2018年毕节地区中考数学押题卷与答案

合集下载

人教版中考仿真押题卷《数学试卷》含答案解析

人教版中考仿真押题卷《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.12-的倒数是( ) A. B. 12 C. D.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( ) A. B. C. D. 3. 下列图形中,由AB ∥CD ,能得到∠1=∠2的是A. B. C. D. 4.如图,将RtABC 绕直角项点C 顺时针旋转90°,得到A' B'C ,连接AA',若∠1=20°,则∠B 度数是( )A. 70°B. 65°C. 60°D. 55°5.已知a b <,下列不等式中,变形正确的是( ) A. a 3b 3->- B. 3a 13b 1->- C. 3a 3b ->- D. a b 33> 6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103B. 55×103C. 0.55×104D. 5.5×104 7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 49.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于点D .若∠A =30°,AE =6 cm ,则BC 等于( )3 B. 3 cm 3 D.4 cm10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d 0022A B +,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d 223543=+,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6二.填空题11.因式分解:2ax 2﹣4axy +2ay 2=_____.12.函数2y x =-中,自变量的取值范围是 . 13.如图,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=32 ,则t 的值是________.14.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于___________.15.如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC的宽度AC是OA的一半,且OA=30 cm,则扇面ABDC的周长为__________cm.16.如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比12OAAD,若AB=1.5,则DE=_____.17.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.三.解答题19.计算:(﹣1)2020+(π﹣3)0﹣3tan30°+11()2-.20.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值. 21.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,求OM 的长.22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2面积之比为 (不写解答过程,直接写出结果).23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 面积为8,求▱ABCD 的面积.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?26.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 时AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB =BC ;(2)如果AB =10.tan ∠FAC =12,求FC 的长.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析一、选择题1.12-的倒数是( )A. B. 12C. D.【答案】A【解析】【分析】根据倒数的定义求解即可.【详解】12-的倒数是,故选A.【点睛】本题考查了倒数,分子分母交换位置是求一个数倒数的关键.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.据此可以分析.【详解】根据轴对称图形的定义可知,选项A,C,D,是轴对称图形,选项B不是轴对称图形.故选B【点睛】本题考核知识点:轴对称图形.解题关键点:理解轴对称图形的定义.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.4.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )A. 70°B. 65°C. 60°D. 55°【答案】B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.5.已知a b <,下列不等式中,变形正确的是( )A. a 3b 3->-B. 3a 13b 1->-C. 3a 3b ->-D. a b 33> 【答案】C【解析】【分析】根据不等式的性质解答即可.【详解】解:A 、不等式a b <的两边同时减去3,不等式仍成立,即33a b -<-,故本选项错误; B 、不等式a b <的两边同时乘以3再减去1,不等式仍成立,即3131a b -<-,故本选项错误; C 、不等式a b <的两边同时乘以3-,不等式的符号方向改变,即33a b ->-,故本选项正确; D 、不等式a b <的两边同时除以3,不等式仍成立,即33a b <,故本选项错误; 故选C .【点睛】本题考查了不等式的性质注意:不等式两边都乘以同一个负数,不等号的方向改变.6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103 B. 5.5×103 C. 0.55×104 D. 5.5×104 【答案】D【解析】【分析】由科学记数法公式()101<10n a a ⨯≤即可得到结果;【详解】455000=5.510⨯;故答案选D .【点睛】本题主要考查了科学记数法的表示,准确判断小数点的位置是关键.7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.【点睛】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 4【答案】A【解析】【分析】根据众数的概念进行求解即可.【详解】2出现了两次,其余数据均出现一次,2出现的次数最多,所以这组数据的众数是2,故选A.【点睛】本题考查了众数的概念,熟练掌握”众数是指一组数据中出现次数最多的数据”是解题的关键.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6 cm,则BC等于()3cm B. 3 cm 3 D. 4 cm【答案】C【解析】【分析】根据直角三角形的性质求出DE ,根据角平分线的性质求出CE ,根据正切的定义计算即可.【详解】解:在Rt △ADE 中,∠A=30°,∴DE=12AE=3,∠ABC=60°, ∵BE 平分∠ABC ,ED ⊥AB ,∠ACB=90°,∴CE=DE=3,∠EBC=30°,在Rt △CBE 中,BC=tan CE EBC =∠(cm ), 故选:C .【点睛】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d35=,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6【答案】B【解析】【分析】先将直线的解析式化为定义中的形式,再根据距离公式计算即可. 【详解】∵3544y x =-+ ∴35044x y +-= ∴点1)(3,4P 到直线3544y x =-+5454== 故选:B .【点睛】本题考查了一次函数的几何应用:点到直角的距离公式,掌握理解距离公式是解题关键.二.填空题11.因式分解:2ax2﹣4axy+2ay2=_____.【答案】2a(x﹣y)2【解析】【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:原式=2a(x2﹣2xy+y2)=2a(x﹣y)2,故答案为:2a(x﹣y)2【点睛】本题主要考查因式分解,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,掌握上述因式分解的知识点是解题的关键.12.函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= 32,则t的值是________.【答案】2 【解析】【分析】根据正切的定义即可求解.【详解】∵点A (t ,3)在第一象限,∴AB=3,OB=t ,又∵tanα=AB OB =32, ∴t=2.故答案为2.14.如图,△ABC 绕点A 顺时针旋转45°得到△A′B′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于___________.2-1【解析】【分析】由旋转的性质可得45CAC BAB ∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==可证AFB ∆',ADB ∆和BEF ∆为等腰直角三角形,分别求出ADB S ∆,BEF S ∆的值,即可求解.【详解】解:如图,设,AB B C ''交于点,BC B C '',交于点,90BAC ∠=︒,2AB AC ==45B C ∴∠=∠=︒,ABC ∆绕点顺时针旋转45︒得到△AB C '',45CAC BAB ∴∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==, AFB ∴∆'是等腰直角三角形,AD BC ∴⊥,B F AF '⊥,212AF AB ='=, 21BF AB AF ∴=-=-, 45B ∠=︒,EF BF ⊥,AD BD ⊥,ADB ∴∆和BEF ∆为等腰直角三角形,212AD BD AB ∴===,21EF BF ==-, 图中阴影部分的面积1111(21)(21)2122ADB BEF S S ∆∆=-=⨯⨯---=-, 故答案为:21-.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.15.如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30 cm ,则扇面ABDC 的周长为__________cm .【答案】(30π+30)【解析】【分析】根据题意求出OC ,根据弧长公式分别求出AB 、CD 的弧长,根据扇形周长公式计算.【详解】由题意可得:1152OC AC OA ===, 弧AB 长=12030=20180ππ⨯, 弧CD 的长=12015=10180ππ⨯, ∴扇形ABCD 的周长=()20+10+15+15=30+30cm πππ, 故答案为()30+30π. 【点睛】本题主要考查了弧长的计算,准确理解所给图形找出相关的量是解题的关键. 16.如图,在平面直角坐标系中,已知△ABC 与△DEF 位似,原点O 是位似中心,位似比12OA AD =,若AB =1.5,则DE =_____.【答案】4.5【解析】【分析】根据位似图形的性质得出AO,DO 的长,进而得出, 13OA OD =,13AB DE =求出DE 的长即可 【详解】∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB OA DE OD =, ∵12OA AD =, ∴13OA OD =, ∴13AB DE =, ∴DE =3×1.5=4.5. 故答案为4.5.【点睛】此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO 的长17.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是 cm .【答案】5<x <10.【解析】【分析】设AB=AC=x ,则BC=20﹣2x ,根据三角形的三边关系即可得出结论.【详解】∵在等腰△ABC 中,AB=AC ,其周长为20cm ,∴设AB=AC=x cm ,则BC=(20﹣2x )cm ,∴22022020x x x >-⎧⎨->⎩ , 解得5cm <x <10cm ,故答案为5<x <10.【点睛】本题考查了等腰三角形的性质,三角形三边关系,正确理解和灵活运用相关知识是解题的关键. 18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.【答案】20﹣208000=401401. 【解析】【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.三.解答题19.计算:(﹣1)2020+(π+11()2-.【答案】3.【解析】【分析】先计算有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂,再计算实数的乘法,最后计算实数的加减运算即可.【详解】原式1123=+-+1112=+-+3=.【点睛】本题考查了有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂等知识点,熟记各运算法则是解题关键.20.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.【答案】35【解析】【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组52251x yx y--⎧⎨+-⎩=①=②,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=15,则原式=213+=555.【点睛】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.21.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,求OM的长.【答案】OM=5.【解析】【分析】作PD⊥MN于D,根据30°角所对直角边是斜边一半的性质可得OD的长,根据等腰三角形三线合一的性质求出MD,即可得出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,∠AOB=60º,OP=12,∴OD=12OP=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=12MN=1,∴OM=OD-MD=6-1=5.【点睛】本题主要考查了含30º角的直角三角形性质、等腰三角形的”三线合一”性质,过点P作PD⊥OB 是解答的关键.22.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)△A1B1C1与△A2B2C2面积之比为(不写解答过程,直接写出结果).【答案】(1)作图见解析;(2)作图见解析;(3)1:4【解析】【分析】(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.【详解】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3) ∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1∶2,∴△A1B1C1与△A2B2C2面积之比为:1∶4.【点睛】本题考查了作图-轴对称变换、作图-位似变换,熟练掌握直角坐标系中的基本作图方法是解答的关键.23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.【答案】(1)一次函数的表达式为y =-x +1,反比例函数的表达式为y =-2x ;(2)S △ABD =3. 【解析】【分析】(1)先把B 点坐标代入m y x=中求出m ,得到反比例函数解析式为2y x =-,再利用解析式确定A 点坐标,然后利用待定系数法求一次函数解析式即可;(2)先利用一次函数解析式确定()0,1C ,利用关于x 轴对称的性质得到()0,1D -,则BD x ∥轴,然后根据三角形面积公式计算即可;【详解】解:(1)∵反比例函数m y x =的图象经过点B(2,-1), ∴m =-2.……∵点A(-1,n)在2y x=-的图象上,∴n =2.∴A(-1,2). 把点A ,B 的坐标代入y =kx +b ,得221k b k b ⎧-+=⎨+=-⎩解得11k b ⎧=-⎨=⎩, ∴一次函数的表达式为y =-x +1,反比例函数的表达式为2y x =-; (2)∵直线y =-x +1交y 轴于点C ,∴C(0,1).∵点D 与点C 关于x 轴对称,∴D(0,-1).∵B(2,-1),∴BD ∥x 轴.∴S △ABD =12×2×3=3. 【点睛】本题主要考查了反比例函数与一次函数的交点问题知识点,准确理解待定系数法求解析式是关键.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 的面积为8,求▱ABCD 的面积.【答案】(1)证明见解析;(2)ABCD 的面积为100.【解析】【分析】(1)根据平行四边形的判定与性质即可得证;(2)先根据平行四边形的性质得出DF 、AD 的长和//,//AB CD BD EF ,再根据平行线的性质得出,F ADB FDG A ∠=∠∠=∠,然后根据相似三角形的判定与性质得出2()DFG ADB SDF S AD =,从而可求出ADB △的面积,由此即可得ABCD 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形∴//AD BC ,即//DF BE又∵DF =BE∴四边形BEFD 是平行四边形∴//BD EF ;(2)∵四边形ABCD 是平行四边形,4,6BE EC ==∴4,4610DF BE AD BC BE EC ====+=+=,//AB CD∴FDG A ∠=∠∵四边形BEFD 是平行四边形//BD EF ∴∴F ADB ∠=∠ ∴DFG ADB ~∴2244()()1025DFG ADB S DF SAD === ∵8DFG S =∴50ADBS=∴ABCD的面积为2250100ADBS=⨯=.【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),利用平行四边形的性质得到两个三角形相似的条件是解题关键.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?【答案】(1)高铁列车的平均时速为240千米/小时;(2)王老师能在开会之前到达.【解析】【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220-90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,122012209082.5x x--=,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+0.5=3.75(小时),从10:00到下午14:00,共计4小时>3.75小时,故王老师能在开会之前到达.【点睛】此题考查分式方程的应用,解题关键在于列出方程26.如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC =12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan ∠ABE =tan ∠FAC =12, ∵在Rt △ABE 中,tan ∠ABE =AE BE =12, ∴设AE =x ,则BE =2x , ∴AB =5x ,即5x =10,解得:x =25,∴∆ABE ≅∆CBE ,∴AC =2AE =45,BE =45,作CH ⊥AF 于点H ,∵∠HAC =∠ABE ,∴Rt △ACH ∽Rt △BAE ,∴HC AE =AH BE =AC AB ,即HC 25=AH 45=4510, ∴HC =4,AH =8,∵HC ∥AB ,∴FC FB =HC AB ,即FC FC 10+=25, 解得:FC =203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) (3,23)Q -或()3,23-或113113,22⎛⎫-+- ⎪ ⎪⎝⎭或1133313,22⎛⎫--+ ⎪ ⎪⎝⎭. 【解析】【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角关系,确定直线OQ 倾斜角,进而求解.【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, ∴CH 2则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±故点(3,3)Q -或()3,23-;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

2018贵州毕节有关中考数学试题-解析版

2018贵州毕节有关中考数学试题-解析版

2018贵州毕节有关中考数学试题-解析版2011年贵州省毕节地区中考数学试卷—解析版一、选择题(本大题共15小题,每小题3分,共45分)1、(2011•毕节地区)错误!未找到引用源。

的算术平方根是()A、4B、±4C、2D、±2考点:算术平方根。

专题:计算题。

分析:根据算术平方根的定义:一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为错误!未找到引用源。

.解答:解:∵(±2)2=4=错误!未找到引用源。

,∴错误!未找到引用源。

的算术平方根是2.故选C.点评:本题考查了算术平方根,求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.2、(2011•毕节地区)下列交通标志中,是中心对称图形的是()A、B、C、D、考点:中心对称图形。

分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中性对称图形,即可判断出.解答:解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.点评:此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.3、如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为()A、B、C、D、考点:点、线、面、体;简单几何体的三视图。

分析:圆锥的主视图是从物体正面看,所得到的图形.解答:解:如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体为圆锥,它的的主视图为等腰三角形.故选C.点评:本题考查了几何体的主视图,掌握定义是关键.4、(2011•毕节地区)下列计算正确的是()A、a3•a2=a6B、a5+a5=a10C、(﹣3a3)2=6a2D、(a3)2•a=a7考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法。

毕节中考真题数学试卷答案

毕节中考真题数学试卷答案

毕节中考真题数学试卷答案以下是毕节中考真题数学试卷的答案:一、选择题1. C2. A3. A4. B5. D6. A7. D8. C9. B 10. D 11. C 12. A 13. B 14.C 15. D二、填空题16. 5 17. 19 18. 15 19. 3 20. 7三、解答题21. 解:设球A的半径为r,球B的半径为4r。

由题意,球A和球B的体积之和等于球C的体积。

则有:(4/3)πr^3 + (4/3)π(4r)^3 = (4/3)π(5r)^3。

化简得:64r^3 + 125r^3 = 625r^3。

取消相同项,并整理得:189r^3 = 625r^3。

移项化简得:625r^3 - 189r^3 = 0。

合并同类项得:436r^3 = 0。

因为r^3不等于0,所以436r^3 = 0 没有解。

因此,无法满足题意,选择“无解”。

22. 解:设这辆火车原本的速度为x km/h。

根据题意,装满2000L水所需的时间是装满4000L水所需时间的1.5倍,即(4000/2000) = (t+20)/(t+30)。

对等交叉相乘得:4000(t+30) = 2000(t+20)。

化简得:4000t + 120000 = 2000t + 40000。

移项化简得:2000t = 80000。

解得:t = 40。

因此,这辆火车原本的速度是40 km/h。

23. 解:首先,在△ABC中,根据余弦定理,有:AC^2 = AB^2 + BC^2 - 2×AB×BC×cos∠ABC。

带入已知值,可得:AC^2 = 625 + 576 - 2×25×24×cos45°。

化简计算得:AC^2 = 625 + 576 - 720.合并同类项得:AC^2 = 481.因此,AC = √481 ≈ 21.92。

24. 解:已知用1元纸币和5元纸币一共购买12个鸡蛋的情况下,最多能购买的鸡蛋数量为16个。

2018年安徽省初中毕业学业考试数学押题卷-含答案

2018年安徽省初中毕业学业考试数学押题卷-含答案

2018年安徽省初中毕业学业考试数学押题卷本卷共计3大题,时间45分钟,满分92分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列四个数中,负数是···········································( )A .|-2|B .(-2)2C .- 2D .222.明天数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为··········································( ) A .1.25×105B .1.25×106C .1.25×107D .1.25×1083.长方体的主视图、俯视图如图所示,则其左视图面积为·····························( ) A .3B .4C .12D .164.下列等式中,不成立的是··········································( )A .x 2-y 2x -y=x -yB .x 2-2xy +y 2x -y =x -yC .xy x 2-xy =y x -yD .y x -x y =y 2-x 2xy5.已知m =(-33)×(-221),则有·······································( ) A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-56.某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么你估计该厂这20万件产品中合格品约为··················································( ) A .1万件B .19万件C .15万件D .20万件[来源:Zxxk.Co7.如图,小林从P 点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P ,则角度 α为·····················································( ) A .30°B .40°C .80°D .不存在]8.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为( ) A .2 3B .332C . 3D .6 9.如图,在平面直角坐标系中,正方形ABCO 的顶点A ,C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为··········································( ) A .(-4,5)B .(-5,4)C .(5,-4)D .(4,-5)10.当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,则实数m 的值为··················( ) A .-74 B .3或-3 C .2或-3 D .2或-3或-74二、填空题(本大题共4小题,每小题5分,满分20分)11.已知一元二次方程x 2-22x -2=0的两根为a ,b ,则b a +a b的值是__________.12.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是_________.13.在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx(x >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为__________.14.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连接DF 交BE 的延长线于点H ,连接OH 交DC 于点G ,连接H C .有如下四个结论: ①OH =12BF ;②∠CHF =45°; 第3题图 第8题图 第9题图 第7题图③GH =14BC ;④DH 2=HE •HB .以上四个结论中正确结论的序号为__________.三、本大题共2小题,每小题8分,满分16分 15.计算:8-4cos 45°+(-12)-1+||-216.观察下列关于自然数的等式: ①94-14=2; ②254-94=4; ③494-254=6; ④… … 根据上述规律解决下列问题: (1)写出第四个等式;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.四、本大题共2小题,每小题8分,满分16分17.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点B 的坐标为(1,2),请解答下列问题: (1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)将△ABC 绕原点O 顺时针旋转90°后得到的△A 2B 2C 2,画出△A 2B 2C 2并求出线段AC 扫过的面积.18.如图是某种货车自动卸货时的示意图,AC 时水平汽车底盘,OB 是液压举升杠杆,货车卸货时车厢AB 与底盘AC 夹角为30°,举升杠杆OB 与底盘AC 夹角为75°,已知举升杠杆上顶点B 离货车支撑点A 的距离为(23+2)米. 试求货车卸货时举升杠杆OB 的长(结果保留根号).第13题图第14题图2018年安徽省初中毕业学业考试数学押题卷本卷共计4大题,时间50分钟,满分58分五、本大题共2小题,每小题10分,满分20分19.已知A、B两地相距50 km,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地,如图折线PQR和线段MN分别表示甲和乙的行驶路程s (km)与该日下午时间t (h)之间的关系,试根据图形回答:(1)直接填空:①甲出发小时,乙才开始出发;②乙行驶的速度是 km/h;(2)乙行驶多少小时赶上甲,这时两人离B地还有多少千米?20.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB于点E.(1)求证:AC是△BDE的外接圆的切线;(2)若AD=4,AE=8,求BC的长.六、本大题满分12分(1)统计表中的m=______,x=______,y=______.(2)被调查同学劳动时间的中位数是______时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.七、本大题满分12分22.如图,在△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC,AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=90°时,求证:四边形ADCE是菱形;(3)在(2)的条件下,若AB=AO,求tan∠OAD的值.八、本大题满分14分(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系式;(2)求该超市销售该新商品第x天获得的利润y(元)关于x的函数关系式;(3)这50天中,该超市第几天获得利润最大?最大利润为多少?参考答案一、选择题答案三、简答题答案 15.答案:0 ;16.答案:(1) 814-494=8 ;(2) (2n +1)24-(2n -1)24=2n ;17.答案:(1) A 1(-2,4) 图略; (2) 72π 图略 ;18.答案:2 2 米 ;19.答案:(1) 1 25 ; (2) 乙行驶103小时追上甲,这时两人离B 地还有503千米;20.答案:(1)略; (2) 9.6 ;21.答案:(1)100 40 0.18 ; (2) 1.5 ; (3) 图略 ; (4) 1,32小时;22.答案:(1) 证明略; (2)证明略 ; (3)12 ;23.答案:(1) 一次函数 p =-2x +120 ; (2)⎩⎨⎧=<≤++-≤≤-)251(0240802)5025(22501350002x x x x x y ; (3)第20天利润最大,最大利润为3200元;。

毕节市中考数学试题及答案

毕节市中考数学试题及答案

毕节市中考数学试题及答案注意:本文所列的毕节市中考数学试题及答案仅供参考,具体答案以实际考试为准。

一、选择题1. 已知直角三角形中,斜边长度为10,其中一直角边为8,则另一直角边长度为多少?A. 6B. 9C. 12D. 15答案:B. 92. 若a:b=2:3,且a+b=25,则a的值为多少?A. 12B. 15C. 18D. 20答案:A. 123. 以下哪个数是质数?A. 1B. 6C. 9D. 11答案:D. 114. 已知函数y=kx+3中,当x=2时,y=7,则k的值为多少?A. 1B. 2C. 3D. 4答案:B. 25. 设多边形ABCD为正方形,AB边长为6cm,点E为AB延长线上一点,且AE=10cm,连接DE,则三角形AED的面积为多少平方厘米?A. 20B. 24C. 30D. 36答案:C. 30二、填空题1. 若3x+5=20,则x的值为________。

答案:52. 在三角形ABC中,已知AB=AC,且∠BAC=60°,则∠ABC的度数为________。

答案:60°3. 若a:b=3:4,且b:c=5:6,则a:b:c的比例为________。

答案:15:20:24三、解答题1. 某数的12%和18%之和为30,请计算该数。

解答:设该数为x,根据题目条件,可以列出等式:0.12x + 0.18x = 30。

解得 x = 150。

2. 小明的体重是小红的3/4,小红的体重是小绿的5/6。

如果小绿的体重是72kg,那么小明的体重是多少?解答:设小明的体重为x,根据题目条件,可以列出等式:(5/6) * (3/4) * x = 72。

解得 x = 64。

综上所述,本文给出了一些毕节市中考数学试题及答案,供考生参考。

希望大家认真复习,顺利完成考试!。

中考仿真押题卷 数学试卷 附答案解析

中考仿真押题卷 数学试卷 附答案解析
A.a2+a2=a4B.a6÷a2=a4C.(a2)3=a5D.(a﹣b)2=a2﹣b2
【答案】B
【解析】
【详解】解:A. a2+a2=2a2,故A选项错误;
B. a6÷a2=a4,故B正确;
C.(a2)3=a6,故C选项错误;
D. (a−b)2=a2+b2−2Fra bibliotekb,故D选项错误.
故选B.
6. 如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()
即x2+(2x)2=(12 )2,
解得x=12(米),
∴BE=12(米),CE=24(米),
DE=DC+CE=6+24=30(米),
由tan30°= ,得
,
解得AE=10 .
由线段的和差,得
AB=AE﹣BE=(10 ﹣12)(米),
故选:B.
【点睛】此题考查解直角三角形的应用,利用勾股定理得出CE,BE的长是解题关键,又利用了正切函数,线段的和差.
根据图中信息解决下列问题:
(1)本次共调查名学生,扇形统计图中B所对应的扇形的圆心角为度;
(2)补全条形统计图;
(3)选修D类数学实践活动的学生中有2名女生和2名男生表现出色,现从4人中随机抽取2人做校报设计,请用列表或画树状图法求所抽取的两人恰好是1名女生和1名男生的概率.
25.如图,在矩形 中, , ,反比例函数 ( )的图像与矩形两边AB、BC分别交于点D、点E,且 .
27.若二次函数 的图象与 轴分别交于点 、 ,且过点 .
(1)求二次函数表达式;
(2)若点 为抛物线上第一象限内的点,且 ,求点 的坐标;
(3)在抛物线上( 下方)是否存在点 ,使 ?若存在,求出点 到 轴的距离;若不存在,请说明理由.

2018年中考数学押题试卷及答案(十八)

2018年中考数学押题试卷及答案(十八)一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ACD=48°,则∠1的度数为()A.42°B.38°C.48°D.32°3.(3分)2016年聊城全年生产总值2859.2亿元,比上年增长7.3%,总量在全省前进了两个位次,2859.2亿用科学记数法表示正确的是()A.2.8592×109 B.2.8592×1010C.2.8592×1011D.2.8592×10124.(3分)当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1 B.1 C.5 D.﹣55.(3分)某品牌汽车公司的销售部对40位销售员本月的汽车销售量进行了统计,绘制成如图所示的扇形统计图,则这40位销售人员本月销售量的平均数、中位数、众数分别是()A.13,15,8 B.12,14,8 C.13,14,18 D.13,14,86.(3分)一个几何体由几个大小相同的小正方体搭成,其主视图和左视图如图所示,则搭成这个几何体的小正方体的最少个数是()A.6 B.5 C.8 D.97.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①a+b+c>0,②a<b,③4ac>b2,④abc>0.其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.(3分)在如图所示的2017年4月份的月历表中,任意框出表中竖列上四个相邻的数,这四个数的和可能是()A.70 B.63 C.99 D.1019.(3分)如图,正三角形EFG内接于⊙O,其边长为2,则⊙O的内接正方形ABCD的边长为()A.B.C.4 D.510.(3分)已知点P(2(2a+1)﹣,﹣a﹣1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.11.(3分)如图,在矩形ABCD中,F是BC边的中点,DF⊥AC,垂足为点E,连接BE,分析下列四个结论:①△CEF∽△CBA;②BE=AB;③AE=2CE;④tan∠ACB=,其中正确的个数有()A.4个 B.3个 C.2个 D.1个12.(3分)如图,AB是⊙O的切线,B为切点,若∠ABC=120°,AB=2,AC 经过点O,与⊙O分别相交于点D,C,则阴影部分的面积是()A.2 B.C.4﹣D.2﹣二、填空题(共5小题,每小题3分,满分15分)13.(3分)计算:﹣2﹣1+﹣|﹣3|=.14.(3分)因式分解:﹣9(m+n)3+12(m+n)2﹣4(m+n)=.15.(3分)如图,在△ABC中,∠B=90°,AB=5,BC>AB,点D是BC上的动点,四边形ADCE是平行四边形,DE的最小值是.16.(3分)如果在0,1,2,3这四个数中任取两数m,n,则二次函数y=(x ﹣m)2+n的顶点不在坐标轴上的概率为.17.(3分)如图,一段抛物线:y=﹣2x(2x﹣4)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此进行下去,直至得到C8,若点P(15,n)在该抛物线上,则n=.三、解答题(共8小题,满分69分)18.(7分)计算:(1)()﹣1+(3.14﹣π)0﹣2cos30°﹣+|1﹣6|;(2)先化简,再求值:(a+1﹣)÷(),其中a=2﹣.19.(8分)在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A′BO′,点O,A旋转后的对应点为O′,A′,记旋转角为β.(1)如图1,若β=90°,求AA′的长;(2)如图2,若β=120°,求点O′的坐标.20.(8分)如图,在四边形ABCD中,AC平分∠BCD,AC2=CD•BC,E是BC的中点,AC⊥AB.(1)求证:AD⊥AE;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB,∠B=30°,求证:四边形AKEC 是菱形.21.(8分)顾客满意已经成为企业获得竞争优势的重要策略,某大型超市对顾客服务质量的满意度进行了调查,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小丽对该大型超市对顾客服务质量的满意度显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小丽一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者对该大型超市对顾客服务质量的满意度进行了评价,请你用列表格或画树状图的方法求两人中至少有一个给“好评”的概率.22.(8分)2016年5月15日,聊城举行了健步走马拉松嘉年华活动,本次健步走活动形式为半程马拉松健步走(20公里)、迷你马拉松健步走(10公里),小华参加了半程马拉松健步走,小军参加了迷你马拉松健步走,小军平均时速要比小华的平均时速快2km,小军从起点走到终点的时间仅是小华走到终点的时间的,求小军比赛完所用的时间.23.(8分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?24.(10分)如图,△ABC是⊙O的内接三角形,∠BAC的角平分线AE交⊙O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若在AE上取一点F使BE=EF,求证:BF是∠ABC的平分线;(3)在(2)的条件下,若DE=3,DF=2,求AF的长.25.(12分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【解答】解:﹣的绝对值是,故选C.2.(3分)如图,AB∥CD,DA⊥AC,垂足为A,若∠ACD=48°,则∠1的度数为()A.42°B.38°C.48°D.32°【解答】解:∵DA⊥AC,∠ACD=48°,∴∠ADC=90°﹣48°=42°,∵AB∥CD,∴∠1=∠ADC=42°,故选:A.3.(3分)2016年聊城全年生产总值2859.2亿元,比上年增长7.3%,总量在全省前进了两个位次,2859.2亿用科学记数法表示正确的是()A.2.8592×109 B.2.8592×1010C.2.8592×1011D.2.8592×1012【解答】解:2859.2亿=2.8592×1011,故选:C.4.(3分)当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1 B.1 C.5 D.﹣5【解答】解:∵2<a<3,∴|a﹣3|+|2﹣a|=3﹣a+a﹣2=1.故选:B.5.(3分)某品牌汽车公司的销售部对40位销售员本月的汽车销售量进行了统计,绘制成如图所示的扇形统计图,则这40位销售人员本月销售量的平均数、中位数、众数分别是()A.13,15,8 B.12,14,8 C.13,14,18 D.13,14,8【解答】解:销售8辆的40×40%=16人,销售14辆的40×15%=6人,销售16辆的40×20%=8人,销售18辆的40×25%=10人,=(8×16+14×6+16×8+18×10)=13辆,处在中间的两数为14辆,8辆出现次数最多,故选D.6.(3分)一个几何体由几个大小相同的小正方体搭成,其主视图和左视图如图所示,则搭成这个几何体的小正方体的最少个数是()A.6 B.5 C.8 D.9【解答】解:由主视图和左视图知该几何体有3行3列,第1、3列均只有1个正方体,第2列从内到外正方体的个数为2、1、0,∴搭成这个几何体的小正方体的最少个数是5,故选:B.7.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①a+b+c>0,②a<b,③4ac>b2,④abc>0.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【解答】解:由于顶点的纵坐标大于0,所以当x=﹣时,a﹣b+c>0,故①正确;由于抛物线的对称轴x=﹣=﹣,所以a=b,故②错误;由于抛物线与x轴有两个交点,所以b2﹣4ac>0,故③错误;由于抛物线开口向下,所以a<0,由于a=b<0,c=0,所以abc=0,故④错误.8.(3分)在如图所示的2017年4月份的月历表中,任意框出表中竖列上四个相邻的数,这四个数的和可能是()A.70 B.63 C.99 D.101【解答】解:方法1:设这四个数中最小的一个数为x,则其余的三个数为x+7,x+14,x+21,那么,这四个数的和为x+x+7+x+14+x+21=4x+42.A、如果4x+42=70,那么x=7,符合题意;B、如果4x+42=63,那么x=5.25,不合题意;C、如果4x+42=99,那么x=14.25,不合题意;D、如果4x+42=101,那么x=14.75,不合题意.方法2:因为4x+42一定为偶数,而选项中也只有一个偶数.故选:A.9.(3分)如图,正三角形EFG内接于⊙O,其边长为2,则⊙O的内接正方形ABCD的边长为()A.B.C.4 D.5【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴AC是直径,AC=AB,∴OE=OF=AB.∵△EFG是等边三角形,点O是正三角形EFG的外接圆圆心,∴OE=OF=×2×=2,∴AB=2,∴AB=4.即⊙O的内接正方形ABCD的边长为4.故选:C.10.(3分)已知点P(2(2a+1)﹣,﹣a﹣1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.【解答】解:∵点P关于原点的对称点的坐标为(﹣2(2a+1)+,a+1),由于它在第四象限∴解得:a<﹣1故选:C.11.(3分)如图,在矩形ABCD中,F是BC边的中点,DF⊥AC,垂足为点E,连接BE,分析下列四个结论:①△CEF∽△CBA;②BE=AB;③AE=2CE;④tan∠ACB=,其中正确的个数有()A.4个 B.3个 C.2个 D.1个【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∠ADC=90°,AD=BC,DE⊥AC于点E,∵∠ACB=∠ECF,∠ADC=∠CEF=90°,∴△CEF∽△CBA,故①正确;连接AF,∵∠ABF+∠AEF=180°,∴A、B、F、E四点共圆,∴∠AEB=∠AFB,∵F是BC边的中点,∴BF=CF,在△ABF与△DCF中,,∴△ABF≌△CDF,∴∠AFB=∠CFD,∵∠BAE+∠BFE=180°,∠BFE+∠CFD=180°,∴∠BAE=∠CFD,∴∠BAE=∠BEA,∴BA=BE,故②正确.∵AD∥BC,∴△CEF∽△ADE,∴=,∵CF=BC=AD,∴==2,∴AE=2CE,故③正确,设CE=a,AE=2a,由DE2=AE•CE=2a2,得DE=a,∴tan∠ACB=tan∠EAD===,故④错误.故选B.12.(3分)如图,AB是⊙O的切线,B为切点,若∠ABC=120°,AB=2,AC 经过点O,与⊙O分别相交于点D,C,则阴影部分的面积是()A .2B .C .4﹣D .2﹣【解答】解:连接OB . ∵AB 是⊙O 切线, ∴OB ⊥AB ,∵OC=OB ,∠ABC=30°, ∴∠C=∠OBC=30°, ∴∠AOB=∠C +∠OBC=60°,在Rt △ABO 中,∵∠ABO=90°,AB=2,∠A=30°,∴OB=2,∴S 阴=S △ABO ﹣S 扇形OBD =×2×2﹣=2﹣.故选D .二、填空题(共5小题,每小题3分,满分15分)13.(3分)计算:﹣2﹣1+﹣|﹣3|= 2.5 .【解答】解:﹣2﹣1+﹣|﹣3|=4﹣0.5+2﹣3 =2.5故答案为:2.5.14.(3分)因式分解:﹣9(m +n )3+12(m +n )2﹣4(m +n )= ﹣(m +n )(3m +3n﹣2)2.【解答】解:原式=﹣(m+n)[9(m+n)2﹣12(m+n)+4]=﹣(m+n)(3m+3n ﹣2)2.故答案为:﹣(m+n)(3m+3n﹣2)215.(3分)如图,在△ABC中,∠B=90°,AB=5,BC>AB,点D是BC上的动点,四边形ADCE是平行四边形,DE的最小值是5.【解答】解:∵点D在线段BC上运动,∴当DE⊥BC时,DE最短,∵四边形ADCE为平行四边形,∴AE∥BC,∴∠EAB+∠B=180°,∴∠EAB=∠B=∠BDE=90°,∴四边形ABDE为矩形,∴DE=AB=5,故答案为:5.16.(3分)如果在0,1,2,3这四个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点不在坐标轴上的概率为.【解答】解:画树状图为:共有12种等可能的结果数,其中二次函数y=(x﹣m)2+n的顶点(m,n)不在坐标轴上的结果数为6,则二次函数y=(x﹣m)2+n的顶点不在坐标轴上的概率为=;故答案为:.17.(3分)如图,一段抛物线:y=﹣2x(2x﹣4)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3…如此进行下去,直至得到C8,若点P(15,n)在该抛物线上,则n=﹣4.【解答】解:∵y=﹣2x(2x﹣4)(0≤x≤2),∴配方可得y=﹣4(x﹣1)2+4(0≤x≤2),∴顶点坐标为(1,4),∴A1坐标为(2,0),∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣4),A2(4,0);照此类推可得,C3顶点坐标为(5,4),A3(6,0);C4顶点坐标为(7,﹣4),A4(8,0);C5顶点坐标为(9,4),A5(10,0);C6顶点坐标为(11,﹣4),A6(12,0);C7顶点坐标为(13,4),A7(14,0);C8顶点坐标为(15,﹣4),A8(16,0);∴n=﹣4.故答案为:﹣4.三、解答题(共8小题,满分69分)18.(7分)计算:(1)()﹣1+(3.14﹣π)0﹣2cos30°﹣+|1﹣6|;(2)先化简,再求值:(a+1﹣)÷(),其中a=2﹣.【解答】解:(1)()﹣1+(3.14﹣π)0﹣2cos30°﹣+|1﹣6|=2017+1﹣﹣5+6﹣1=2017;(2)(a+1﹣)÷()=÷=•=a(a﹣2).当a=2﹣时,原式=2﹣3.19.(8分)在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A′BO′,点O,A旋转后的对应点为O′,A′,记旋转角为β.(1)如图1,若β=90°,求AA′的长;(2)如图2,若β=120°,求点O′的坐标.【解答】解:(1)∵β=90°,∴∠A′BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB===10,由旋转的性质得,A′B=AB=10,在Rt△A′BA中,根据勾股定理得,AA′===10;(2)如图,过点O′作O′C⊥y轴于C,由旋转的性质得,O′B=OB=6,∵β=120°,∴∠OBO′=120°,∴∠O′BC=180°﹣120°=60°,∴BC=O′B=×6=3,CO′===3,∴OC=OB+BC=6+3=9,∴点O′的坐标为(3,9).20.(8分)如图,在四边形ABCD中,AC平分∠BCD,AC2=CD•BC,E是BC的中点,AC⊥AB.(1)求证:AD⊥AE;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB,∠B=30°,求证:四边形AKEC 是菱形.【解答】解:(1)证明:∵AC2=CD•BC,∴,∵AC平分∠BCD,∴∠ACD=∠BCA,∴△ACD∽△BCA,∴∠CAD=∠CBA,∵AC⊥AB,∴∠CAB=90°,∴∠CDA=90°,在Rt△ABC中,∵E是BC的中点,∴EA=EB=EC,∴∠EAC=∠BCA=∠DCA,∴AE∥CD,∴∠DAE=180°﹣∠CDA=180°﹣90°=90°,∴AD⊥AE;(2)证明:∵EK⊥AB,AC⊥AB,∴EK∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又∵EK=EB,∴EK=AC,即AK=KE=EC=CA,∴四边形AKEC是菱形.21.(8分)顾客满意已经成为企业获得竞争优势的重要策略,某大型超市对顾客服务质量的满意度进行了调查,对其有“好评”“中评”“差评”三种评价,假设这三种评价是等可能的.(1)小丽对该大型超市对顾客服务质量的满意度显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小丽一共统计了150个评价;②请将图1补充完整;③图2中“差评”所占的百分比是13.3%;(2)若甲、乙两名消费者对该大型超市对顾客服务质量的满意度进行了评价,请你用列表格或画树状图的方法求两人中至少有一个给“好评”的概率.【解答】解:(1)①小丽统计的评价一共有:=150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:×100%=13.3%;(2)列表如下:由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率=.故答案为:(1)①150;③13.3%.22.(8分)2016年5月15日,聊城举行了健步走马拉松嘉年华活动,本次健步走活动形式为半程马拉松健步走(20公里)、迷你马拉松健步走(10公里),小华参加了半程马拉松健步走,小军参加了迷你马拉松健步走,小军平均时速要比小华的平均时速快2km,小军从起点走到终点的时间仅是小华走到终点的时间的,求小军比赛完所用的时间.【解答】解:设小华的平均速度是xkm/h,由题意得:×=,解得:x=8,经检验:x=8是原分式方程的解,则=1,答:小军比赛完所用的时间为1小时.23.(8分)某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?【解答】解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x (元)之间存在一次函数关系,不妨设y=kx+b,则(280,300),(279,302)满足函数关系式,得解得,产销量y(个)与销售单价x (元)之间的函数关系式为y=﹣2x+860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,将Q=60,y=160代入得到m=9600,此时Q=.(3)当Q=30时,y=320,由(1)可知y=﹣2x+860,所以x=270,即销售单价为270元,由于=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2x+860,解得x≥230,即销售单价最低为230元.24.(10分)如图,△ABC是⊙O的内接三角形,∠BAC的角平分线AE交⊙O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若在AE上取一点F使BE=EF,求证:BF是∠ABC的平分线;(3)在(2)的条件下,若DE=3,DF=2,求AF的长.【解答】解:(1)直线l与⊙O相切.理由:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)证明:∵BE=EF,∴∠EBF=∠EFB,又∵∠EFB=∠BAE+∠ABF,∠EBF=∠CBE+∠CBF,∴∠CBE+∠CBF=∠BAE+∠ABF,∵∠CBE=∠CAE=∠BAE,∴∠ABF=∠CBF.∴BF平分∠ABC;(3)由(2)得BE=EF=DE+DF=5.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴,即,解得:AE=.∴AF=AE﹣EF=﹣5=.25.(12分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标和四边形AECP的最大面积;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)将A(0,1),B(9,10)代入函数解析式,得,解得,抛物线的解析式y=x2﹣2x+1;(2)∵AC∥x轴,A(0,1),∴x2﹣2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),∵点A(0,1),点B(9,10),∴直线AB的解析式为y=x+1,设P(m,m2﹣2m+1)∴E(m,m+1),∴PE=m+1﹣(m2﹣2m+1)=﹣m2+3m.∵AC⊥PE,AC=6,=S△AEC+S△APC=AC•EF+AC•PF∴S四边形AECP=AC•(EF+PF)=AC•EP=×6(﹣m2+3m)=﹣m2+9m=﹣(m﹣)2+,∵0<m<6,∴当m=时,四边形AECP的面积最大值是,此时P(,﹣);(3)∵y=x2﹣2x+1=(x﹣3)2﹣2,P(3,﹣2).PF=y F﹣y p=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件得点Q,设Q(t,1)且AB=9,AC=6,CP=3,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△A BC时,=,=,解得t=4,Q(4,1);②当△CQP∽△ABC时,∴=,=,解得t=﹣3,Q(﹣3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(﹣3,1).。

最新-贵州省毕节地区2018年初中数学毕业生学业(升学)

2018年毕节地区初中毕业生学业(升学)统一考试试卷数学注意事项:1、答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置。

2、答题时,卷Ⅰ必须使用2B铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题规定的位置,字体工整、笔迹清楚。

3、所有题目必须在答题卡上作答,在试卷上答题无效。

4、本试题共6页,满分150分,考试用时120分钟。

5、考试结束后,将试题卷和答题卡一并交回。

卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分。

在每小题选项中,只有一个选项正确,请把你认为正确的选项涂在相应的答题卡上。

)1、16的算术平方根是( )A、4B、±4C、2D、±22、下列交通标志中,是中心对称图形的是( )A、 B、 C、 D、3、将下图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为( )A B C D4、下列计算正确的是( )A、623aaa=⋅ B、1055aaa=+C、2236)3(aa=- D、723)(aaa=⋅5、毕节地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把己开发水能资源用四舍五入法保留两个有效数学并且用科学计数法表示应记为( )千瓦A、51016⨯ B、6106.1⨯ C、610160⨯ D、71016.0⨯6、为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是( )A、41B、21C、91D、927、两个相似多边形的面积比是16:9,其中较小多边形周长为36cm,则较大多边形周长为( )A、48cmB、54cmC、56cmD、64cm机密★启用前(第14题图)8、函数12-+=xxy中自变量x的取值范围是( )A、x≥-2B、x≥-2且x≠1C、x≠1D、x≥-2或x≠19、一次函数)0(≠+=kkkxy和反比例函数)0(≠=kxky在同一直角坐标系中的图象大致是( )10、广州亚运会期间,某纪念品原价168元,连续两次降价%a后售价为128元,下列所列方程正确的是( )A、128%)1(1602=+a B、128%)1(1602=-aC、128%)21(160=-a D、128%)1(160=-a11、如图,已知AB∥CD,∠E=︒28,∠C=︒52,则∠EAB的度数是( )A、︒28 B、︒52 C、︒70 D、︒8012、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为( )A、2cmB、3cmC、32cm D、52cm13、如图,已知AB=AC,∠A=︒36,AB的中垂线MD交AC于点D、交AB于点M。

2018年江西省中考数学押题卷与答案

2018年江西省中考数学押题卷与答案2018年江西省中考数学押题卷与答案注意事项:1.本试卷满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)1.2018的倒数是()A。

8102.B。

-2018.C。

1/11.D。

-1/20182.在数轴上表示-2的点与表示3的点之间的距离是()A。

5.B。

-5.C。

13.下列运算正确的是()A。

a•a2=a2.B。

(a2)3=a6.C。

a2+a3=a5.D。

a6÷a2=a34.在平面直角坐标系中,若将抛物线y=2x²-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A。

(-2,3)。

B。

(-1,4)。

C。

(1,4)。

D。

(4,3)5.下面四个几何体中,左视图是四边形的几何体共有()A。

1个。

B。

2个。

C。

3个。

D。

4个6.已知△ABC的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为()A。

5.B。

6.C。

7.D。

87.一元二次方程x²-4x-12=0的两个根是()A。

x1=-2,x2=6.B。

x1=-6,x2=-2.C。

x1=-3,x2=4.D。

x1=-4,x2=38.如图,已知△ABC,AB=AC,∠A=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E、F.给出以下四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④S 四边形AEPF=S△ABC上述结论始终正确的有()A。

①②③。

B。

①③。

C。

①③④。

D。

①②③④9.二次函数y=ax²+bx+c(a,b,c为常数,且a≠0)中的x 与y的部分对应值如表:x。

y下列结论错误的是()A。

ac<0.B。

当x>1时,y的值随x的增大而减小。

2018年贵州省毕节市初中毕业生学业(升学)统一考试数学试题Word版无答案

2018年贵州省毕节市初中毕业生学业(升学)统一考试数学试题注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置。

2.答题时,卷Ⅰ必须使用2B 铅笔,卷Ⅱ必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚。

3.所有题目必须在答题卡上作答,在试卷上答题无效。

4.本试题共6页,满分150分,考试用时120分钟。

5.考试结束后,将试卷和答题卡一并交回。

卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.下列各数中,无理数为( )A. 0.2B.C.D. 22.2017年毕节市参加中考的学生约为115000人,将115000用科学记数法表示为( )A.61015.1⨯B. 610115.0⨯ B.4105.11⨯ D. 51015.1⨯3. 下列计算正确的是( )A. 933a a a =⋅B. 222)(b a b a +=+C. 022=÷a aD.632)(a a =4.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有( )A. 3个B. 4个C. 5个D. 6个(第4题图)5.对一组数据:-2,1,2,1,下列说法不正确的是( )A. 平均数是1B. 众数是1C. 中位数是1D. 极差是46.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A. 55°B. 125°C. 135°D. 140°7.关于x 的一元一次不等式的解集为想4,则m 的值为( )A. 14B. 7C. -2D. 28.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的的数量约为( )A. 1250条B. 1750条C. 2500条D.5000条9.关于x 的分式方程721511xm x x -+=--有增根,则m 的值为( )A. 1B. 3C. 4D. 510.甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:则这10次跳绳中,这四个人发挥最稳定的是( )A. 甲B. 乙C. 丙D. 丁11.把直线向左平移1个单位,平移后直线的关系式为( )A. B. C. D.12.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠CAB=30°,则∠BAD 为( )A. 30°B. 50°C. 60°D. 70°13.如图,Rt △ABC 中,∠ACB=90°,斜边AB=9,D 为AB 的中点,F 为CD 上一点,且CF=CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,则BE 的长为( )A. 6B. 4C. 7D. 1214.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠EAF=45°将△ABE 绕点A 顺时针旋转90°,使点E 落在点E '处,则下列判断不正确的是( )A. △AEE '等腰直角三角形B. AF 垂直平分EE 'C. △ E E 'C ∽△ AFDD. △A E F 是等腰三角形15.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( )A.340 B.415 C.524 D.6(第15题图) 卷Ⅱ二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式:=+-22882y xy x .17.正六边形的边长为8cm,则它的面积为2cm .18.如图,已知一次函数)0(3≠-=k kx y 的图象与x 轴,y 轴分别交于A,B 两点,与反比例函数)0(12>=x x y 交于C 点,且AB=AC,则k 的值为. 19.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整) 如下:根据图中信息,该足球队全年比赛胜了场.20.观察下列运算过程:计算:1022221+⋅⋅⋅+++.解:设,2221102+⋅⋅⋅+++=S ①①⨯2得,222221132+⋅⋅⋅+++=s ② ② - ① 得.1211-=s所以,.12222111102-=+⋅⋅⋅+++ 运用上面的计算方法计算:=+⋅⋅⋅+++201723331.三、解答题(本大题共7小题,各题分值见题号后,共80分.请解答在答题卡相应题号后,应写出必要的文字说明、证明过程或演算步骤)21.(本题8分)计算:.)1(60tan 32)2()33(201702-+︒+---+--π22.(本题8分)先化简,再求值:,1)2412(2222x x x x x x x x ÷+-+-+-且x 为满足23<<-x 的整数.23.(本题10分)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.24.ABCD 中 过点A 作AE ⊥DC ,垂足为E ,连接BE ,F 为BE 上一点,且∠AFE=∠D.(1)求证:△ABF ∽△BEC ;(2)若AD =5,AB =8,54sinD ,求AF 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年毕节地区中考数学押题卷与答案注意事项:1、本试卷满分 120 分,考试时间 100 分钟。

2、本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在 试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.2018的倒数是( )A .8102B .﹣2018C .20181 D .﹣201812.在数轴上表示﹣2的点与表示3的点之间的距离是( ) A .5 B .﹣5 C .1 D .﹣13.下列运算正确的是( ) A .a•a 2=a 2B .(a 2)3=a 6C .a 2+a 3=a 6D .a 6÷a 2=a 34.在平面直角坐标系中,若将抛物线y=2x 2﹣4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是( ) A .(﹣2,3) B .(﹣1,4)C .(1,4)D .(4,3)5.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个6.已知△ABC 的两条高线的长分别为5和20,若第三条高线的长也是整数,则第三条高线长的最大值为( )A .5B .6C .7D .87.一元二次方程x 2﹣4x ﹣12=0的两个根是( )A .x 1=﹣2,x 2=6B .x 1=﹣6,x 2=﹣2C .x 1=﹣3,x 2=4D .x 1=﹣4,x 2=3 8.如图,已知△ABC ,AB=AC ,∠A=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E 、F . 给出以下四个结论: ①AE=CF ;②EF=AP ;③△EPF 是等腰直角三角形;④S 四边形AEPF =S △ABC上述结论始终正确的有( ) A .①②③B .①③C .①③④D .①②③④9.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表:下列结论错误的是( ) A .ac <0B .当x >1时,y 的值随x 的增大而减小C .3是方程ax 2+(b ﹣1)x+c=0的一个根 D .当﹣1<x <3时,ax 2+(b ﹣1)x+c >010.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A .4mB .2(m+n )C .4nD .4(m ﹣n )二、填空题(每小题3分,共15分)11.使y=+x 有意义的x 的取值范围是 .12. 用科学计算器计算:3-2sin38°19′≈____________.(结果精确到0.01)13.不等式组的解集是 .14.如图,ABC ∆中,=∠C 90°,34tan =A ,以C 为圆心的圆与AB 相切于D .若圆C 的 半径为1,则阴影部分的面积=S .15. 如图,点E ,F 分别是矩形ABCD 的边BC 和CD 上的点,其中AB =23,BC =63,把△ABE 沿AE 进行折叠,使点B 落在对角线AC 上,在把△ADF 沿AF 折叠,使点D 落在对角线AC 上,点P为直线AF 上任意一点,则PE 的最小值为 .三、解答题 (本大题共8个小题,满分75分) 16. (6分)计算:﹣90﹣4cos4517.(7分)先化简,再求值:(1a 2-2a -2a 2-4a +4)÷a +2a ,其中a =2+2.18.(10分)如图,在Rt △ABC 中,∠BCA=90°,CD 是AB 边上的中线,分别过点C ,D 作BA 和BC 的平行线,两线交于点E ,且DE 交AC 于点O ,连接AE . 求证:四边形ADCE 是菱形.19. (10分) 6月5日是世界环境日,为了普及环保知识, 增强环保意识,某市第一中学举行了“环保知识竞赛”,参 赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从 中抽取部分学生的成绩(满分为100分,得分取整数)进行 统计,并绘制出不完整的频率分布表和不完整的频数分布直 方图如下:(1)直接写出a 的值,并补全频数分布直方图.13(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为80分的至少有多少人?20.(10分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3m,已知木箱高BE=,斜面坡角为30°,求木箱端点E距地面AC的高度EF.21.(10分)某爱心组织筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?22.(10分)如图1,已知矩形ABCD,E为AD边上一动点,过A,B,E三点作⊙O,P为AB的中点,连接OP,(1)求证:BE是⊙O的直径且OP⊥AB;(2)若AB=BC=8,AE=6,试判断直线DC与⊙O的位置关系,并说明理由;(3)如图2,若AB=10,BC=8,⊙O与DC边相交于H,I两点,连结BH,当∠ABE=∠CBH时,求△ABE的面积.23.(本题12分)如图,在平面直角坐标系中,矩形OCDE 的三个顶点分别是C (3,0),D (3,4),E (0,4).点A 在DE 上,以A 为顶点的抛物线过点C ,且对称轴x =1交x 轴于点B .连接EC ,AC .点P ,Q 为动点,设运动时间为t 秒.(1)点A 的坐标为 ;抛物线的解析式为 .(2)如图1,若点P 在线段OC 上从点O 向点C 以1个单位/秒的速度运动,同时,点Q 在线段CE 上从点C 向点E 以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t 为何值时,△PCQ 为直角三角形?(3)如图2,若点P 在对称轴上从点A 开始向点B 以1个单位/秒的速度运动,过点P 作PF ⊥AB ,交AC 于点F ,过点F 作FG ⊥AD 于点G ,交抛物线于点Q ,连接AQ ,CQ .当t 为何值时,△ACQ 的面积最大?最大值是多少?y x EADO QP B C y xAEDO QPB C FG图1图2参考答案:一、选择题(每小题3分,共30分)1.C2.A3.B4.D5.B6.B7.A8.C9.B 10.A 二、填空题(每小题3分,共15分)11.x≠2 12. 1.76 13.﹣3<x ≤1. 14.24625π- 15.3 三、解答题 (本大题共8个小题,满分75分) 16. (6分)解:﹣90﹣4cos45°=2﹣1﹣4×=2﹣1﹣2=﹣1 17. (7分) 解:原式=aa a a a 2))2(2)2(1(2+÷---=2)2(22+∙---a a a a a =2)2(1--a 当a =2+2时,原式=2)2(1--a =-12.18. (10分)证明:∵DE ∥BC ,EC ∥AB ,∴四边形DBCE 是平行四边形. ∴EC ∥DB ,且EC=DB .在Rt △ABC 中,CD 为AB 边上的中线, ∴AD=DB=CD . ∴EC=AD .∴四边形ADCE 是平行四边形. ∴ED ∥BC . ∴∠AOD=∠ACB .∵∠ACB=90°, ∴∠AOD=∠ACB=90°. ∴平行四边形ADCE 是菱形. 19. (10分) 解:(1)a=0.28.补全直方图:59.5~69.5(12人);89.5~100.5(28人). (2)32+28100×1000=600(人)答:成绩优秀的学生约为600人.(3)答:被抽查的学生中得分为80分的至少有11人. 20. (10分) 解:连接AE ,在Rt △ABE 中,AB=3m ,BE=m ,则AE==2m ,又∵tan ∠EAB==,∴∠EAB=30°,在Rt △AEF 中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE ×sin ∠EAF=2×=3m .答:木箱端点E 距地面AC 的高度为3m . 21. (10分)解:(1)设甲种救灾物品每件的价格是x 元,则乙种救灾物品每件的价格是(x ﹣10)元,根据题意得:=,解得:x=70,经检验,x=70是原分式方程的解, ∴x ﹣10=60.答:甲种救灾物品每件的价格是70元,则乙种救灾物品每件的价格是60元.(2)70××2000+60××2000=125000(元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.22. (10分)解:(1)如图1,∵矩形ABCD,∴∠A=90°,∴BE为直径,∴OE=OB,∵AP=BP,∴OP∥AE,AE=2PO,∴∠OPB=∠A=90°,即OP⊥AB.(2)此时直线CD与⊙O相切.理由:如图1,延长PO交CD于M,在Rt△ABE中,AB=8,AE=6,则BE2=62+82=100,∴BE=10,∴此时⊙O的半径r=5,∴OM=r=5,∵在矩形APMD中,PM=AD=8,∴OM=PM﹣OP=5=r,∴直线CD与⊙O相切.(3)如图2,【方法I】∵BE为直径,∴∠EH B=90°,∴∠3+∠4=90°,∵∠C=90°,∴∠3+∠2=90°,∴∠2=∠4,∴当∠1=∠2时,有tan∠1=tan∠2=tan∠4,设AE=x,CH=y,则DE=8﹣x,DH=10﹣y,∴==,解得,x=20,或x=5,∵AE=x <8,∴x=20,不合题意,舍去,取AE=x=5,Rt △ABE 的面积=AE ×AB=×5×10=25. 【方法II 】如图3,延长PO 交CD 于点F ,连接OH ,在矩形FPBC ,OP ⊥AB ,且FC=PB=AB=5,OP=AE ,OF=8﹣AE ,BE=2HO ,当∠ABE=∠CBH 时,设tan ∠ABE=tan ∠CBH=k 时, 在Rt △ABE 中,则AE=10tan ∠ABE=10k , 在Rt △HBC 中,则HC=8tan ∠ABE=8k , ∴OP=5k ,OF=8﹣5k ,FH=5﹣8k , 在Rt △ABE 中,BE 2=AE 2+AB 2=100(1+k 2),在Rt △OFH 中,HO 2=FH 2+OF 2=(5﹣8k )2+(8﹣5k )2, ∵BE=2HO ,∴BE 2=4 HO 2∴100(1+k 2)=4[(5﹣8k )2+(8﹣5k )2], 整理得,2 k 2﹣5k+2=0,解得,k=2,或k=,当k=2时,AE=10k=20>8,不合题意,舍去;当k=时,AE=10k=5<8,符合题意,此时,Rt △ABE 的面积=AE ×AB=×5×10=25. 23.(1)(1,4) 322++-=x x y (2)∵C (3,0),E (0,4) ∴OC =3,OE =4在Rt △COE 中,根据勾股定理得 5432222=+=+=OE OC CE △PCQ 为直角三角形,共有2种可能的情况: ①当∠QPC =90°时 ∵CEOCCQ PC QCP ==∠cos ∴5323=-t t 解得1115=t ②当∠PQC =90°时 ∵CEOCPC CQ QCP ==∠cos∴5332=-t t 解得139=t 综上所述,当1115=t 或139=t 时, △PCQ 为直角三角形.(3)设直线AC 的解析式为b kx y +=,(0≠k ).将C (3,0),E (0,4)代入得 ⎩⎨⎧=+=+034b k b k 解得⎩⎨⎧=-=62b k∴直线AC 的解析式为62+-=x y∵P (1,4-t )∴F ⎪⎭⎫⎝⎛-+t t 4,21 ∴Q ⎪⎪⎭⎫ ⎝⎛-+44,212t t ∴QF =()444422t t t t -=--⎪⎪⎭⎫ ⎝⎛- ∴CFQ AFQ ACQ S S S ∆∆∆+= DG FQ AG FQ ⋅+⋅=2121 ()DG AG FQ +⋅=21AD FQ ⋅=21⎪⎪⎭⎫ ⎝⎛-⨯⨯=42212t t ()12412+--=t ∵041<- ∴当2=t 时,△ACQ 的面积最大,最大值是1.。

相关文档
最新文档