示的设计采用八个独立键盘并通过串行通信的方式传输到12864中并显示。电源部分的设计通过采用6V*2的变压器对220V的输入交流电进行降压,经二极管全波整流,通过三端稳压器的稳压,输出5V直流电压。利用555时基电路输出 15V的双电源电压。 关键词:数据采集;AT89S51单片机;CD4051;MAX232

第一章系统硬件设计 本系统的硬件设计主要包括:多路转换开关及前置放大电路的设计,采样保持电路的设计,模数转换电路的设计,PC通信,电源的设计。 1.多路开关的选择 多路转换开关在模拟输入通道中的作用是实现多选一操作,即利用多路转换开关将多路输入中的一路接至后续电路。切换过程可在CPU或数字电路的控制下完成。常用的模拟开关大都采用CMOS工艺,如8选1开关CD4051、双4选1开关CD4052、三3选1开关CD4053等。本设计是实现8路数据采集,所以只选择1片8选1的模拟开关。 模拟多路开关中,不可避免导通电阻R ON 的存在。R ON 使信号电压产生跌落, 跌落量与流过开关的电流成正比。设计中希望R ON 越小越好,但是R ON 越小的器件 价格越高。所以根据器件的价格和系统的容忍度,选择R ON 的值。 多路开关的主要参数是精度和速度。多路开关的精度以传输误差的大小来间接表示。多路开关的速度以信号通过多路开关的通过率来间接表示。 传输误差是衡量多路开关的一个指标,多路开关的传输误差包括两个方面。 (1)多路开关导通电阻加上信号源阻抗与负载阻抗构成了分压器。当要求精度为0.01%时,负载阻抗就应至少是开关导通电阻与信号源阻抗之和的104倍。在数据采集系统中,多路开关的负载一般是采样/保持器。因为典型的多路开关的导通电阻为200欧姆~200千欧姆,所以,如果信号源阻抗在几百欧姆以下,则作为负载的采样/保持器,其输入阻抗应在108欧姆以上。 (2)多路开关的漏电流在信号源阻抗上产生偏移电压,而漏电流与工作温度关系很大。因此,应该根据最高工作温度时的漏电流来计算偏移误差。 通过率是衡量多路开关的另一个指标,是多路开关从一个通道切换并使下一个通道建立到规定精度所能达到的最高切换率。它一方面取决于多路开关建立时间,并与规定的建立精度有关,另一方面为了避免两个通道同时接通,多路开关被设计为“先断后通”,这增加了断开到接通的延时,影响了通过率的提高。在确定多路开关的通过率时,要跟据系统的采样速率来考虑。 根据上面的分析,本设计选用的是采用CMOS工艺的8选1开关CD4051。 CD4051的模拟信号范围为±7.5V,导通电阻R ON 为125欧姆,关断漏电流为0.1μA,

安全栅与隔离器的区别

安全栅与隔离器的区别 安全栅与隔离器的区别 隔离器 用于对现场仪表的各类信号调整、隔离,并转换成计算机、DCS、PLC等能接受的标准信号或用户指定的特殊信号。用于从电气上隔离远动设备和运行设备的一种器件,如继电器等。 安全栅 本质安全型防爆仪器仪表的关联设备,在正常情况下不影响测量系统的功能。它设置在安全场所的一侧,当本安防爆系统发生故障时,能将窜入危险场所的能量(电能)限制在安全值以,从而保证现场生产安全。 作为工业现场与控制室仪表之间的信号隔离变送器设备,信号隔离器和安全栅一直发挥着重要的作用,是工业控制系统中重要的组成部分。随着技术的进步,无论是现场的一次仪表,还是控制系统,都发生了变化,信号隔离器和安全栅也需要进一步发展适应更高的要求。飞创仪表总结多年来的实践经验,对产品进行了改进,对隔离器和安全栅的性能进行了提升,以满足市场的需求。新型的隔离器和安全栅在性能和技术指标上都较过去有了更大的进步。 一、模块化的设计保证对市场的快速响应 隔离器和安全栅一般由输入信号处理单元、隔离单元、输出信号处理单元、电源等4部份构成。根据信号的流向在输入或输出单元增加本质安全设计,从而构成隔离器和安全栅。 虽然实际应用中的隔离器和安全栅基本上都是由上述四个单元构成,但输入、输出的类型和数量的不同,组成了种类繁多的型号,为了满足市场的需求,越来越多的型号使得企业的生产负担加重,数量少品种多使得交货周期越来越长,也使得调试检验的成本增加。这些情况已经严重的阻碍了产品的市场推广。针对这种情况,宇通公司通过仔细的分析,采用模块化的设计方法,将隔离器和安全栅划分为七种功能模块,从而比较好的解决了上述问题。模块化的设计方法极大

PLC对模拟量信号的处理过程及方法

PLC对模拟量信号的处理过程及方法模拟量信号是自动化过程控制系统中最基本的过程信号(压力、温度、流量等)输入形式。系统中的过程信号通过变送器,将这些检测信号转换为统一的电压、电流信号,并将这些信号实时的传送至控制器(PLC)。 PLC通过计算转换,将这些模拟量信号转换为内部的数值信号。从而实现系统的监控及控制。从现场的物理信号到PLC内部处理的数值信号,有以下几个步骤:

从以上PLC模拟量的信号输入流程可以看到,在自动化过程控制系统中,模拟量信号的输入是非常复杂的。但是,在现目前的工业现场,对模拟量信号的处理已基本都采用电流信号方式进行传输,

相比于电压信号方式,电流信号抗干扰能力更强,传输距离更远,信号稳定。 这里就PLC对模拟量信号的转换过程进行一个简单的分解介绍。 PLC对模拟量信号的转换 西门子S7-200SMART PLC模拟量模块对模拟量信号的转换范围 台达DVP系列模拟量模块对模拟量信号的转换范围从以上 可以看到: 1、模拟量信号接入PLC后,PLC将模拟量信号转换为了整型数据,不是浮点数(如西门子-27,648 到 27,648); 2、不同品牌的PLC对模拟量转换范围是有差异的(如西门子-27,648 到 27,648;台达-32,384 到 32,384); 3、PLC同一个模块对不同类型的模拟量信号的转换范围是一致的

(如西门子对±10 V、±5 V、±2.5 V 或 0 到 20mA的模拟量信号的转换范围均为-27,648 到 27,648); 故从以上几点我们可以知道,接入PLC的模拟量信号还需要进行再转换处理,才可以得到与实际物理量相匹配的数据;在进行数据转换处理的时候,还应该与使用的PLC模块的处理数据范围相对应。PLC数据转换处理过程 1、模拟量信号与PLC转换数据之间的转换 从以上内容知道,从PLC直接读取到的模拟量信号为整型数据,整型数据无法直观的反馈出实际的物理量大小,故为了能够直观的反馈出现场的过程信号情况,还应该将这些整型数据转换为反馈直观真实的浮点数信号。这里以台达PLC模拟量输入模块的数据处理过程为例说明。

PLC对模拟量信号是怎么进行处理的

PLC对模拟量信号是怎么进行处理的 模拟量信号是自动化过程控制系统中最基本的过程信号(压力、温度、流量等)输入形式。系统中的过程信号通过变送器,将这些检测信号转换为统一的电压、电流信号,并将这些信号实时的传送至控制器(PLC)。 PLC通过计算转换,将这些模拟量信号转换为内部的数值信号。从而实现系统的监控及控制。从现场的物理信号到PLC内部处理的数值信号,有以下几个步骤:

从以上PLC模拟量的信号输入流程可以看到,在自动化过程控制系统中,模拟量信号的输入是非常复杂的。但是,在现目前的工业现场,对模拟量信号的处理已基本都采用电流信号方式进行传输,相比于电

压信号方式,电流信号抗干扰能力更强,传输距离更远,信号稳定。这里就PLC对模拟量信号的转换过程进行一个简单的分解介绍。 1PLC对模拟量信号的转换 西门子S7-200SMART PLC模拟量模块对模拟量信号的转换范围 台达DVP系列模拟量模块对模拟量信号的转换范围 从以上可以看到: 1、模拟量信号接入PLC后,PLC将模拟量信号转换为了整型数据,不是浮点数(如西门子-27,648 到 27,648); 2、不同品牌的PLC对模拟量转换范围是有差异的(如西门子-27,648 到 27,648;台达-32,384 到 32,384); 3、PLC同一个模块对不同类型的模拟量信号的转换范围是一致的(如西门子对±10 V、±5 V、±2.5 V 或 0 到 20mA的模拟量信号的转

换范围均为-27,648 到 27,648); 故从以上几点我们可以知道,接入PLC的模拟量信号还需要进行再转换处理,才可以得到与实际物理量相匹配的数据;在进行数据转换处理的时候,还应该与使用的PLC模块的处理数据范围相对应。 2PLC数据转换处理过程 1、模拟量信号与PLC转换数据之间的转换 从以上内容知道,从PLC直接读取到的模拟量信号为整型数据,整型数据无法直观的反馈出实际的物理量大小,故为了能够直观的反馈出现场的过程信号情况,还应该将这些整型数据转换为反馈直观真实的浮点数信号。这里以台达PLC模拟量输入模块的数据处理过程为例说明。

多路模拟信号采集电路毕业论文

多路模拟信号采集电路毕业论文 1 绪论 1.1 课题来源及研究的目的和意义 近年来,数据采集与处理的新技术、新方法,直接或间接地引发其革新和变化,实时监控(远程监控)与仿真技术(包括传感器、数据采集、微机芯片数据、可编程控制器PLC、现场总线处理、流程控制、曲线与动画显示、自动故障诊断与报表输出等)把数据采集与处理技术提高到一个崭新的水平。 “数据采集”是指将温度、压力、流量、位移等模拟量采集转换成数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 从严格意义上说,数据采集系统应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算,以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。总之,不论在哪个应用领域中,数据的采集与处理越及时,工作效率就越高,取得的经济效益就越大。 数据采集系统的任务,具体地说,就是传感器从被测对象获取有用信息,并将其输出信号转换为计算机能识别的数字信号,然后送入计算机进行相应的处理,得出所需的数据。同时,将计算得到的数据进行显示、储存或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来进行某些物理量的控制。 数据采集系统性能的好坏,主要取决于它的精度和速度。在保证精度的条件下,应有尽可能高的采样速度,以满足实时采集、实时处理和实时控制的要求[1]。 现场可编程门阵列(FPGA,Field Programmable Gate Array)的出现是超大规

模集成电路(VLSI)技术和计算机辅助设计(CAD)技术发展的结果,是当代电子设计领域中最具活力和发展前途的一项技术,它的硬件描述语言的可修改性、高集成性、高速低功耗、开发周期短、硬件与软件并行性决定了它的崛起是必然的趋势。现场可编程门阵列FPGA器件是Xilinx公司1985年首家推出的,它是一种新型的高密度PLD,采用CMOS-SRAM工艺制作,其部由许多独立的可编程逻辑模块(CLB)组成,逻辑块之间可以灵活的相互连接。CLB的功能很强,不仅能够实现逻辑函数,还可配置成RAM等复杂的形式。配置数据存放在片的SRAM或者熔丝图上,基于SRAM的FPGA器件工作前需要从芯片外部加载配置数据。配置数据可以存储在片外的EPROM 或者计算机上,设计人员可以控制加载过程,在现场修改器件的逻辑功能,即所谓现场可编程[2][3]。 1.2 数据采集系统研究现状 随着数字化进程的加快,工业生产和科学研究等各个领域对数据采集提出了更高的要求。数据采集作为信息处理系统的最前端,从广义上讲,主要包括以下几个方面:数据的采集、数据的存储、数据的初步处理等,并且一般需要通过PC接口总线将数据送入计算机,根据不同的需要进行相应的算法处理。简言之,数据采集系统的主要任务就是把输入的模拟信号转换成数字信号,并对其进行处理,为进一步操作做准备。 数据采集技术已经在雷达系统、通信设备、水声探测、遥感探测、语音处理、智能仪器设备、工业自动化系统以及生物医学工程等众多领域得到广泛的应用,并取得了巨大的经济效益和提高了工作效率。随着工业化和现代化水平的不断发展,以数据采集系统为核心的设备迅速在国外得到了广泛的应用,且对数据采集的要求日益提高。

多通道动态信号采集系统技术参数

多通道动态信号采集系统技术参数 一、设备名称:多通道动态信号采集系统 二、技术参数 *2. 1、通道数:≥32通道;要求系统具备无线采集功能,能远程控制系统的采集开始、结束以及设置参数等; 2. 2、采样频率(所有传感器同步采集):≥100KS/S; *2.3、采集模块:单个采集模块16通道,±75V模拟量输入,16位A/D,通过前端信号调理模块可同时支持应变,ICP类型传感器; 2.4、最高测量精度:0.1%F.S; *2. 5、信号带宽:≥25KHz; 2.6、主机技术要求:供电:10…55VDC,标准内存:256MB,1G内部存储卡,通信接口:TCP/IP,串口,带10个数字I/O和8个脉冲计数输入 *2.7、系统工作温度范围:-20°c~ +65°c * 2.8、系统振动冲击指标:振动20g,冲击60g 2.9、桥盒模块尺寸:不大于32*77*20mm(W*D*H); 2.10、桥盒工作温度范围:-20°c~ +65°c 2.11、通讯接口:以太网; *2. 12、加速度传感器:可充电锂电池,嵌入式数据记录器最大记录不小于800万条数据事件,IP67防护等级,量程8g,三轴向。 (打*项为必须满足项) 三、采集及分析软件。 3.1 带有可扩展的传感器数据库,内置的TEDS 编辑器,可以读写TEDS 数据。软件拥有图形界面,在线计算无需编程,测试数据可以以多种格式保存,例如BIN, RPCIII, MAT, ASCII 或XLS ,并可以再任何时间分析. 3.2 可以让用户采用.NET API (C++, C#, https://www.360docs.net/doc/9e1889108.html,) 使LabVIEWTM等软件。 3.3 web 服务器集成到每个模块中,测试数据可视化,通过浏览器进行浏览,无需安装其他软件. 四、售后服务及其他。 4.1 最好在武汉本地有技术支持中心;

多路模拟信号采集电路毕业论文

1 绪论 1.1 课题来源及研究的目的和意义 近年来,数据采集与处理的新技术、新方法,直接或间接地引发其革新和变化,实时监控(远程监控)与仿真技术(包括传感器、数据采集、微机芯片数据、可编程控制器PLC、现场总线处理、流程控制、曲线与动画显示、自动故障诊断与报表输出等)把数据采集与处理技术提高到一个崭新的水平。 “数据采集”是指将温度、压力、流量、位移等模拟量采集转换成数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 从严格意义上说,数据采集系统应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算,以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。总之,不论在哪个应用领域中,数据的采集与处理越及时,工作效率就越高,取得的经济效益就越大。 数据采集系统的任务,具体地说,就是传感器从被测对象获取有用信息,并将其输出信号转换为计算机能识别的数字信号,然后送入计算机进行相应的处理,得出所需的数据。同时,将计算得到的数据进行显示、储存或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来进行某些物理量的控制。 数据采集系统性能的好坏,主要取决于它的精度和速度。在保证精度的条件下,应有尽可能高的采样速度,以满足实时采集、实时处理和实时控制的要求[1]。 现场可编程门阵列(FPGA,Field Programmable Gate Array)的出现是超大规模集成电路(VLSI)技术和计算机辅助设计(CAD)技术发展的结果,是当代电子设计领域中最具活力和发展前途的一项技术,它的硬件描述语言的可修改性、高集成性、高速低功耗、开发周期短、硬件与软件并行性决定了它的崛起是必然的趋势。现场可编程门阵列FPGA器件是Xilinx公司1985年首家推出的,它是一种新型的高密度PLD,采用CMOS-SRAM工艺制作,其部由许多独立的可编程逻辑模块(CLB)组成,逻辑块之间可以灵活的相互连接。CLB的功能很强,不仅能够实现逻辑函数,还可配置成RAM等复杂的形式。配置数据存放在片的SRAM或者熔丝图上,基于SRAM的FPGA器件工作前需要从芯片外部加载配置数据。配置数据可以存储在片外的EPROM

模拟量输入信号隔离器的类别

模拟量输入信号隔离器的类别

————————————————————————————————作者:————————————————————————————————日期:

模拟量输入信号隔离器的类别 模拟量输入隔离器的品种比较多,从输入通道数来分有单路和双路,以及一路输入、二路输出信号分配功能的品种。供电方式来分又有:回路供电型和独立供电型。 回路供电型 回路供电型信号隔离器俗称无源信号隔离器,其输入输出均为二线,接线十分方便,它把dcs、plc或显示表提供电源经隔离给二线制变送器配电,同时,二线制变送器产生4-20mA信号隔离输入到DCS、PLC或显示表。它特别适合于现场为二线制变送器,需要隔离输入到DCS、PLC系统或显示仪表,而输入设备的输入卡具有内部供电功能的场合,如图1。 图1 但是无源信号隔离器有不足之处: 1、无源信号隔离器相当于一个负载,经过隔离器在隔离两端之间有一个不大于6V的压降,因此它给二线制变送器配电工作电压会降低,

一般要求变送器12V供电能工作。 例:供电24V,RL=250Ω,当20mA时,供给二线制变送器配电电压UO≈24V-0.02×RL-6≥13V,这样一般要求二线制变送器要在12V电压正常工作。 2、无源信号隔离器传输精度相对独立供电的隔离器要差一点,为0.4%F.S.,选用时要特别注意。 独立供电型 这是最为常用的配二线制变送器的信号隔离器SWP9034A,它需要对隔离器独立供电,如图2。其特点是: 1、信号隔离器传输精度高,达到0.1% F.S.。 2、信号隔离器SWP9034A接线方式灵活,可以接二线制变送器、三线制变送器或电流源信号,使用灵活方便。 3、电源、输入、输出之间完全隔离,保证高抗干扰性能。 图2 一进二出信号分配隔离器 在应用中,我们还会经常遇到将一个变送器信号接入两个或两个以上接收装置的情况,若采用串联环路,则环路中任一处开路都会造成整

如何实现8路模拟信号采集系统设计

如何实现8路模拟信号采集系统设计 在应用DSP 进行数字信号处理时,通常都要用采样电路对模拟信号进行采样,然后进行A/D 转换器转换成数字信号再进行数据处理。这里给出一种由TLV1571 与TMS320VC5410[1]组成的信号采集系统。 1 TLV1571 简介: 在DSP 的外围电路中,A/D 转换器比较重要。基于不同的应用,可选择不同性能指标和价位的芯片。一般的A/D 转换器的选择主要考虑:转换精度、转换时间、转换器的价格。这里选择了TI 公司专门为DSP 配套的一种10 位的并行A/D 转换器TLV1571,该器件给定的CLK 频率达到的等效最大采样频率为(1/16)fCLK。 1.1 TLV1571 的内部结构及引脚定义: TLV1571 的内部结构及引脚功能定义如图1 及表1 所示。 TLV1571 采用2.7~5.5 V 的单电源工作,能接受0~3.3 V的模拟输入电压,此时以625 Kb/s 的速度使输入电压数字化。在5 V 电压下,以最大1.25 Mb/s 的速度使输入电压数字化。该A/D 转换器具有速度高,接口简单以及功耗低等特点,成为需要模拟输入的高速数字信号处理的理想选择。 1.2 TLV1571 的初始化: 上电后,必须为低电平以开始I/O 周期,INT/EOC 最初为高电平。TLV1571 要求两个写周期以配置两个控制寄存器。从掉电状态返回后的首次转换可能无效,应当不予考虑。 1.3 TLV1571 的控制寄存器控制字的设置: TLV1571 的控制寄存器格式如表2 所示,它可以实现软件配置,其两个最高有效位D9 和D8 用于寄存器寻址,其余的8 位用作控制数据位。在写周期内所有寄存器位同时写入控制寄存器,用户可配置两个控制寄存器CR0 和CR1,对于控制寄存器0(CR0),A1 ∶A0=00,其配置如表3 所示;对于控制寄存器1(CR1),A1 ∶A0 = 01,其配置如表4 所

模拟量控制驱动器

模拟量控制驱动器 AME 25 SD - 断电复位功能(断电复位向下)AME 25 SU - 断电复位功能(断电复位向上) 参数表 驱动器 型号电源电压代码 AME 25 SD (弹簧向下) 24 V~082H3038 AME 25 SU (弹簧向上)24 V~082H3041 配件 型号订货号 适配器,适用于?VFS 2 阀门 DN 15-50 (介质温度高于 150 °C) 065Z7548 适配器,适用于新阀体 VRB/VRG/VF/VL (2009) DN 15-50 065Z0311* 阀杆加热器(适用于阀门 DN 15-50)065B2171 阀位反馈信号模块,适用于 AME 25 SD 和 AME 25 SU 082H3069 *?需单独订购。 说明 订购AME 25 SD?或?SU?电动驱动器需加适配器 (订货号为?065Z0311需另行订购)与新一代 的?VRB、VRG、VF、VL?阀体,以及最大直径 DN 50?的?VFS 2?阀体配合使用。 驱动器可自动根据阀门阀杆的行程来自动调节行 程,从而缩短调试时间。 该驱动器拥有一些特殊功能: ? 具有过载保护功能,以免驱动器和阀体过载; ? 具有显示状态的?LED?指示灯、阀位反馈和行程 自检功能;? ? 重量轻、耐用性高; ? 断电复位功能版本:? - SD(弹簧向下复位)? - SD(弹簧向上复位)。 主要数据: ? 标称电压:? ?- 24 VAC, 50 Hz/60 Hz? ? 控制输入信号:? ?- 0(4)…20 mA - 0(2) … 10 V ? 扭矩:450 N ? 行程:15 mm ? 转速:15 s/mm ? 最高介质温度:150 °C ? 行程自检 ? 反馈信号

多路信号采集板卡硬件电路设计

多路信号采集板卡硬件电路设计 1 绪论 1.1 课题的背景 现代工业控制、自动检测技术及信号处理中数据是指现场采集来的电压、电流、压力、流量、液位、温度和角度等信号,此外还包括一些开关量信号。在微型计算机应用于智能化仪器仪表、信号处理和工业自动化等过程中,都存在着模拟量的测量与控制问题,即将温度、压力、流量、位移及角度等模拟量转变为数字信号,再收集到微型机上进一步予以显示、处理、记录和传输,这个过程即称“数据采集”,相应的系统即为微机数据采集系统。数据采集系统一般由信号调理电路,多路切换电路,采样保持电路,A/D,单片机组成。随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。它是计算机与外部物理世界连接的桥梁。它在现代信息领域发挥着重要作用,是信息产品不可或缺的重要组成部分。因此选择基于单片机数据采集系统设计是很有意义也是很有必要的。 在计算机广泛应用的今天,数据采集的重要性是十分显著的。它是计算机与外部物理世界连接的桥梁。各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。在日常的工程设备检测过程中,如果采用传统的面板表显示,不仅占用设备多、实时性差,而且测量过程也十分繁琐,效率十分低下。而近年来,随着控制技术、微电子技术、通信技术和计算机技术的高速发展,不仅促进了工程检测技术和仪器本身的变革,而且使它们增加了很多新的生长点。检测系统与通信及计算机系统的结合,仪器和测试系统软硬件平台结构的新变化,都正在改变着测试和仪器的面貌。就新出现的虚拟仪器系统而言,它将计算机资源(处理器、存储器、显示器等)和仪器硬件—插件卡(信号调理、定时、A/D、变换器、高速缓存、数字输入输出电路等)以及用于数据采集、通讯、系统仿真、数据分析以及图形用户界面的应用软件有效结合起来,用户不必了解电子线路及系统软件的细节,只要应用虚拟仪器系统提供的“用户软件接口”和“用户硬件接口”,再经过简单的二次开发,就可在较短的周期内开发出适用不同测控对象需要的仪器。无疑这种新型测试仪不仅智能化程度高,且易于更新升级,灵活性强,但是对测试技术和测试设备要求的提高,无疑使测试成本也大幅增长。显然,对于一般设备检测来讲,大可不必付出这样的耗费。考虑单片机的特性,由于它可以提供A/D 输入通道,因此非常适用于模拟量 (温度、压力、流量)输入采样系

数据采集系统实验报告.

任务要求 1.4路模拟量输入,输入电压范围0~5V,分辨率8位,转换时间100us,具有显示(数码管)测量结果(用10进制显示直流电压值或交流电压峰值)的功能; 2.1路模拟量输出,用来分别重现4路被采信号的波形(供示波器观测) 摘要 本数据采集系统是基于单片机A T89C51来完成的,4路的模拟电压通过通用的8位A/D 转换器ADC0809转换成数字信号后,由单片机进行数据处理,并将处理后的数据送LED 显示器显示。再经过常用的8位D/A转换器DAC0832将数字数据转换成模拟量,供示波器观测。 一、系统的方案选择和论证 根据题目基本要求,可将其划为如下几个部分: ●4路模拟信号A/D转换 ●单片机数据处理 ●LED显示测量结果 ●D/A转换模拟量输出 系统框图如图1所示: 图 1 单片机数据采集系统框图 1、4路模拟信号A/D转换 由于被测电压范围为0~5V,分辨率为8位,转换时间为100us,所以A/D转换部分,本系统选择常用的8路8位逐次逼近式A/D转换器ADC0809。 ADC0809芯片有28条引脚,采用双列直插式封装。下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。 2-1~2-8:8位数字量输出端。 ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。 ALE:地址锁存允许信号,输入,高电平有效。 START:A/D转换启动信号,输入,高电平有效。 EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。 OE:数据输出允许信号,输入,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。 CLK:时钟脉冲输入端。要求时钟频率不高于640KHZ。 REF(+)、REF(-):基准电压。 Vcc:电源,单一+5V。 GND:地。 ADC0809的工作过程是:首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。 2、单片机数据处理 选择美国ATMEL公司的CMOS8位单片机AT89C51,其工作电压为2.7~6V,具有低电压低功耗性能和高性价比,兼容标准MCS-51指令系统,4Kbytes的PEROM和128bytes的RAM,片内置通用的8位中央处理器(CPU)和Flash存储单元。 AT89C51是一种带有4 KB闪烁可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器,可为很多嵌入式控制系统提供灵活且价廉的方案。所以,本设计采用ATMEL公司的AT89C51作为程序的主控芯片。 AT89C51数据总线是由P0口提供的,P0口本身能以多种方式提供数据总线和地址总线。当ALE输出信号为高电平时,P0将输出的数据锁入总线驱动器中作为地址的低8位,然后和P2送出来的高8位地址一起组成一个完整的16位地址,以寻址到外部的64KB的地址空间。A T89C51的地址总线比较简单(只有3个:RD、WR、PSEN),其中RD是用来读取外部数据内存的控制线,WR是用来写数据到外部数据内存的控制线,PSEN是用来存取外部程序内存的读取控制线。 3、LED显示测量结果 这里选择的是广州周立功单片机发展有限公司自行设计的数码管显示驱动及键盘扫描管

PLC对模拟量的控制

龙源期刊网 https://www.360docs.net/doc/9e1889108.html, PLC对模拟量的控制 作者:黄静毕波 来源:《电脑知识与技术》2009年第31期 摘要:在工业生产领域中,特别是连续型生产过程中常常需要对电流,电压,温度,压力等物理 量进行控制。用PLC来控制模拟量可以充分利用PLC强大的数字与逻辑处理功能,在控制模拟量的同时,还可以进行开关量的控制。该文着重介绍了如何用PLC对模拟量进行控制。 关键词:PLC;模拟量;数字量;转换 中图分类号:TP335文献标识码:A文章编号:1009-3044(2009)31-pppp-0c PLC Analog Volume Control HUANG Jing, BI Bo (Vocational & Technical College, Chongqing Jiaotong University, Chongqing 400074, China) Abstract: In industrial control field, especially continuous production, we often need gather and control some analog signal, just as current, voltage, temperature, pressure and so on. Control analog quantity by PLC can take full advantage of its powerful date and logic process function, and at the same time it also can control switching value. This article mainly introduces how to process analog signal using PLC. Key words: PLC; analog quantity; digital quantity; conversion 为了适应现代工业发展的需要,要求作为工业控制电子设备的PLC能对这些量进行控制。为此,各PLC厂家都在这方面进行了大量的开发。目前,不仅大中型机可以进行模拟量控制,小型机也可以。 我们都知道模拟量是指一些连续变化的物理量。而PLC是由继电器控制电路引进微处理器技术后发展而来,可以方便、可靠地进行开关量的控制。PLC进行模拟量控制,需要将模拟量转换成数字量,数字量的本质也就是开关量。经转换后的模拟量,对有较强信息处理的PLC并不难。由于PLC是基于计算机技术的控制器,有很强的数字处理与逻辑处理功能,所以,只要有合适的算法,一般来说多数控制要求总是可以实现的。用PLC进行模拟量控制有一个明显的好处:在进行模拟量控制的同时,可进行开关量的控制,这是其他控制器所不能与之相比的。本文主要探讨的就是PLC对模拟量的处理过程。

相关文档
最新文档