七年级数学第一学期期末试卷(1)

合集下载

2023学年广州天河区七年级第一学期数学期末试卷及答案

2023学年广州天河区七年级第一学期数学期末试卷及答案

从正而看从左面看从上面看第5题图2023学年第一学期期末考试七年级数学注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液。

不按以上要求作答的答案无效。

4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

一、单项选择题(本题有8个小题,每小题3分,共24分,每小题给出的四个选项中,只有一个是正确的.)1.-2的绝对值是()A.-2B.2C.±2D.122.下列各组数中,大小关系正确的是()A.-7<-5<-2B.-7>-5>-2C.-7<-2<-5D.-2>-7>-53.2023年8月21日,广州市委书记在接受南方日报采访时透露:“广州是超大城市,每天实时在穗人口约24000000,规模巨大;广州包容性强、烟火气旺、藏富于民,具有扎实推进共同富裕的良好基础”.人口24000000用科学记数法可表示为().A.0.24×108B.2.4×107C.2.4×106D.24×1064.下列各式中正确的是().A .2x +2y=4xyB.3x ²-x ²=3C.3xy -2xy =xyD.2x +4x =6x 25.如图是从不同方向看某个立体图形所得到的平面图形,则这个立体图形是().A.三棱锥B.三棱柱C.圆柱D.圆锥6.已知等式3a =2b +5,那么下列等式不一定成立的是()A.3a -5=2bB.3a +2=2b +7C.3ac =2bc +5D .a =23+53第10题图7.在直线l 上截取线段AB =10cm ,BC =4cm ,若点D ,E 分别是AB 和BC 的中点,则DE 的长是()A.7cmB.3cmC.7cm 或4cmD.7cm 或3cm8.广州市政府为了打造绿化带,将一段长为360米的绿化规划道路承包给了甲、乙两个工程队.两队先后接力完成,共用时20天.已知甲工程队每天可以完成24米,乙工程队每天可以完成16米.求甲、乙两个工程队分别完成了多长的绿化带?若设甲完成了x 米,则下列式子正确的是().A.16+360−24=20B.24+360−24=20C.24x +16(20-x )=360D.16x +24(20-x )=360二、多项选择题(本题有2个小题,每小题4分,共8分,每小题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分.)9.关于x 的方程2x -5+a =bx +1(a ,b 为常数),下列说法正确的是()A.当b ≠2时,该方程有唯一解;B.当a ≠6,b =2时,该方程有无数解;C.当a =6,b =2时,该方程有无数解;D.当a ≠6,b =2时,该方程无解.10.已知OD ,OE 是∠AOC 的三等分线,OF ,OG 是∠BOC 的三等分线,则结论正确的有().A.∠EOF =13∠AOB ;B.∠COF=∠COD ;C.OG 是∠BOF 的角平分线;D.若∠FOG =2∠DOE ,则∠AOE 和∠BOF 互余.三、填空题(本题有6个小题,每小题3分,共18分.)11.某天的最高气温是17℃,最低气温是-2℃,该天的温差是.12.请写出一个只含有字母a ,b ,且次数为5的单项式.13.已知∠A =25°,则∠A 的补角是.14.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有我”字一面的相对面上的字是.15,已知关于x 的方程2x -6=-mx (m 为正整数)有整数解,则m 的值为.16.观察一列数:-1,2,-3,4,-5,6,…,按照这样的规律,若其中连续三个数的和为2023,则这三个连续的数中最小的数是.第14题图四、解答题(本大题有9小题,共70分,解答要求写出文字说明,证明过程或计算步骤。

西安市高新一中2023-2024学年度第一学期去七年级数学期末考试试题附参考答案

西安市高新一中2023-2024学年度第一学期去七年级数学期末考试试题附参考答案

西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B.(-2)2C.-(-2)D.-(-2)22.某种流行性感冒病毒是依靠飞沫和直接接触传播,直接接触我们可以通过及时清洗和杀毒避免,飞沫的直径一般是在0.000003米左右.将0.000003用科学记数法表示为 A.30×10-7B.3×10-6C.3×10-5D.0.3×10-63.下列调查方式中,采用合适的是A.为了解全市中学生每周体育锻炼的时闻,选择普查方式B.调查西安市“骑电动车”头盔佩戴率,选择抽样调查方式C.神舟十七号飞船发射前的零件检查,选择抽样调查方式D.调查某批次医用外科口罩的合格率,选择普查方式4.如图是由6个相同的小正方体拼成的几何体,从左边看,得到的平面图形是5.下列等式的变形中,正确的是 A.如果|a|=|b|,那么a=b B.如果a c =bc ,那么a=bC.如果a x =ay ,那么x =yD.如果m=n ,那么mc 2−4=nc 2−46.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是 A.-5x -1B.5x +1C.13x -1D.6x 2+13x -17.下列说法:①若a 、b 互为相反数,则a b=-1;②若a b>0,且a+b <0,则|a|+|b|=第4题图-a -b ;③一个数的立方是它本身,则这个数为1或0;④若-1<a <0,则a 的倒数小于-1.其中正确的个数是 A.1个B.2个C.3个D.4个8.如图,矩形纸片ABCD ,M 为AD 边的中点,将纸片沿BM 、CM 折叠,使A 点落在A 1处,D 点落在D 1处,若∠1=30°,则∠BMC= A.75°B.150°C.120°D.105°9.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,则符合题意的方程是 A.12x =(x -5)-5B.12x =(x +5)+5C.2x =(x -5)-5D.2x =(x +5)+510.如图,点C 是线段AB 上一点,且3AC=2AB ,D 是AB 的中点,E 是CB 的中点,DE=6,则线段AB 的长是A.18B.20C.12D.24二、填空题(共7小题,每小题3分,计21分)11.多项式-2x 3y 2-3x 2y 3+x y 2-1的次数是_____,常数项是_______. 12.若2x =5,2y =3,则22x+y =_______.13.我们中午休息结束的时间是1点50分,此时钟面上时针与分针所成的夹角是第10题图第8题图ABDCM A 1D 11_______.14.关于x 的方程3-3a−x 2=0与方程2x -5=1的解相同,则常数a 是_______.15.如图是正方体的平面展开图,若AB=8,则该正方体A 、B 两点间的距离为_______. 16.如果x 2-(m+1)x +16是完全平方式,则实数m 的值是_______.17.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为17,当MN 的三等分点移动到点A 时,点M 所对应的数为6,则木棒MN 的长度为_______.三、解答题(共8小题,计69分) 18.(14分)计算(1)-42+[32÷(-2)3-16×40](2)(-3x y 2)2·(-6x 3y)(3)先化简再求值:(3a+b)2-(b+3a)(3a -b)-6b 2,其中a=-13,b=-2. 19.(8分)解方程 (1)0.5x -0.7=6.5-1.3x(2)x+32-2=-2x−2520.(6分)如图,已知平面上四个点A ,B ,C ,D ,请按要求画图并回答问题. (1)连接AB ,延长AB 到E ,使BE=AB. (2)分别画直线AC 、射线AD.(3)在射线AD 上找点P ,使PC+PB 最小,此画图的依据是________.第15题图AB第17题图21.(7分)高新区某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成如图所示两幅统计图,请根据图中的信息,完成下列问题.(1)设学校这次调查共抽取了n 名学生,则n=________. (2)请你补全条形统计图.(3)设该校共有学生2400名,请你估计该校有多少名学生喜欢跳绳?22.(7分)某商店用3135元购进了两种新型玻璃保温杯共60个,这两种玻璃保温杯的进价、标价如表所示.(1)这两种玻璃保温杯各购进多少个?(2)若A 型玻璃保温杯按标价的9折出售,B 型玻璃保温杯按标价的8.5折出售,且篮球跳绳足球 羽毛球 乒乓球 25%20%20% 25% 10%AB D在运输过程中有2个A 型、1个B 型玻璃保温杯不慎损坏,不能进行销售,请问这批玻璃保温杯全部售出后,该商店共获利多少元?23.(7分)如图所示数表,由从1开始的连续自然数组成,观察规律并完成下列各题: (1)第六排从左往右第1个数为_______;第七排从左往右第1个数为________. (2)第a 排第1个数可以表示为_______.(用含a 的式子表示)(3)若第n 排的一个数和第(n+1)排的两个连续自然数能够放入如图所示的等边三角形中,则称该三角形为“数字三角形”,里面三个数字之和称为该数字三角形的“数字和”. 若第n 排和第(n+1)排中总共有39个“数字三角形”,其中一个“数字三角形”的“数字和”为2371,则该“数字三角形”中的三个数字分别为多少?24.(8分)如图所示,纸片甲、乙分别是长方形ABCD 和正方形EFGH ,将甲、乙纸片沿对角线AC ,EG 剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR ,与甲、乙纸片一起组成纸片丙的四边形NALM ,设AD=a ,AB=b.(1)求纸片乙的边长(用含字母a 、b 的代数式表示).A甲乙EH丙L3 26 54 7 8 9 10 1112 13 1415……1 第一排 第二排 第三排 第四排 第五排(2)探究纸片乙、丙面积之间的数量关系.25.(12分)如图,将两个完全一样的等腰直角三角尺如图叠放,∠B=∠D=90°,∠AOB=∠DOC=45°,使公共顶点与直线OF 上的点O 重合,∠DOF=10°,∠AOD=70°. (1)∠BOF=________.(2)若三角尺AOB 绕点0以每秒10°的速度顺时针旋转一周,设旋转时间为t 秒,在旋转的过程中,直线OA 恰好平分∠COF ,求t 的值.(3)在(2)的条件下另一个三角尺OCD 也绕点O 以每秒5°的速度顺时针旋转.当三角尺AOB 的边OA 平分∠COD 时,求t 的值?(自行画图分析)西安市高新一中2023-2024学年度第一学期期末考试试题七年级数学参考答案一、选择题(共10小题,每小题3分,计30分) 1.下列运算结果为负数的是 A.|-2|B. (-2)2C.-(-2)D.-(-2)21.解:|-2|=2,(-2)2=4,-(-2)=2,-(-2)2=-4,故选D 。

人教版 数学七年级上册期末检测试卷 试卷1(解析版)

人教版 数学七年级上册期末检测试卷 试卷1(解析版)

数学七年级上册期末检测试卷一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.2.方程2x+6=0的解是()A.3B.﹣3C.2D.03.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×1044.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.16.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.612.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是.18.若3a m b2与是同类项,则=.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性(填“大”或“小”).20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)22.解方程:(1)6y+2=3y﹣4(2)23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)参考答案一、选择题(每小题只有一个正确的选项,每小题3分,共45分)1.4的相反数是()A.﹣4B.4C.D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解:根据相反数的含义,可得4的相反数是:﹣4.故选:A.2.方程2x+6=0的解是()A.3B.﹣3C.2D.0【分析】方程移项后,将x系数化为1,即可求出解.解:方程2x+6=0,移项得:2x=﹣6,解得:x=﹣3.故选:B.3.毕节市七星关区三板桥体育场占地30万平方米,可容纳观众80012人.30万平方米用科学记数法表示为()平方米.A.3×105B.30×104C.3×106D.3×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:30万=300000=3×105.故选:A.4.化简﹣2(m﹣n)的结果为()A.﹣2m﹣n B.﹣2m+n C.2m﹣2n D.﹣2m+2n【分析】利用分配律把括号内的2乘到括号内,然后利用去括号法则求解.解:﹣2(m﹣n)=﹣(2m﹣2n)=﹣2m+2n.故选:D.5.代数式﹣x2y的系数是()A.3B.0C.﹣1D.1【分析】根据单项式系数的定义进行解答即可.解:∵代数式﹣x2y的数字因数是﹣1,∴此单项式的系数是﹣1.故选:C.6.下列去括号正确的是()A.a+(b﹣c)=a+b+c B.a﹣(b﹣c)=a﹣b﹣cC.a﹣(b﹣c)=a﹣b+c D.a+(b﹣c)=a﹣b+c【分析】利用去括号添括号法则,逐项判断即可得出正确答案.解:A、D、a+(b﹣c)=a+b﹣c,故A和D都错误;B、C、a﹣(b﹣c)=a﹣b+c,故B错误,C正确;故选:C.7.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短【分析】本题涉及直线,相交线的有关概念和性质.当两条直线相交所成的四个角中,有一个角是直角时,两条直线互相垂直.解:A、只有当相交的两条直线有一个角是直角时,才能叫做垂直,错误;B、经过一点可以画无数条直线,错误;C、平角和直线是两种不同的概念,说平角是一条直线,错误;D、两点之间的所有连线中,线段最短,是公理,正确.故选:D.8.把方程去分母,正确的是()A.10x﹣5(x﹣1)=1﹣2(x+2)B.10x﹣5(x﹣1)=10﹣2(x+2)C.10x﹣5(x﹣1)=10﹣(x+2)D.10x﹣(x﹣1)=10﹣(x+2)【分析】把方程的两边同时乘以10即可.解:方程的两边同时乘以10得,10x﹣5(x﹣1)=10﹣2(x+2).故选:B.9.下列事件,你认为是必然事件的是()A.打开电视机,正在播广告B.今天星期二,明天星期三C.今年的正月初一,天气一定是晴天D.一个袋子里装有红球1个、白球9个,每个球除颜色外都相同,任意摸出一个球是白色的【分析】必然事件就是一定发生的事件,依据定义即可作出判断.解:A、是随机事件,选项错误;B、是必然事件,选项正确;C、是随机事件,选项错误;D、是随机事件,选项错误.故选:B.10.小明做了以下4道计算题:①(﹣1)2020=2020②0﹣(﹣1)=﹣1③④请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题【分析】根据有理数的乘方可以判断①,根据有理数的加减法可以判断②③,根据有理数的除法可以判断④.解:(﹣1)2020=1,故①错误,不符合题意;0﹣(﹣1)=0+1=1,故②错误,不符合题意;﹣=﹣,故③正确,符合题意;÷(﹣)=﹣1,故④正确,符合题意;故选:B.11.如图所示,在数轴上点A表示的数可能是()A.1.5B.﹣1.5C.﹣2.6D.2.6【分析】根据点A位于﹣3和﹣2之间求解.解:∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.故选:C.12.在立方体的六个面上,分别标上“我、爱、实、验、中、学”,如图是立方体的三种不同摆法,则三种摆法的左侧面上三个字分别是()A.爱、实、验B.中、学、验C.中、我、验D.爱、中、学【分析】从3个图形看,和我相邻的有爱、验、中、学,那么和我相对的就是实,和爱相对的就是验,和中相对的就是学.依此答题即可.解:根据三个图形的汉字,可推断出来,和我相对的就是实,和爱相对的就是验,和中相对的就是学,∴三种摆法的左侧面上三个字分别是爱、中、学.故选:D.13.从如图的两个统计图中,可看出女生人数较多的是()A.初一(一)班B.初一(二)班C.两班一样多D.不能确定【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.解:因为没有男女生总数,只看所占百分比无法确定哪个班女生人数较多.故选:D.14.某种细菌在营养过程中,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,这种细菌由1个可分裂繁殖成()A.8个B.16个C.4个D.32个【分析】本题考查有理数的乘方运算,细菌每半小时分裂一次(由一个分裂为两个),经过两小时,进行4次分裂,即24,计算出结果即可.解:2×2×2×2=24=16.故选:B.15.已知x=﹣2是方程2x+m﹣4=0的一个根,则m的值是()A.8B.﹣8C.0D.2【分析】虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=﹣2代入2x+m﹣4=0得:2×(﹣2)+m﹣4=0解得:m=8.故选:A.二、填空题(每小题5分,共25分)16.如图,直线AB、CD相交于O,∠COE是直角,∠1=57°,则∠2=33°.【分析】根据∠2=180°﹣∠COE﹣∠1,可得出答案.解:由题意得:∠2=180°﹣∠COE﹣∠1=180°﹣90°﹣57°=33°.故答案为:33°.17.建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,你能说明其中的原理是两点确定一条直线.【分析】根据公理“两点确定一条直线”,来解答即可.解:∵两点确定一条直线,∴建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.故答案为:两点确定一条直线.18.若3a m b2与是同类项,则=0.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程求出n,m 的值,再代入代数式计算即可.解:∵3a m b2与是同类项,∴n=2,m=1,∴m﹣n=0故答案为:0.19.初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性大(填“大”或“小”).【分析】分别求得找到男生和找到女生的概率即可比较出可能性的大小.解:∵初一(2)班共有学生44人,其中男生有30人,女生14人,∴找到男生的概率为:=,找到女生的概率为:=∴找到男生的可能性大,故答案为:大20.观察下面一列数,按某种规律在横线上填上适当的数:1,,,,,,则第n个数为.【分析】根据数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,所以第5个数是,第6个数是第n个数为.解:通过数据的规律可知,分子的规律是连续的奇数即2n﹣1,分母是12,22,32,42,52,…n2,第n个数为,那么第5项为:=,第6项的个数为:=.三、解答题(7小题,共80分)21.计算:(1)4×(﹣2)﹣(﹣8)÷2(2)【分析】(1)依据同号相乘得正,异号相乘得负计算;(2)运用乘法分配律计算比较简便.解:(1)4×(﹣2)﹣(﹣8)÷2,=﹣8+4,=﹣4;(2)原式=(﹣3)2×()+(﹣3)2×(﹣),=3﹣4=﹣1.22.解方程:(1)6y+2=3y﹣4(2)【分析】(1)此题为整式方程,只需移项,化系数为1,即可得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而解出方程.解:(1)移项,得:6y﹣3y=﹣4﹣2;合并同类项,得:3y=﹣6;方程两边同除于3,得:y=﹣2;(2)去分母,得:2(x+1)﹣6=5x﹣1;去括号,得:2x+2﹣6=5x﹣1;移项、合并同类项,得:﹣3x=3;方程两边同除以﹣3,得:x=﹣1.23.先化简,再求值:(4a2﹣3a)﹣(1﹣4a+4a2),其中a=﹣2.【分析】本题应对代数式进行去括号,合并同类项,将代数式化为最简式,然后把a的值代入即可.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.解:(4a2﹣3a)﹣(1﹣4a+4a2)=4a2﹣3a﹣1+4a﹣4a2=a﹣1,当a=﹣2时,a﹣1=﹣2﹣1=﹣3.24.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的从正面看、从左面看、从上面看的形状图.【分析】从正面看有2排,左边3层,右边2层;从左面看1排,3层;从上面看2排,每排1层.解:如图所示:25.如图,直线AB、CD交于O点,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)求∠2和∠3的度数;(2)OF平分∠AOD吗?为什么?【分析】(1)根据邻补角的定义,即可求得∠2的度数,根据角平分线的定义和平角的定义即可求得∠3的度数;(2)根据OF分∠AOD的两部分角的度数即可说明.解:(1)∵∠BOC+∠2=180°,∠BOC=80°,∴∠2=180°﹣80°=100°;∵OE是∠BOC的角平分线,∴∠1=40°.∵∠1+∠2+∠3=180°,∴∠3=180°﹣∠1﹣∠2=180°﹣40°﹣100°=40°.(2)平分理由:∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣∠2﹣∠3=180°﹣100°﹣40°=40°.∴∠AOF=∠3=40°,∴OF平分∠AOD.26.中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:意见非常不满意不满意有一点满意满意人数200160328百分比(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.【分析】(1)由每个的人数除以总人数.再乘以100%,即可求得;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,∴(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.27.在如图所示的2020年8月份日历中,(1)用一个长方形的方框圈出任意3×3个数,如果从左下角到右上角的“对角线”上的3个数字的和为39,那么这9个数的和为多少?(2)这个长方形的方框圈出的9个数的和能为216吗?(3)如果任意选择如上的阴影部分,那么其中的四个数a、b、c、d又有什么规律呢?请用含a、b、c、d的等式表示.(其中a、b、c、d四个数之间的大小关系是a<b<c<d,a、b、c、d为整数)【分析】(1)求出中间一个数,即可得答案;(2)设中间的数为y,列出代数式比较得出结果;(3)观察可得四个数的关系.解:(1)设对角线中间一个数为x,那么左下角的数为x+6,右上角的数为x﹣6,x+x+6+x﹣6=39 解得x=13,这9个数的和为5+6+7+12+13+14+19+20+21=162;(2)不能.设中间的数为y,则9y=216,解得y=24,那么矩形右下角的数为24+8=32,这是不可能的,∴不能;(3)a=b﹣1=c﹣6=d﹣7或b=a+1=c﹣5=d﹣6或c=a+6=b+7=d﹣1或d=a+7=b+6=c+1.。

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题含解析

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题含解析

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.下列四个选项的代数式表示中,其中错误的是( )A .m 与n 的2倍的和是2m n +B .m 与n 的和的2倍是()2m n +C .a 与b 的2倍的和是()2a b +D .若a 的平方比甲数小2,则甲数是22+a2.一个多项式与2x 2+2x -1的和是x +2,则这个多项式为( )A .x 2-5x +3B .-x 2+x -1C .-2x 2-x +3D .x 2-5x -133.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°4.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比 ∠EBF 大15°,则∠EBC 的度数是()A .15度B .20度C .25度D .30度5.已知3x =是关于x 的方程()5132x a --=-的解,则a 的值是A .-4B .4C .6D .-66.观察如图所示的几何体,从左面看到的图形是( )A .B .C .D .7.下列各对数中,数值相等的是 ( )A .23和32B .(﹣2)2和﹣22C .2和|﹣2|D .和8.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,-2的差倒数是111(2)3=--.如果14a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…以此类推,则123461a a a a a ++++⋯+的值是( )A .-55B .55C .-65D .659.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5,经过下面5步运算可得1,即:如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有( )A .6个B .5个C .4个D .3个 10.如图,∠AOC =∠BOD =80°,如果∠AOD =138°,那么∠BOC 等于( )A .22°B .32°C .42°D .52°二、填空题(本大题共有6小题,每小题3分,共18分)11.已知关于x 的一元一次方程mx =5x ﹣2的解为x =2,则m 值为_____.12.实数16 800 000用科学计数法表示为______________________.13.计算:70°39′=______°;比较大小:52°52′_____52.52°.(选填“>”、“<”或“=”)14.若单项式253x y 与1312m n x y ---是同类项,则n m =________.15.在时刻8:30时,时钟上时针和分针的夹角为 度. 16.计算:22°16′÷4=___________.(结果用度、分、秒表示)三、解下列各题(本大题共8小题,共72分)17.(8分)星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车. ()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?18.(8分)解方程: 641152x x +--= 19.(8分)计算:(﹣1)2018÷2×(﹣12)3×16﹣|﹣2| 20.(8分)某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%,问这种商品的进价为多少元?21.(8分)(1)已知22231A x xy y B x xy =++-=-,,若()2230x y ++-=,求2A B -的值; (2)已知多项式2212x my +-与 多项式236nx y -+的差中不含有2,x y ,求m n mn ++的值. 22.(10分)已知212()02x y ++-=,先化简再求32322212x 2x x 3x y 5xy 7-5xy 33y -++++的值. 23.(10分)解关于x 的分式方程:223242kx x x x +=--+ 24.(12分)综合题如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30D ∠=︒)的直角顶点放在点O 处,一边OE 在射线OA 上,另一边OD 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5︒的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OD 恰好平分BOC ∠.①此时t 的值为______;(直接填空)②此时OE 是否平分AOC ∠?请说明理由.(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒8︒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分DOE ∠?请说明理由;(3)在(2)问的基础上,经过多长时间OC 平分DOB ∠?参考答案一、选择题(每小题3分,共30分)1、C【分析】逐一对选项进行分析即可.【题目详解】A . m 与n 的2倍的和是2m n +,故该选项正确;B . m 与n 的和的2倍是()2m n +,故该选项正确;C . a 与b 的2倍的和是2+a b ,故该选项正确;D . 若a 的平方比甲数小2,则甲数是22+a ,故该选项正确;故选:C .【题目点拨】本题主要考查列代数式,掌握列代数式的方法及代数式的书写形式是解题的关键.【分析】直接利用整式的加减运算法则计算,设这个多项式是A ,则A+(2x 2+2x-1)= x +2,求出A 的表达式即可得出答案.【题目详解】解:设这个多项式是A ,∵这个多项式与2x 2+2x -1的和是x +2,∴A+(2x 2+2x-1)= x +2,即A=(x+2)-(2x 2+2x-1)=﹣2x 2-x+3,故选:C .【题目点拨】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.3、A【分析】根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【题目详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【题目点拨】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.4、C【分析】根据折叠角相等和正方形各内角为直角的性质即可求得∠EBF 的度数.【题目详解】解:∵∠FBE 是∠CBE 折叠形成,∴∠FBE=∠CBE ,∵∠ABF-∠EBF=15°,∠ABF+∠EBF+∠CBE=90°,∴∠EBF=∠EBC= 25°,故选C .【题目点拨】本题考查了折叠的性质,考查了正方形各内角为直角的性质,本题中求得∠FBE=∠CBE 是解题的关键.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【题目详解】把x=3代入方程5(x-1)-3a=-2得:10-3a=-2,解得:a=4,故选B .【题目点拨】本题考查了一元一次方程的解,解一元一次方程等知识点,解题的关键是能得出关于a 的一元一次方程. 6、C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【题目详解】解:观察几何体,从左面看到的图形是故选:C .【题目点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、C【解题分析】选项A ,,数值不相等;选项B ,(﹣2)2=4,﹣22=﹣4,数值不相等;选项C ,|﹣2|=2,数值相等;选项D , , ,数值不相等,故选C. 点睛:解决此类题目的关键是熟记有理数的乘方法则.负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数.8、A【分析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【题目详解】∵a 1=-4a 2=111111(4)5a ==---, a 3=211511415a ==--, a 4=31145114a ==---, …数列以-4,15,三个数依次不断循环,∴45658512360619115514,45420a a a a a a a =.a a a a ..++=+++=+=-++=-==- ∴12346112351()20(4)20(4)5520a a a a a a a a =⨯+-++++⋯+++=-⨯+-=- 故选:A.【题目点拨】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.9、C【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m 的值为多少即可.【题目详解】定义新运算故答案为C【题目点拨】本题考查逆推法,熟练掌握计算法则是解题关键.10、A【分析】根据题意先计算出∠COD 的度数,然后进一步利用∠BOD −∠COD 加以计算求解即可.【题目详解】∵∠AOC =∠BOD =80°,∠AOD =138°,∴∠COD=∠AOD −∠AOC=58°,∴∠BOC=∠BOD −∠COD=80°−58°=22°,【题目点拨】本题主要考查了角度的计算,熟练掌握相关方法是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【分析】直接把x 的值代入进而得出答案.【题目详解】解:∵关于x 的一元一次方程mx =5x ﹣2的解为x =2,∴2m =10﹣2,解得:m =1.故答案为:1.【题目点拨】本题主要考查了一元一次方程的解得知识点,准确计算是解题的关键.12、1.68×1 【解题分析】分析:用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 详解:16800000=1.68×1. 故答案为1.68×1. 点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.13、70.65°> 【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论.【题目详解】70°39′=70°+39′÷60=70°+0.65°=70.65°,∵0.52×60=31.2,0.2×60=12, ∴52.52°=52°31′12″, 52°52′>52°31′12″,故答案为:70.65°;>.【题目点拨】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较. 14、1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m 、n 的值. 【题目详解】解:单项式253x y 与1312m n x y ---是同类项,12m ∴-=,315n -=,解得:1m =-,2n =,故()211n m =-=,故答案为:1.【题目点拨】本题考查了同类项的定义,关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15、1.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【题目详解】解:8:30时,时钟上时针和分针相距2+1522=份, 8:30时,时钟上时针和分针的夹角为30×52=1°.故答案为1.考点:钟面角.16、5°34′【解题分析】22°16′÷4=(20÷4)°(136÷4)′=5°34′, 故答案是:5°34′.三、解下列各题(本大题共8小题,共72分)17、(1)12时;(2)60km . 【分析】(1)设小颖追上队伍用了x 小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【题目详解】(1)设小颖追上队伍用了x 小时.依题意得1060()8060x x += 解得12x = 答:小颖追上队伍用了12小时 (2)小颖追上队伍时.距离雷锋纪念馆: 100-80×12=60(km )【题目点拨】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.3【分析】去分母、去括号、移项、合并同类项、系数化1即可.【题目详解】解: 641152x x +--= 去分母,得()()2645110x x +--=.去括号,得1285510x x +-+=.移项、合并同类项,得73x =-.系数化1,得37x =-【题目点拨】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.19、-1【分析】先进行指数幂运算,再进行乘除运算,最后进行加法运算.【题目详解】解:原式=1÷2×(-18)×16-2 =-1-2=-1.【题目点拨】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解题的关键.20、700【分析】首先设进价为每件x 元,根据题意得选题关系:(1+利润率)×进价=原售价×打折-让利,代入相应数值列出方程,解方程即可.【题目详解】设进价为每件x 元,由题意得(1+10%)x=900×90%-40 解得:x=700,答:这种商品的进价为700元21、(1)10-;(2)7-【分析】(1)根据题意求得x 和y 的值,然后将2A B -化简,化简后代入x 、y 的值运算即可;(2)先求出两个多项式的差,不含有2x ,y 代表含有2x ,y 项的系数为0,求出m 和n 的值代入原式即可求解.【题目详解】(1)∵()2230x y ++-=∴2x =-,3y =2A B -=()222312x xy y x xy ++---=2223122x xy y x xy ++--+=331xy y当2x =-,3y =时,原式=()323331⨯-⨯+⨯-=10-(2)()2221236x my nx y +---+=()()22318n x m y -++- ∵两多项式的差中不含有2x ,y∴20n -=,30m +=∴2n =,3m =-当2n =,3m =-时,原式=()3232-++-⨯=7-故答案为(1)10-;(2)7-.【题目点拨】本题考查了整数的加减混合运算,绝对值的非负性,偶次方的非负性,整式的意义,多项式中不含有某项,令该项的系数为0即可.22、327x x y ++,1【分析】先根据两个非负数的和等于0,得到20x +=,102y -=,可求出x 、y 的值,再化简代数式,把x 、y 的值代入化简后的代数式计算即可. 【题目详解】解:∵21202x y ⎛⎫++-= ⎪⎝⎭,∴2x =-,12y =, 323222122357533x x y x x y xy xy -++++- 327x x y =++()()3212272=-+-⨯+ 827=-++67=-+1=【题目点拨】本题考查了整式的化简求值、非负数的性质.熟练掌握整式的运算法则是解题的关键.23、当k=1或k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,x=101k --是原方程的解. 【分析】根据解分式方程的步骤解得即可,分情况讨论,检验【题目详解】解:两边同时乘以(x+2)(x-2)得:2(x+2)+kx=3 (x-2)移项合并得:(k-1)x=−10,当k-1=0时,即k=1时,方程无解,当k-1≠0时,即k ≠1时, x= 101k -- 检验:当x=101k --=±2时,即k=-4或k=6时,则(x+2)(x-2)=0, ∴当k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,则(x+2)(x-2)≠0,∴当k ≠-4或k ≠6时,x=101k --是原方程的解. 【题目点拨】此题主要考查了解分式方程,正确地分情况讨论是解决问题的关键.24、(1)①3;②是,理由见解析;(2)经过5秒或69秒时,OC 平分DOE ∠;(3)经过21011秒时,OC 平分DOB ∠. 【分析】(1)①先求出0t =时的DOC ∠的度数,再求出当OD 恰好平分BOC ∠时DOC ∠,最后根据旋转的角度等于前后两次所求DOC ∠度数的差列出方程即得.②在①中求出的t 的条件下,求出此时的COE ∠的度数即可.(2)先根据OC 平分DOE ∠可将OC 旋转度数与三角板旋转度数之差分为15︒、375︒和345︒三种情况,然后以OC 平分DOE ∠为等量关系列出方程即得.(3)先根据OC 旋转速度与三角板旋转速度判断OC 平分DOB ∠应该在两者旋转过OB 之后,然后用t 分别表示出COB ∠与DOB ∠的度数,最后依据OC 平分DOB ∠为等量关系列出方程即可.【题目详解】(1)①当0t =时∵30AOC ∠=︒,90AOD ∠=︒∴60∠=∠-∠=︒DOC AOD AOC当直角三角板绕O 点旋转t 秒后∴60+5∠=︒DOC t∵30AOC ∠=︒,+180∠∠=︒BOC AOC∴150BOC ∠=︒∵OD 恰好平分BOC ∠∴12∠=∠DOC BOC ∴60+575︒=︒t∴3t =.②是,理由如下:∵转动3秒,∴15AOE ∠=︒,∴15COE AOC AOE ∠=∠-∠=︒,∴COE AOE ∠=∠,即OE 平分AOC ∠.(2)直角三角板绕O 点旋转一周所需的时间为360725=(秒),射线OC 绕O 点旋转一周所需的时间为 360458=(秒), 设经过x 秒时,OC 平分DOE ∠,由题意:①854530x x -=-,解得:5x =,②853603045x x -=-+,解得:12572x =>,不合题意,③∵射线OC 绕O 点旋转一周所需的时间为360458=(秒),45秒后停止运动, ∴OE 旋转345︒时,OC 平分DOE ∠, ∴345695x ==(秒), 综上所述,5x =秒或69秒时,OC 平分DOE ∠.(3)由题意可知,OD 旋转到与OB 重合时,需要90518÷=(秒),OC 旋转到与OB 重合时,需要3(18030)8184-÷=(秒), 所以OD 比OC 早与OB 重合,设经过x 秒时,OC 平分DOB ∠. 由题意:18(18030)(590)2x x --=-, 解得:21011x =, 所以经过21011秒时,OC 平分DOB ∠. 【题目点拨】本题考查角的和与差的综合问题中的动态问题,弄清运动情况,将动态问题静态化是解题关键,根据等量关系确定所有满足条件的状态是难点也是容易遗漏点,在解题过程中一定要检验每一种情况是否符合题目条件,做到不重不漏的分类讨论.。

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。

浙教版七年级第一学期期末数学试卷及答案一

浙教版七年级第一学期期末数学试卷及答案一

浙教版七年级第一学期期末数学试卷及答案一、选择题(本题共10小题,共30分) 1. 2022的相反数是( )A. −2202B. 2202C. −2022D. 20222. 据科学家估计,地球的年龄大约是4600000000年,将数据4600000000用科学记数法表示应为( )A. 0.46×1010B. 46×108C. 4.6×1010D. 4.6×1093. 下列各组数中,互为倒数的是( )A. −134与−143B. −0.25与14C. −0.5与−2D. −1与14. 在实数−1,√3−1,227,3.14中,属于无理数的是( )A. −1B. √3−1C. 227D. 3.145. 下列四个式子中,计算结果最大的是( )A. −23+(−1)2B. −23−(−1)2C. −23×(−1)2D. −23÷(−1)26. 下列说法中,正确的是( )A. 相等的角是对顶角B. 若AB =BC ,则点B 是线段AC 的中点C. 过一点有一条而且仅有一条直线垂直于已知直线D. 若一个角的余角和补角都存在,则这个角的补角一定比这个角的余角大90度7. 下列计算正确的是( )A. 13−13×(−2)=0×(−2)=0 B. (−14)÷(13−12)=(−14)÷(−16)=32 C. 3÷(−12)×(−2)=3÷1=3 D. (−112)2−22=114−4=−2348. 关于平方根与立方根知识,下列说法正确的是( )A. 如果一个数有平方根,那么这个数也一定有立方根B. 如果一个数有立方根,那么这个数也一定有平方根C. 平方根是它本身的数只有0,立方根是它本身的数也只有0D. 如果一个数有正负两个平方根,那么这个数也有正负两个立方根9. 某轮船在两个码头之间航行,已知顺水航行需要3小时,逆水航行需要5小时,水流速度是4千米/时,求两个码头之间的距离,若设两个码头之间的距离为x 千米,则可得方程为( )A. x 3−4=x5+4B. x 3−x5=4C. x 3+4=x5−4D.x−43=x+45第2页,共12页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………10. 已知a ,b 都是有理数,如果|a +b|=b −a ,那么对于下列两种说法:①a 可能是负数;②b 一定不是负数,其中判断正确的是( )A. ①②都错B. ①②都对C. ①错②对D. ①对②错二、填空题(本题共6小题,共24分) 11. −1的立方根是______.12. 用四舍五入法把数1.3579精确到百分位,所得的近似数是______. 13. 若∠α=42°24′,∠β=15.3°,则∠α与∠β的和等于______. 14. 计算:124÷(13−14+112)=______.15. 甲每小时生产某种零件15个,甲生产3小时后,乙也加入生产同一种零件,再经过5小时,两人共生产这种零件210个,则乙每小时生产这种零件______个.16. 已知线段AB =24cm ,点D 是线段AB 的中点,直线AB 上有一点C ,且CD =3BC ,则线段CD =______cm . 三、填空题(本题共7小题,共66分)17. 把下列各数表示在数轴上,并按从小到大的顺序用“<”连接.−12,0,−1,1.5,3.18. 计算:(1)|−3|−(−2);(2)(−6)2×(12−13)+(−2)3. 19. 解下列方程:(1)1+2x =7−x .(2)y 3−y −16=1−23y. 20. (1)已知一个长方形的长是宽的2倍,面积是10,求这个长方形的周长.(2)如图,已知长方形内两个相邻正方形的面积分别为9和3,求图中阴影部分的面积.21. (1)先化简,再求值:2(a 2+ab)−3(23a 2−ab),其中a =2,b =−3.(2)已知2x +y =3,求代数式3(x −2y)+5(x +2y −1)−2的值.22.数学家欧拉最先把关于x的多项式用记号f(x)来表示.例如:f(x)=x2+x−1,当x=a时.多项式的值用f(a)来表示,即f(a)=a2+a−1.当x=3时,f(3)=32+3−1=11.(1)已知f(x)=x2−2x+3,求f(1)的值.(2)已知f(x)=mx2−2x−m,当f(−3)=m−1时,求m的值.(3)已知f(x)=kx2−ax−bk(a.b为常数),对于任意有理数k,总有f(−2)=−2,求a,b的值.23.如图,已知OB,OC,OD是∠AOE内三条射线,OB平分∠AOE,OD平分∠COE.(1)若∠AOB=70°,∠DOE=20°,求∠BOC的度数.(2)若∠AOE=136°,AO⊥CO,求∠BOD的度数.(3)若∠DOE=20°,∠AOE+∠BOD=220°,求∠BOD的度数.第4页,共12页答案和解析1.【答案】C【解析】解:2022的相反数是−2022. 故选:C .相反数的概念:只有符号不同的两个数叫做互为相反数. 本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【答案】D【解析】解:4600000000=4.6×109. 故选:D .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.【答案】C【解析】解:A 、−134的倒数是−73,故该选项不符合题意; B 、−0.25=−14,与−4互为倒数,故该选项不符合题意; C 、−0.5的倒数是−2,故该选项符合题意; D 、−1的倒数是−1,故该选项不符合题意; 故选:C .根据倒数的定义判断即可.本题考查了倒数的定义,掌握乘积为1的两个数互为倒数是解题的关键.4.【答案】B【解析】解:A.−1是整数,属于有理数,故本选项不合题意; B .√3−1是无理数,故本选项符合题意; C .227是分数,属于有理数,故本选项不合题意; D .3.14是有限小数,属于有理数,故本选项不合题意.故选:B.根据无理数是无限不循环小数,可得答案.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.5.【答案】A【解析】解:−23+(−1)2=−8+1=−7,−23−(−1)2=−8−1=−9,−23×(−1)2=−8×1=−8,−23÷(−1)2=−8÷1=−8,∵−7>−8>−9,∴计算结果最大的是选项A.故选:A.各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:A、对顶角相等,但是相等的角不一定是是对顶角,故本选项不符合题意;B、三点不在一条直线上,AB=BC,但是B不是线段AC的中点,故本选项不符合题意;C、平面内,过一点有且只有一条直线与已知直线垂直,正确,故此选项不符合题意;D、若一个角的余角和补角都存在,则这个角的补角一定比这个角的余角大90度,故此选项符合题意;故选:D.根据对顶角性质、线段中点的定义、点到直线的距离,逐一判定即可解答.本题考查了点到直线的距离,解决本题的关键是熟记点到直线的距离.第6页,共12页7.【答案】B【解析】解:A 、13−13×(−2) =13+23=1,不符合题意; B 、(−14)÷(13−12) =(−14)÷(−16) =(−14)×(−6) =32,符合题意; C 、3÷(−12)×(−2) =3×(−2)×(−2) =12,不符合题意; D 、(−112)2−22 =94−4=−134,不符合题意. 故选:B .各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【答案】A【解析】解:A.根据平方根以及立方根的定义,一个数有平方根,则这个数非负数,这个数一定有立方根,那么A 正确,故A 符合题意.B .根据平方根以及立方根的定义,一个数有立方根,则这个数可能是负数,但负数没有平方根,那么B 错误,故B 不符合题意.C .根据平方根以及立方根的定义,平方根等于本身的数是0,立方根等于本身的数有1或0或−1,那么C 错误,故C 不符合题意.D .根据平方根以及立方根的定义,一个数有正负两个平方根,则这个数正数,但这个正数只有一个立方根,那么D 错误,故D 不符合题意. 故选:A .根据平方根以及立方根的定义解决此题.本题主要考查平方根以及立方根,熟练掌握平方根以及立方根的定义是解决本题的关键.9.【答案】A【解析】解:设若设两个码头之间的距离为x 千米, 因此可列方程为x3−4=x5+4, 故选:A .首先要理解题意找出题中存在的等量关系:顺水时的路程=逆水时的路程,根据此列方程即可. 此题考查了由实际问题抽象出一元一次方程,求出船在静水中的速度的等量关系是解决本题的关键.10.【答案】B【解析】解:|a +b|={a +b(a +b ≥0)−a −b(a +b ≤0),当a +b =b −a 时,可得到2a =0,即a =0,此时把a =0代入等式|a +b|=b −a ,则|b|=b ,即b ≥0, ∴②b 一定不是负数,正确;当−a −b =b −a 时,得到2b =0,即b =0,此时把b =0代入等式|a +b|=b −a ,则|a|=−a ,即a ≤0; ∴a 有可能是负数,①正确; ∴①②都正确,符合题意, 故选:B .利用绝对值的定义,分情况讨论结果.本题主要考查了绝对值,做题关键是掌握绝对值的定义.11.【答案】−1【解析】解:∵(−1)3=−1 ∴−1的立方根是−1. 直接利用立方根的定义计算.此题主要考查了立方根的定义,注意负数的立方根还是负数.12.【答案】1.36【解析】解:1.3579≈1.36(精确到百分位). 故答案为:1.36.把千分位上的数字7进行四舍五入即可.第8页,共12页本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.13.【答案】57°42′【解析】解:∵∠β=15.3°=15°+0.3×60′=15°18′, ∴∠α+∠β=42°24′+15°18′=57°42′. 故答案为:57°42′.先将0.3°化成18′,即∠β=15.3°=15°18′,然后计算两个角的和即可.本题考查度、分、秒的换算,掌握度、分、秒的换算方法以及单位之间的进率是正确解答的前提.14.【答案】14【解析】解:124÷(13−14+112) =124÷(412−312+112) =124÷16 =124×6 =14. 故答案为:14.先算小括号里面的加减法,再算括号外面的除法.本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.15.【答案】18【解析】解:设乙每小时生产这种零件x 个, 根据题意列方程得,15×3+(15+x)×5=210, 解得x =18, 故答案为:18.设乙每小时生产这种零件x 个,根据题意列方程求解即可.本题主要考查一元一次方程的应用,熟练根据题中等量关系列方程求解是解题的关键.16.【答案】9或18【解析】解:∵AB=24cm,点D是线段AB的中点,∴BD=12cm,设BC=x cm,则CD=3BC=3x cm,当C点在B、D之间时,DC=BD−BC,即3x=12−x,解得x=3,∴CD=9(cm);当C点在DB的延长线上时,DC=DB+BC,即3x=12+x,解得x=6,∴CD=18(cm);故答案为:9或18.根据线段中点的性质,可得BD的长,设BC=x,根据线段的和差列出方程解答便可.本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论以防遗漏.17.【答案】解:把各数在数轴上表示为:从小到大的顺序用不等号连接起来为:−1<−12<0<1.5<3.【解析】在数轴上找出对应的点,根据数轴方向朝右时,右边的数总比左边的数大,按从小到大的顺序用“<”连接即可.此题主要考查了利用数轴比较实数的大小,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.18.【答案】解:(1)|−3|−(−2)=3+2=5;(2)(−6)2×(12−13)+(−2)3=36×16−8第10页,共12页=6−8 =−2.【解析】(1)先算绝对值,再算减法;(2)先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.【答案】解:(1)1+2x =7−x ,2x +x =7−1, 3x =6, x =2;(2)y3−y−16=1−23y , 2y −(y −1)=6−4y , 2y −y +1=6−4y , 2y −y +4y =6−1, 5y =5, y =1.【解析】(1)移项,合并同类项,系数化成1即可; (2)去分母,去括号,移项,合并同类项,系数化成1即可.本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.20.【答案】解:(1)设长方形的宽为x ,则长方形的长为2x ,则x ⋅2x =10,解得x =√5 或−√5(舍去), ∴长方形的长为2√5,∴长方形的周长为(√5+2√5)×2=6√5. (2)由题意可知,大正方形的边长为3,小正方形的变成为√3, ∴阴影部分的面积为(3−√3)×√3=3√3−3.【解析】(1)根据长方形面积公式为长×宽,代入计算即可;(2)两个小阴影部分可以组成一个长为√3,宽为(3−√3)的长方形,直接计算即可.本题考查二次根式的应用,能够将图形的面积公式和二次根式熟练的结合在一起是解答本题的关键.21.【答案】解:(1)2(a2+ab)−3(2a2−ab)3=2a2+2ab−2a2+3ab=5ab.当a=2,b=−3时,原式=5×2×(−3)=−30.(2)3(x−2y)+5(x+2y−1)−2=3x−6y+5x+10y−5−2=8x+4y−7.∵2x+y=3,∴原式=4(2x+y)−7=4×3−7=12−7=5.【解析】(1)先化简整式,再代入求值;(2)先化简整式,再整体代入求值.本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.22.【答案】解:(1)当x=1时,f(1)=1−2+3=2;(2)当x=−3时,f(−3)=mx2−2x−m=9m+6−m=m−1,∴m=−1;(3)当x=−2时,f(−2)=kx2−ax−bk=4k+2a−bk=−2,∴(4−b)k+2a=−2,∵k为任意有理数,∴4−b=0,2a=−2,∴a=−1,b=4.【解析】(1)将x=1代入f(x)=x2−2x+3中进行计算即可;(2)将x=−3代入f(x)=mx2−2x−m中,根据f(−3)=m−1列方程计算即可;第12页,共12页(3)根据题意将x =−2代入f(x)=kx 2−ax −bk 中,可知k 的倍数4−b =0,从而可解答此题. 本题主要考查的是求代数式的值,读懂记号f(x)的运算方法是解题的关键.23.【答案】解:(1)∵OB 平分∠AOE ,OD 平分∠COE ,∴∠BOE =∠AOB =70°, ∠COE =2∠DOE =40°, ∵∠BOC =−∠BOE −∠COE , ∴∠BOC =70°−40°=30°. (2)∵OB 平分∠AOE ,OD 平分∠COE , ∴∠BOE =12∠AOE ,∠DOE =12∠COE , ∵∠BOD =∠BOE −∠DOE ,∴∠BOD =12(∠AOE −∠COE)=12∠AOC , ∵AO ⊥CO , ∴∠AOC =90°, ∴∠BOD =45°. (3)∵OB 平分∠AOE , ∴∠AOE =2∠BOE , ∵∠AOE +∠BOD =220°, ∴2∠BOE +∠BOD =220°, ∵∠BOE −∠BOD =∠DOE , ∴∠BOE −∠BOD =20°, ∴2∠BOE −2∠BOD =40°, ∴3∠BOD =180°, ∴∠BOD =60°.【解析】(1)由角平分线的定义,表示出∠BOC ,即可求解; (2)由角平分线的定义,表示出∠BOD ,即可求解;(3))由角平分线的定义,列出关于∠BOD 的方程组,即可求解. 本题考查角的计算,关键是由角平分线定义得出有关等式.。

2024届山东省菏泽市鄄城县数学七年级第一学期期末经典试题含解析

2024届山东省菏泽市鄄城县数学七年级第一学期期末经典试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.将一副三角板按如图所示的方式放置,则AOB ∠的大小为( )A .80︒B .75︒C .60︒D .45︒2.下列各组数中,互为倒数的是( )A .-2与2B .-2与∣-2∣C .-2与1 2D .-2与-123.有一个两位数,个位数字是n ,十位数字是m ,则这个两位数可表示为( ) A .mn B .10m n + C .10n m +D .m n + 4.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,正确的结论是( )A .a > cB .b +c > 0C .|a |<|d |D .-b <d5.已知下列结论:①若0a b +=,则a 、b 互为相反数;②若0ab >,则0a >且0b >;③+=+a b a b ;④绝对值小于10的所有整数之和等于0;⑤3和5是同类项.其中正确的结论的个数为( )A .2B .3C .4D .56.下列说法:①一个有理数不是整数就是分数;②有理数是正数和小数的统称;③到原点距离相等的点 所示的数相等;④相反数、绝对值都等于它本身的数只有 0;⑤数轴上的点离原点越远,表示的数越大;⑥有最小的正整数但没有最小的正有理数.其中正确的个数有( )A .2 个B .3 个C .4 个D .5 个7.已知M =x 2+2xy +y 2,N =x 2﹣2xy +y 2,则M ﹣N 等于( )A .4xyB .﹣4xyC .2y 2D .4xy +2y 28.下列各数中,相反数是12-的是()A.12-B.12C.2-D.29.下列各组数中,相等的一组是()A.-2和-(-2)B.-|-2|和-(-2)C.2和|-2| D.-2和|-2|10.如图,下列说法中正确的是()(选项)A.∠BAC和∠DAE不是同一个角B.∠ABC和∠ACB是同一个角C.∠ADE可以用∠D表示D.∠ABC可以用∠B表示二、填空题(本大题共有6小题,每小题3分,共18分)11.整理一批图书,甲、乙两人单独做分别需要6小时、9小时完成.现在先由甲单独做1小时,然后两人合作整理这批图书要用_____小时.12.比较大小:-12____23-(填“>”,“<”或“=”)13.用相等长度的火柴棒搭成如下图所示的一组图形,按照此规律,用含n的代数式表示搭第n个图形要用的火柴棒的根数是___________________14.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需_____天完成.15.已知数轴上三点M,O,N对应的数分别是-1,0,3,点P为数轴上任意点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时P点到点M、点N的距离相等,则t的值为_______.16.若a、b是互为倒数,则2ab﹣5=_____.三、解下列各题(本大题共8小题,共72分)17.(8分)长方形的面积是2390m,如果将长延长至原来的2倍,且长方形面积保持不变,那么宽会比原来少13m,求原来长方形的长.18.(8分)有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.19.(8分)如图,直线AB、CD相交于点O,过点O作两条射线OM、ON,且∠AOM=∠CON=90°(1)若OC平分∠AOM,求∠AOD的度数.(2)若∠1=14∠BOC,求∠AOC和∠MOD.20.(8分)如图1直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,射线OE平分∠AOD.(1)若∠COE=40°,则∠BOD=.(2)若∠COE=α,求∠BOD(请用含α的代数式表示);(3)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE与∠BOD之间有怎样的数量关系?并说明理由.21.(8分)阅读材料,解决下面的问题:(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体. ①它是正 面体,有 个顶点, 条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm ,该正多面体的体积为 cm 3; (2)如图3,用6个棱长为1的小正方体搭成一个几何体.小明要再用一些完全相同的小正方体搭一个几何体.若要使新搭的几何体恰好能与原几何体拼成一个无空隙的正六面体,则小明至少需要 个小正方体,他所搭几何体的表面积最小是 ;(3)小华用4个棱长为1的小正四面体搭成一个如图4所示的造型,可以看做是一个不完整的大四面体.小华发现此造型中间空缺部分也是一个柏拉图体!请写出该柏拉图体的名称: .22.(10分)按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上. (1)点A 的坐标为 ;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为 .23.(10分)用方程解答下列问题(1)一个角的余角比它的补角的12还少15°,求这个角的度数. (2)几个人共同搬运一批货物,如果每人搬运8箱货物,则剩下7箱货物未搬运;如果每人搬运12箱货物,则缺13箱货物,求参与搬运货物的人数.24.(12分)如图1,150AOD ∠=︒,50AOB ∠=︒,30COD ∠=︒,把AOB ∠绕O 点以每秒20︒的速度逆时针方向旋转一周,同时COD ∠绕O 点以每秒10︒的速度逆时针方向旋转,当AOB ∠停止旋转时COD ∠也随之停止旋转.设旋转后的两个角分别记为11AOB ∠、11C OD ∠,旋转时间为t 秒.(1)如图2,直线MN 垂直于OA ,将COD ∠沿直线MN 翻折至''C OD ∠,请你直接写出BOD '∠的度数,不必说明理由;(2)如图1,在旋转过程中,若射线1OB 与1OC 重合时,求t 的值;(3)如图1,在旋转过程中,当1120B OC ∠=︒时,直接写出t 的值,不必说明理由.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据直角三角板的度数计算即可.【题目详解】解:根据题意得∠AOB =45°+30°=75°,故选:B .【题目点拨】本题考查了角度的简单运算,熟知直角三角板中的角度是解题的关键2、D【分析】根据倒数的定义:乘积为1的两个数互为倒数便可求出.【题目详解】2241,-⨯=-≠∴A 错误;222241,-⨯-=-⨯=-≠∴B 错误; 1211,2-⨯=-≠∴C 错误;121,2⎛⎫-⨯-=∴ ⎪⎝⎭D 正确. 【题目点拨】本题考查了倒数的定义,正确计算两个数的乘积是否等于1是解题的关键.3、B【分析】因为m 代表十位这个数字的大小,根据代数式的表示即可.【题目详解】解:m 代表十位数字的大小,n 代表个位数字的大小,所以这个两位数为10m+n故选B【题目点拨】本题考查了用字母表示数及列代数式,解题的关键是掌握代数式的表达方式.4、D【解题分析】解:由数轴上点的位置,得:-5<a <﹣1<-2<b <-1<0<c <1<d=1.A .a <c ,故A 不符合题意;B .b +c <0,故B 不符合题意;C .|a |>1=|d |,故C 不符合题意;D .-b <d ,故D 符合题意;故选D .点睛:本题考查了实数与数轴,利用数轴上点的位置关系得出a ,b ,c ,d 的大小是解题关键.5、B【分析】①根据相反数的定义判断;②根据有理数的乘法法则判断;③根据绝对值的定义判断;④根据绝对值的定义判断;⑤根据同类项的定义判断.【题目详解】解:①若a+b=0,则a 、b 互为相反数,故①的结论正确;②若ab >0,则a >0且b >0或a <0且b <0,故②的结论错误;③当a 与b 异号时,|a+b|≠|a|+|b|,故③的结论错误;④绝对值小于10的所有整数之和等于0,故④的结论正确;⑤3和5是同类项,故⑤的结论正确.综上所述,正确的有①④⑤共3个.故选:B .【题目点拨】本题主要考查了相反数的定义,绝对值的定义以及同类项的定义,熟记相关定义是解答本题的关键.6、B【分析】根据有理数的分类、数轴表示数、绝对值、相反数的意义,逐个进行判断,得出答案,【题目详解】整数和分数统称为有理数,因此①是正确的,无限不循环小数就不是有理数,因此②不正确,到原点距离相等的点所示的数相等或互为相反数,因此③不正确,相反数等于它本身的数是0、绝对值都等于它本身的数是非负数,因此相反数、绝对值都等于它本身的数只有0,因此④是正确的,数轴上,在原点的左侧离原点越远,表示的数越小,因此⑤不正确,最小的正整数是1,没有最小的正有理数,因此⑥是正确的,因此正确的个数为3,故选:B.【题目点拨】考查数轴表示数、绝对值、相反数、以及有理数的分类,准确理解这些概念是正确判断的前提.7、A【分析】把M与N代入M﹣N中,去括号合并即可得到结果.【题目详解】∵M=x2+2xy+y2,N=x2﹣2xy+y2,∴M﹣N=x2+2xy+y2﹣x2+2xy﹣y2=4xy,故选:A.【题目点拨】本题考查了整式的加减问题,掌握整式加减的运算法则是解题的关键.8、B【分析】根据只有符号不同的两个数是互为相反数,求出−12的相反数,然后选择即可.【题目详解】∵12的相反数是−12,∴相反数等于−12的是12.故选:B.【题目点拨】本题考查了相反数的定义,熟记定义是解题的关键.9、C【分析】根据有理数的运算法则先计算出各个选项的最简数值,然后再根据有理数的大小比较规律求解.【题目详解】解:A、-(-2)=2≠-2,故本项不正确;B、-|-2|=-2,-(-2)=2,-2≠2,故本项不正确;C 、|-2|=2,故本项正确;D 、|-2|=2≠-2,故本项不正确.【题目点拨】题主要考查有理数大小的比较.规律总结:正数大于负数;如果两数都是正数,则绝对值大的大,绝对值小的小;如果两数都是负数,则绝对值大的数反而小.10、D【解题分析】A 、∠BAC 和∠DAE 两边相同,顶点相同,故是同一个角,说法错误;B 、由∠ABC 和∠ACB 顶点不同即可判断二者并非同一角,说法错误;C 、由于以点D 为顶点的角有三个,故不可用∠D 表示,说法错误;D 、点D 处只有一个角,故∠ABC 可以用∠B 表示,说法正确.二、填空题(本大题共有6小题,每小题3分,共18分)11、1.【分析】设他们合作整理这批图书的时间是x h ,根据总工作量为单位“1”,列方程求出x 的值即可得出答案.【题目详解】解:设他们合作整理这批图书的时间是x h ,根据题意得:111()1669x ++= 解得:x =1,答:他们合作整理这批图书的时间是1h .故答案是:1.【题目点拨】本题主要考查一元一次方程的应用,掌握工程问题的解法是解题的关键.12、>.【分析】比较的方法是:两个负数,绝对值大的其值反而小.【题目详解】∵|12-|12=,|23-|23=,而1223<, ∴1223->-. 故答案为:>.【题目点拨】本题考查了有理数的大小比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.13、8n +4【分析】设第n个图形要用的火柴棒的根数为a n(n为正整数),根据各图形中火柴棒根数的变化,可找出变化规律“a n =8n+4(n为正整数)”,此题得解.【题目详解】解:设第n个图形要用的火柴棒的根数为a n(n为正整数).观察图形,可知:a1=12=8×1+4,a2=20=8×2+4,a3=28=8×3+4,a4=36=8×4+4,…,∴a n=8n+4(n为正整数).故答案为:(8n+4).【题目点拨】本题考查了规律型:图形的变化类,根据各图形中火柴棒根数的变化找出变化规律“a n=8n+4(n为正整数)”是解题的关键.14、4【解题分析】设甲,乙一起做,需x天完成,根据等量关系“甲,乙一起做x天的工作量=总工作量1”列出方程,解方程即可求解.【题目详解】设需x天完成,根据题意可得,x()=1,解得x=4,故需4天完成.故答案为:4.【题目点拨】本题考查了一元一次方程的应用,列方程解应用题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.15、23或2.【解题分析】分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【题目详解】设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是-t,点M对应的数是-2-2t,点N对应的数是3-3t.①当点M和点N在点P同侧时,点M和点N重合,所以-2-2t=3-3t,解得t=2,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M 在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=-t-(-2-2t)=t+2.PN=(3-3t)-(-t)=3-2t.所以t+2=3-2t,解得t=23,符合题意.综上所述,t的值为23或2.【题目点拨】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.16、-1.【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【题目详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣1.故答案为﹣1.【题目点拨】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.三、解下列各题(本大题共8小题,共72分)17、15厘米【分析】设原来长方形的长是x厘米,则新长方形的长是2x厘米,长方形面积保持不变,根据题意列出方程即可.【题目详解】解:设原来长方形的长是x厘米,则新长方形的长是2x厘米.390390132x x-=解得15x=经检验,15x=是原方程的解,且符合题意.答:原长方形的长是15厘米.【题目点拨】本题考查了分式方程,长方形的面积=长⨯宽,长方形面积保持不变是突破点.18、(1)-12;(2)-;(3)-1,理由详见解析.【分析】(1)根据有理数的加减法法则解答即可;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【题目详解】(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣1,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣1,∴这个最小数是﹣1.【题目点拨】本题考查了有理数的混合运算,明确有理数混合运算的计算方法是解答本题的关键.19、(1) 135°;(2)∠AOC=60°;∠MOD=150°.【分析】(1)根据OC平分∠AOM,易得∠1=∠AOC=45°,再由平角可求出∠AOD的度数(2)由题目中给出的∠1=14∠BOC和∠AOM=90°,可求出∠1的度数,进而再求出∠AOC和∠MOD的度数.【题目详解】(1)∠AOM=∠CON=90°,OC平分∠AOM ∴∠1=∠AOC=45°∴∠AOD=180°-∠AOC=180°-45°=135°;(2)∵∠AOM=90°∴∠BOM=180°-90°=90°∵∠1=14∠BOC∴∠1=13∠BOM=30°∴∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.故答案是:(1)∠AOD=135°;(2)∠AOC=60°;∠MOD=150°.【题目点拨】本题主要考察角度的计算,合理分析角度之间的关系是解题的关键.20、(1)80°;(2)2α;(3)∠BOD+2∠COE=360°,理由见详解.【解题分析】(1)先根据直角计算∠DOE的度数,再根据角平分线的定义计算∠AOD的度数,最后利用平角的定义可得结论;(2)先根据直角计算∠DOE的度数,再根据角平分线的定义计算∠AOD的度数,最后利用平角的定义可得结论;(3)设∠BOD=β,则∠AOD=180°-β,根据角平分线的定义表示∠DOE,再利用角的和差关系求∠COE的度数,可得结论.【题目详解】解:(1)若∠COE=40°,∵∠COD=90°,∴∠EOD=90°﹣40°=50°,∵OE平分∠AOD,∴∠AOD=2∠EOD=100°,∴∠BOD=180°﹣100°=80°;(2)∵∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;(3)如图2,∠BOD+2∠COE=360°,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=12∠AOD=1802β︒-=90°﹣12β,∵∠COD=90°,∴∠COE=90°+(90°﹣12β)=180°﹣12β,即∠BOD+2∠COE=360°.故答案为:(1)80°;(2)2α;(3)∠BOD+2∠COE=360°,理由见详解.【题目点拨】本题考查余角的定义,角平分线的定义和平角的定义,以及角的和差关系,解题的关键是熟练掌握平角和余角的定义,并注意利用数形结合的思想.21、(1)①八;6;12;②92;(2)21;50;(3)正八面体【分析】(1)①根据图2的特点即可求解;②先求出原正方体的体积,根据比值即可求出该正多面体的体积;(2)根据题意需搭建为3×3的正方体,根据几何体的特点即可求解;(3)根据这个柏拉图体有6个顶点即可得到为正八面体.【题目详解】(1)如图2,连接正六面体中相邻面的中心,可得到一个柏拉图体.①它是正八面体,有6个顶点,12条棱;②已知该正多面体的体积与原正方体体积的比为1:6,若原正方体的棱长为3cm,则原正方体的体积为33=27∴该正多面体的体积为1927=62⨯cm3;(2)如图,新搭的几何体俯视图及俯视图上的小正方体的个位数如下,则至少需要1+2×4+3×4=21个小正方体,他所搭几何体的表面积最小是2×9+2×8+2×8=50;(3)由图可知这个柏拉图体有6个顶点,故为正八面体;故答案为:(1)①八;6;12;②92;(2)21;50;(3)正八面体.【题目点拨】此题主要考查立方体的特点及性质,解题的关键是根据题意理解柏拉图体的特点、三视图的应用.22、(1)(﹣4,2);(2)见解析;(3)2.2.【分析】(1)直接利用平面直角坐标系得出A点坐标;(2)直接利用平移的性质得出对应点位置进而得出答案;(3)利用△A1B1C1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【题目详解】(1)如图所示:点A的坐标为(﹣4,2);故答案为:(﹣4,2);(2)如图所示:△A1B1C1,即为所求;(3)△A1B1C1的面积为:3×4﹣12×1×3﹣12×2×3﹣12×1×4=2.2.故答案为:2.2.【题目点拨】本题主要考查了坐标与图形-平移变换以及三角形面积求法,正确得出对应点位置是解题关键.23、(1)30°;(2)1人【解题分析】试题分析:(1)首先根据余角与补角的定义,设这个角为x°,则它的余角为(90°-x),补角为(180°-x),再根据题中给出的等量关系列方程即可求解.(2)设参与搬运货物的有y人,则用含y的代数式表示第一次搬运的箱数是8y+7,表示第二次搬运的箱数是12y﹣13,根据表示的箱数相同列方程即可.解:(1)设这个角的度数为x,根据题意得:90°﹣x=(180°﹣x)﹣11°,解得:x=30°.答:这个角的度数为30°.(2)设参与搬运货物的有y 人,根据题意得:8y +7=12y ﹣13,解得:y=1.答:参与搬运货物的有1人.点睛:本题考查了列一元一次方程解决问题,一般步骤是: ①审题,找出已知量和未知量;②设未知数,并用含未知数的代数式表示其它未知量;③找等量关系,列方程;④解方程;⑤检验方程的解是否符合题意并写出答案.24、(1)20︒ ;(2)7s ;(3)5秒或9秒【分析】(1)根据轴对称的性质求出∠MOD=MOD ′=60°, 根据角的和差求出∠MOB ,进而可求出BOD ′的值; (2)求出∠BOC=70°,然后根据射线1OB 与1OC 重合时,射线1OB 比1OC 多走了70°列方程求解即可; (3)分相遇前和相遇后两种情况列方程求解即可.【题目详解】解:(1)如图2,∵150AOD ∠=︒,90AOM ∠=︒,30COD ∠=︒,∴∠MOD=MOD ′=150°-90°=60°, ∠MOB=90°-50°=40°,∴BOD ′=60°-40°=20°;(2)∵150AOD ∠=︒,50AOB ∠=︒,30COD ∠=︒,∴∠BOC=70°.由题意得20t-10t=70,∴t=7;(3)①相遇前,由题意得20t-10t=70-20,∴t=5;②相遇后,由题意得20t-10t=70+20,∴t=9;综上可知,当1120B OC ∠=︒时,t 的值是5秒或9秒.【题目点拨】本题考查的是用方程的思想解决角的旋转的问题,以及分类讨论的数学思想,找准等量关系,正确列出一元一次方程是解题的关键.。

西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案

西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。

湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)

2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。

人教版2024-2025学年度第一学期七年级期末数学试卷

人教版2024-2025学年度第一学期七年级期末数学试卷(本试卷三个大题,25个小题。

满分150分,考试时间 120分钟。

)一、选择题(本题共12个小题,每小题3分,共36分;每个小题A、B、C、D四选项,只有一项符合题意。

)1. 若|m−3|+(n+2)²=0,则m+2n的值为( )A. - 1B. 1C. - 4D. 42. 多项式2x⁵+4xy³−5x²−1的次数和常数项分别是( )A. 5, - 1B. 5, 1C. 10, - 1D. 11, - 13. 若|m|=9. |n|=2, 且m+n<0, 则m+n的值为( )A. 7或-7B. - 7或-11C. 11D. 74. 在12x+1,−3xy2,12x⋅−8, m中,单项式的个数是( )A. 1B. 2C. 3D. 45. 如图,数轴上点A、B、C分别表示数a、b、c,则下列结论不成立的是( ).A. abc<0B. a-c<0C. a+b>0D. |a|<|b|6. 定义一种新运算:则3⊗(-1)⊗5的结果是 ( )A. 15B. - 1C. 1D. 127.如图所示为由4个大小相同的正方体组成的几何体,则从正面看到的平面图形是( )8. a,b是有理数,它们在数轴上的对应点的位置如图. 把a,-a,b,-b按照从小到大的顺序排列,正确的是()A. - a<-b<a<bB. - b<-a<a<bC. b<-a<a<-bD. - b<a<-a<b9. 下列7个数: 54, 1.010010001, - 43, 0, - 2π, 3.3, - 3.141441444… (每两个1之间一次多一个4), 其中有理数有( )个.A. 5B. 4C. 3D. 610. 观察下列算式: 31 =3 ,32=9,33=27,34=81、35=243,36=729,37=2187,32=6561⋯,通过观察,用你所发现的规律确定32025的个位数字是( ) A. 3 B. 9 C. 7D. 111. 甲、乙、丙三家超市为标价相同的同一种商品接促销活动, 甲超市一次性降价40%, 乙超市连续两次降价20%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010-2011学年度七年级第一学期期末数学试卷
一、单项选择题(每小题3分,共30分)
1、如图,对图中各射线表示的方向下列判断错误的是
( ).
A .OA 表示北偏东15°
B .OB 表示北偏西50°
C .OC 表示南偏东45°
D .OD 表示西南方向 2、解是2=x 的方程是( ) A . 6)1(2=-x B .
x x =+12 C . 21012x x =+ D . x x -=+13
1
2 3、已知线段AB =5 cm ,在直线AB 上画线段BC =2 cm ,则AC 的长是( ). A 、
3 cm
B 、7 cm
C 、3 cm 或7 cm
D 、无法确定
4、下面计算正确的是( )
A 、32x -2x =3
B 、32a +23a =55a
C 、3+x =3x
D 、-0.25ab +4
1
ba =0 5、图中是几何体的主视图与左视图, 其中正确的是( )
A B C D
6、下列说法中正确的是 ( )
A .-a 的相反数是a
B .|a|一定大于0
C .-a 一定是负数
D .|-m|的倒数是m
1
7、有理数-22,(-2)2,|-23|,-2
1按从小到大的顺序排列是( )
A .|-23|<-22<-21<(-2)2
B .-22<-21<(-2)2<|-23|
C .-2
1<-22<(-2)2<|-23|
D .-2
1<-22<|-23|<(-2)2
8、只用一副三角板不能画出来的角度是( )
A :30度
B :75度
C :105度
D :125度
9、已知(m -3)x |m|-2=18是关于x 的一元一次方程, 则( )
A. m=2
B. m=-3
C. m=±3
D. m=1
10、下列说法正确的是( )
A .近似数28.00与近似数28.0的精确度一样
B .近似数0.32与近似数0.302的有效数字一样
C .近似数2.42
10⨯与240的精确度一样 D .近似数220与近似数0.202都有三个有效数字 二.填空题(每小题3分,共30分)
11、-0.25的倒数是 。

多项式4223237542x y x y x xy --+-是 次 项式, 12、在下列方程中 ① x+2y=3,②
931=-x x , ③3132+=-y y , ④02
1
2=x , 是一元一次方程的有 (填序号).
13、在数轴上,与表示—1的点距离为3的点所表示的数是_________. 14、已知有一个立体图形由四个相同的小立方体组成。

如图(1)是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图(2)中的 (把下图中正确的立体图形的序号都填在横线上)。

15、小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,
请你帮小刚计算2△(-5)=________________.
16、如图所示,将长方形ABCD 的一角沿AE 折叠,若D BA '∠= 30,
那么D EA '∠=
17、若关于x 的方程372x x a -=+的解与方程437x +=的解相同,则a 的值为_______.
18、已知b a m 225-和437a b n -是同类项,则n m +的值是 19、已知∠α的余角是35°45′20″,则∠α的度数是_____
20、若a b ,互为相反数,且都不为零,则()11a a b b ⎛⎫
+-+ ⎪⎝⎭
的值为
从正面看
从左面看

三、解答题:(本题共30分,其中第21题15分,第22题10分,第23题5分) 21、计算题(本小题5分,共15分)
(1))1()32()1(222x x x x x -++--+- (2) -1100
-(1-0.5)×
3
1×[3-(-3)2
]
(3) 已知0)2(12=-++b a , 求ab a ab ab a 21
)4(21
822
2
-⎥⎦⎤⎢⎣⎡-+- 的值.
22.解方程:(1)5(x+8)-5=-6(2x -7) (2)3
5
154--=++x x x
23、暑假,某校初一年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.
(1)他们一共租了10条船,并且每条船都坐满了人,那么大、小船各租了几只? (2)他们租船一共花了多少元钱?
四、解答题:(本题共30分,第24、25、26题各10分)
24、(10分)如图,∠AOB=∠COD=900
,OC 平分∠AOB,∠BOD=3∠DOE。

试求 ∠COE 的度数。

25.如图,延长线段AB 到C,使BC=3AB,点D 是线段BC 的中点,如果CD=3㎝,那么线段AC 的长度是多少?
26、有一张地图,图中有A 、B 、C 三地,但地图被墨迹污染,C 地具体位置看不清楚了,
但知道C 地在A 地的北偏东30
,在B 地的南偏东45
,你能确定C 地的位置吗?
O
A
B
26.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到每购买1元商品政府给予0.13元的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补贴351元,又知B 型洗衣机售价比A 型洗衣机售价多500元.试求:
(1)A 型洗衣机和B 型洗衣机的售价各是多少元?
(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?
参考答案
一、选择
1.B 、
2.B 、
3.C 、
4.D 、
5.D
6.A 、
7.B 、
8.B 、
9.B 、10.D 二、填空
11、-3;±3 12、③ 13、2和-4 14、①②④ 15、14 16、0 17、-6 18、4 19、 54°14′40″ 20、8
65x - 三、解答题
21.(1)a 2
-4a (2)32
+--x x
(3)解:ab a ab ab a 2
1
)4(21
822
2
-⎥⎦⎤⎢⎣⎡-+-ab a 942
-=
0)2(12=-++b a 2,1==∴b a
2,1==∴b a 代入原式=14-
22、(1)、x=
17
7 (2)72
=x
23.(1)设大船租了x 只,则小船租了x -10只,50)10(46=-+x x ,5=x ,所以 大,小船各租了5只。

(2)9058510=⨯+⨯,所以共花了90元 四、解答题:
24、 解:∵∠AOB=900
,OC 平分∠AOB ∴∠BOC=∠AOB=450
∵∠BOD=∠COD -∠BOC=900
-450
=450
∠BOD=3∠DOE
∴∠DOE=15
∴∠COE=∠COD -∠DOE=900-150=75
25、8㎝26. 解:(1)设A 型洗衣机的售价为x 元,B 型洗衣机的售价为(500+x )元,……1分则据题意,可列方程351)500(13.013.0=++x x ……4分解得x =1100,
x +500=1600 ……6分 ∴A 型洗衣机的售价为1100元,B 型洗衣机
的售价为1600元. ……7分
(2)小李实际付款为:1100(113)957-%=(元);…9分 小王实际付款为:1600(113)1392-%=(元).…10分。

相关文档
最新文档