隧道衬砌计算资料

合集下载

隧道衬砌工程量计算书

隧道衬砌工程量计算书

xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:1 / 24计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:3 / 24计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:5 / 24计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:7 / 24计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:9 / 24xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:11 / 24xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:13 / 24xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:15 / 24xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:17 / 24xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:19 / 24xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:8 编号:xxx隧道工程数量计算书承包单位:起止桩号:表号:监理单位:合同段号:编号:计算:复核:驻地办合同专业监理工程师:总监办合同专业监理工程师:。

隧道设计衬砌计算范例(结构力学方法)

隧道设计衬砌计算范例(结构力学方法)

1.1工程概况川藏公路二郎山隧道位于四川省雅安天全县与甘孜泸定县交界的二郎山地段, 东距成都约260km , 西至康定约97 km , 这里山势险峻雄伟, 地质条件复杂, 气候环境恶劣, 自然灾害频繁, 原有公路坡陡弯急, 交通事故不断, 使其成为千里川藏线上的第一个咽喉险道, 严重影响了川藏线的运输能力, 制约了川藏少数民族地区的经济发展。

二郎山隧道工程自天全县龙胆溪川藏公路K2734+ 560 (K256+ 560)处回头, 沿龙胆溪两侧缓坡展线进洞, 穿越二郎山北支山脉——干海子山, 于泸定县别托村和平沟左岸出洞, 跨和平沟经别托村展线至K2768+ 600 (K265+ 216) 与原川藏公路相接, 总长8166km , 其中二郎山隧道长4176 m , 别托隧道长104 m ,改建后可缩短运营里程2514 km , 使该路段公路达到三级公路标准, 满足了川藏线二郎山段的全天候行车。

1.2工程地质条件1.2.1 地形地貌二郎山段山高坡陡,地形险要,在地貌上位于四川盆地向青藏高原过渡的盆地边缘山区分水岭地带,隶属于龙门山深切割高中地区。

隧道中部地势较高。

隧址区地形地貌与地层岩性及构造条件密切相关。

由于区内地层为软硬相间的层状地层,构造为西倾的单斜构造,故地形呈现东陡西缓的单面山特征。

隧道轴线穿越部位,山体浑厚,东西两侧发育的沟谷多受构造裂隙展布方向的控制。

主沟龙胆溪、和平沟与支沟构成羽状或树枝状,横断面呈对称状和非对称状的“v ”型沟谷,纵坡顺直比降大,局部受岩性构造影响,形成陡崖跌水。

1.2.2 水文气象二郎山位于四川盆地亚热带季风湿润气候区与青藏高原大陆性干冷气候区的交接地带。

由于山系屏障,二郎山东西两侧气候有显著差异。

东坡潮湿多雨,西坡干燥多风,故有“康风雅雨”之称。

全年分早季和雨季。

夏、秋两季受东进的太平洋季风和南来的印度洋季风的控制,降雨量特别集中;冬春季节,则受青藏高原寒冷气候影响,多风少雨,气候严寒。

《隧道衬砌详尽计算》课件

《隧道衬砌详尽计算》课件
运行分析后,需要对结果进行解读和 评估,判断衬砌结构的稳定性和安全 性。
软件应用案例及效果展示
某高速公路隧道施工过程中,采用有 限元分析软件对衬砌结构进行了详尽 的计算和分析,确保了隧道的施工安 全和质量。
此外,该软件还应用于其他多个隧道 工程中,均取得了良好的效果和效益 ,证明了其在隧道衬砌计算中的重要 性和优势。
CHAPTER
有限元分析软件介绍
1
有限元分析软件是一种广泛应用于工程领域的计 算工具,它能够模拟复杂的结构和现象,提供详 尽的分析结果。
2
在隧道衬砌计算中,有限元分析软件能够模拟衬 砌结构的受力状态、变形情况以及稳定性等,为 设计提供重要的参考依据。
3
常见的有限元分析软件包括ANSYS、ABAQUS、 SAP等,这些软件具有强大的计算能力和广泛的 应用领域。
3
有限元法
通过有限元分析软件,模拟衬砌结构的稳定性。
04 隧道衬砌计算的实例分析
CHAPTER
某隧道工程概况
隧道长度:10km
隧道名称:某高速公路隧道
01
隧道断面:矩形断面,宽度
20m,高度5m
02
03
工程地质:隧道穿越山岭地 区,地质条件复杂,包括岩
石、土壤和地下水等
04
05
施工环境:隧道施工难度较 大,需考虑通风、water supply and drainage等
面限制等。
计算结果的分析与评价
受力分析
分析衬砌结构在施工过程中的受力状态,包括衬砌内力、外力和 变形等。
安全评价
根据计算结果,评价衬砌结构的安全性,判断衬砌是否满足设计 要求和施工安全。
优化建议
根据计算和分析结果,提出衬砌结构的优化建议,提高隧道施工 的安全性和可靠性。

隧道二衬结构计算书全文

隧道二衬结构计算书全文

3 蓁山隧道二衬结构计算3.1 基本参数1.二衬参数表二次衬砌采用现浇模筑混凝土,利用荷载结构法进行衬砌内力计算和验算。

二次衬砌厚度设置见表3.1。

表3.1 二次衬砌参数表2.计算断面参数确定隧道高度h=内轮廓线高度+衬砌厚度+预留变形量隧道跨度b=内轮廓线宽度+衬砌厚度+预留变形量各围岩级别计算断面参数见表3.2。

表3.2 计算断面参数(单位:m)3.设计基本资料围岩容重:3/5.20m kN s =γ 二衬材料:C30、C35混凝土 弹性抗力系数:3/250000m kN K = 材料容重:3/25m kN h =γ 弹性模量:kPa E h 7103⨯=二衬厚度:35/40/45/50/55/60/65/70cm 铁路等级:客运专线 行车速度:200km/h隧道建筑限界:双线,按200km/h 及以上的客运专线要求设计 线间距:4.4m曲线半径:1800m ,4000m 牵引种类:电力列车类型:动车组列车运行控制方式:自动控制 运输调度方式:综合调度集中3.2 各级围岩的围岩压力计算按深埋隧道,《规范》公式垂直围岩压力 w q s 1245.0-⨯=γ)]5(1-+=B i w水平围岩压力有垂直围岩压力乘以水平围岩压力系数可得,水平围岩压力系数见表3.3。

各部位垂直围岩压力和水平围岩压力计算结果见表3.4。

表3.3 水平围岩压力系数表3.4 垂直围岩压力及水平围岩压力计算表注:二衬按承担70%的围岩压力进行计算。

3.3 衬砌内力计算衬砌内力计算的原理采用荷载结构法。

该方法用有限元软件MIDAS/GTS实现。

3.3.1 计算简图蓁山隧道衬砌结构为复合式衬砌,二衬结构为带仰拱的三心圆曲墙式衬砌。

典型的计算图式如图3.1所示。

荷载结构模型计算图式如图3.2所示。

围岩用弹簧代替,用弹簧单元模拟,结构用梁单元模拟。

图3.1 三心圆曲墙式衬砌结构图3.2 荷载结构模型计算图式3.3.2 计算过程下面以Ⅱ级围岩为例进行说明。

第三篇 隧道二次衬砌结构计算

第三篇 隧道二次衬砌结构计算

第三章隧道二次衬砌结构计算3.1基本参数围岩级别:Ⅴ级围岩容重:γs =18.53/mkN围岩弹性抗力系数:K=1.5×1053/mkN衬砌材料为C25混凝土,弹性模量Eh =2.95×107kPa,容重γh=233/mkN.3.2荷载确定3.2.1围岩垂直均布压力按矿山法施工的隧道围岩荷载为:qs=0.45×21-sγω=0.45×21-sγ[1+i(B-5)]=0.45×24×18.5×[1+0.1×(13.24-5)]=242.96(2/mkN)考虑到初期支护承担大部分围岩压力,而对二次衬砌一般作为安全储备,故对围岩压力进行折减,对本隧道按30%折减,取为1702/mkN .3.2.2 围岩水平均布压力e=0.4q=0.4×170=68 2/mkN3.3计算位移3.3.1单位位移所有尺寸见下图1:半拱轴线长度s=11.4947(m)将半拱轴线长度等分为8段,则∆s=s/8=1.4368(m)∆s/ Eh =0.4871×107-(1-⋅kPam)计算衬砌的几何要素,详见下表3.1.单位位移计算表表3.1注:1.I —截面惯性矩,I=3bd /12,b 取单位长度。

2.不考虑轴力影响。

单位位移值用新普生法近似计算,计算如下: 11δ=⎰sh ds IE M 01≈∑∆I E s 1=0.4871×107-×864.0000=4.2085×105-12δ=21δ=⎰sh ds IE M M 021.≈∑I yE s ∆=0.4871×107-×2643.1776=1.2875×104-22δ=⎰sh ds I E M 022≈∑∆I y Es 2=0.4871×107-×14338.9160=6.9845×104-计算精度校核为:11δ+212δ+22δ=(0.42085+2×1.2875+6.9845) ×104-=9.9803×104-ss δ=∑+∆Iy E s2)1(=0.4871×107-×20489.2712=9.9803×104-闭合差∆=03.3.2载位移—主动荷载在基本结构中引起的位移 (1) 每一楔块上的作用力 竖向力:Q i =i qb 侧向力:E i =eh i 自重力:G i =h ii s d d γ⨯∆⨯+-21 算式中:b i 和h i 由图1中量得 d i 为接缝i 的衬砌截面厚度 作用在各楔块上的力均列入下表3.2:载位移计算表 表3.2(2) 外荷载在基本结构中产生的内力 内力按下算式计算弯矩:0ip M =0,1p i M --e g q i i i i Ea Ga Qa E y G Q x ---∆-+∆∑∑--11)(轴力:0ip N =sin iϕ∑∑-+iiiE G Q ϕcos )(0ip M ,0ip N 的计算结果见下表3.3.表3.4:载位移计算表p i M ,0表3.3载位移计算表ip N 0 表3.4(3)主动荷载位移 计算结果见表3.5:主动荷载位移计算表 表3.5则:p 1∆=⎰sh pds IE M M 01.≈∑∆IM E sp 0= -0.4871×710-×2300881.6426 = -0.1121 p 2∆=⎰sh pds IE M M 02.≈∑∆IyM E sp 0= -0.4871×710-×11795777.616 = -0.5746 计算精度校核:p 1∆+p 2∆= -0.1121-0.5746=-0.6867 sp∆=∑+∆I M y Esp 0)1(=-0.4871×710-×14096659.259=-0.6867闭合差:∆=03.3.3载位移—单位弹性抗力图及相应的摩擦力引起的位移 (1)各接缝处的弹性抗力强度抗力上零点假设在接缝3处,3ϕ=38.7715=b ϕ; 最大抗力值假定在接缝6处,6ϕ=77.5430=h ϕ; 最大抗力值以上各截面抗力强度按下式计算:i σ=h hb ib σϕϕϕϕ]cos cos cos cos [2222-- =h iσϕ]5430.77cos 7715.38cos cos 7715.38cos [2222--=h iσϕ]5614.0cos 6079.0[2- 算出: 3σ=0, 4σ=0.3985h σ, 5σ=0.7556h σ, 6σ=h σ; 最大抗力值以下各截面抗力强度按下式计算: i σ=h hi yy σ]1[2'2'-式中:'i y —所考察截面外缘点到h 点的垂直距离;'h y —墙脚外缘点到h 点的垂直距离。

隧道衬砌计算

隧道衬砌计算

隧道衬砌计算隧道衬砌是隧道工程中的重要部分,它承担着保护隧道结构、增强隧道稳定性和延长使用寿命的重要任务。

隧道衬砌的计算是确定隧道衬砌结构所需材料和尺寸的过程,下面将介绍隧道衬砌计算的相关内容。

隧道衬砌计算需要确定衬砌的材料。

常用的隧道衬砌材料有混凝土、钢筋混凝土和预制板等。

根据隧道的使用环境、地质条件和设计要求等因素,选择合适的材料进行衬砌计算。

隧道衬砌计算需要确定衬砌的尺寸。

衬砌的尺寸包括衬砌厚度、衬砌宽度和衬砌高度等。

衬砌厚度的确定需要考虑隧道的使用要求和地质条件,以保证衬砌的强度和稳定性。

衬砌宽度的确定需要考虑隧道的截面形状和使用要求,以保证衬砌的稳定性和使用功能。

衬砌高度的确定需要考虑隧道的设计要求和地质条件,以保证衬砌的稳定性和使用寿命。

隧道衬砌计算还需要考虑衬砌的受力情况。

隧道衬砌在使用过程中会受到地压力、水压力、温度变化和地震等外力的作用。

衬砌的受力分析是衬砌计算的重要内容,它可以通过有限元分析或经验公式等方法进行。

隧道衬砌计算还需要考虑衬砌的稳定性。

隧道衬砌在使用过程中需要保持稳定,不受地下水、岩层移动和地震等因素的影响。

衬砌的稳定性分析是衬砌计算的重要内容,它可以通过有限元分析或经验公式等方法进行。

隧道衬砌计算需要进行结构设计。

隧道衬砌的结构设计包括衬砌的布置方式、连接方式和支撑方式等。

衬砌的结构设计需要考虑隧道的使用要求和地质条件,以保证衬砌的稳定性和使用寿命。

隧道衬砌计算是确定隧道衬砌结构所需材料和尺寸的过程,它涉及衬砌材料的选择、衬砌尺寸的确定、衬砌受力情况的分析、衬砌稳定性的考虑和衬砌结构的设计等内容。

隧道衬砌计算的准确性和科学性对于保证隧道工程的安全稳定和使用寿命具有重要意义。

铁路隧道衬砌受力计算公式

铁路隧道衬砌受力计算公式隧道是铁路线路中重要的组成部分,它可以穿越山脉、河流等地形障碍,使铁路线路更加通畅。

而隧道的衬砌是保证隧道结构安全稳定的重要组成部分。

在设计和施工隧道衬砌时,需要对其受力情况进行合理的计算,以保证其安全可靠。

在铁路隧道衬砌的受力计算中,需要考虑到多种因素,包括隧道的地质情况、地表荷载、车辆荷载等。

为了准确计算隧道衬砌的受力情况,需要使用一定的公式和方法。

首先,我们来看一下隧道衬砌的受力计算公式:1. 地表荷载的计算公式:地表荷载是指地表以上的荷载,包括建筑物、交通载荷等。

在铁路隧道衬砌的设计中,需要考虑地表荷载对衬砌的影响。

地表荷载的计算公式为:P = qA。

其中,P为地表荷载,q为单位面积的地表荷载值,A为地表面积。

2. 车辆荷载的计算公式:铁路隧道是铁路线路的一部分,车辆荷载是指通过隧道的列车对隧道衬砌的荷载。

车辆荷载的计算公式为:P = qL。

其中,P为车辆荷载,q为单位长度的车辆荷载值,L为车辆长度。

3. 地质荷载的计算公式:地质荷载是指地下岩层对隧道衬砌的荷载。

地质荷载的计算公式为:P = γh。

其中,P为地质荷载,γ为岩层的密度,h为岩层的厚度。

在实际的隧道衬砌设计中,需要综合考虑地表荷载、车辆荷载和地质荷载对隧道衬砌的影响,进行合理的受力计算,以保证隧道衬砌的安全可靠。

除了上述的受力计算公式外,还需要考虑到隧道衬砌的材料和结构形式对受力的影响。

隧道衬砌的材料通常为混凝土、钢筋混凝土等,其受力性能需要通过实验和理论分析进行评定。

而隧道衬砌的结构形式包括单壁式、双壁式、拱形等,不同结构形式对受力的分布和传递方式有所不同,需要进行详细的计算和分析。

在进行隧道衬砌受力计算时,还需要考虑到温度变化、地震荷载等外部因素对隧道衬砌的影响。

温度变化会导致隧道衬砌的膨胀和收缩,地震荷载会对隧道衬砌产生冲击和振动,这些外部因素需要进行合理的考虑和计算。

总之,铁路隧道衬砌受力计算是一个复杂的工程问题,需要考虑多种因素的综合影响。

隧道衬砌计算

第五章隧道衬砌结构检算5.1结构检算一般规定为了保证隧道衬砌结构的安全,需对衬砌进行检算。

隧道结构应按破损阶段法对构件截面强度进行验算。

结构抗裂有要求时,对混凝土应进行抗裂验算。

5.2 隧道结构计算方法本隧道结构计算采用荷载结构法。

其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。

计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。

5.3 隧道结构计算模型本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为ANSYS10.0。

取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定:①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。

②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。

计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。

④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。

⑤衬砌结构材料采用理想线弹性材料。

⑥衬砌结构单元划分长度小于0.5m。

隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。

根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。

Ⅳ级围岩段为深埋段。

根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。

从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。

5.4.1 材料基本参数 (1)Ⅴ级围岩围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角045ϕ=,泊松比u=0.4。

隧道衬砌结构计算


03
弹性模量表示材料抵抗弹性变形的能力,泊松比则表示横向变
形的程度。
衬砌结构材料的耐久性和可靠性
环境因素
衬砌结构材料应能耐受地下水、土壤中的化学物质、侵蚀性气体 等环境因素的侵蚀,保持长期性能稳定。
耐久性设计
衬砌结构材料的耐久性应通过合理的耐久性设计和施工质量控制来 保证,包括选择合适的材料、采取有效的防排水措施等。
计算内容
防水层的厚度、材料性能、抗渗压力等。
计算方法
采用理论分析和实验验证相结合的方法,综合考虑水压、地质条件 和施工工艺等因素进行计算。
感谢您的观看
THANKS
抗震加固措施
根据抗震设计结果,采取相应的加固措施提 高衬砌结构的抗震性能。
03 隧道衬砌结构材料与性能
衬砌结构材料的种类和特性
混凝土
混凝土是隧道衬砌结构中最常用 的材料之一,具有抗压强度高、 耐久性好、成本低等优点。根据 需要可加入添加剂,如防水剂、
膨胀剂等。
钢材
钢材用于隧道衬砌结构中的受力 构件,如型钢、钢板等。具有强 度高、塑性好、耐腐蚀等特点。
可靠性评估
衬砌结构材料的可靠性应通过科学的方法进行评估,以便及时发现 和处理潜在的安全隐患,确保隧道运营安全。
04
计算目的
确保隧道衬砌结构的安全性和稳定性,满足公路行车 要求。
计算内容
衬砌厚度、混凝土抗压强度、抗剪强度、抗弯强度等。
计算方法
采用有限元分析法,结合实际地质资料和荷载条件进 行计算。
衬砌结构设计的基本原则
安全可靠
衬砌结构设计应满足安全可靠 的要求,能够承受围岩压力、 水压力等作用,保证隧道结构
的稳定性。
经济合理
衬砌结构设计应考虑工程成本 ,选择合适的材料和结构形式 ,以达到经济合理的目标。

隧道衬砌计算


0 0 0 0 ap M ap 1 H ap 2 M ap 1
0 0 0 0 u ap M ap u1 H ap u 2 N ap
cos a k a bha
βα0P
Vα0P Mα0 P
0 Hα P
α
(4-7)

uα0 P
φα
图4-8 外荷载下拱脚截面的变位关系

表4-1 作用在隧道结构上的荷载 编号 1 2 3 4 5 6 7 8 9 10 11 可 变 荷 载 基本 可变 荷载 其它 可变 荷载 偶然 荷载 荷载类型 永久荷载 (恒载) 围岩压力 结构自重力 填土压力 水压力 混凝土收缩和徐变影响力 公路车辆荷载,人群荷载 立交公路车辆荷载及其所产生的冲击力和土压力 立交铁路列车活载及其所产生的冲击力和土压力 立交渡槽流水压力 温度变化的影响力 冻胀力 施工荷载 落石冲击力 荷 载 名 称
12
地震力
荷载组合: 结构自重+围岩压力+附加恒载(基本) 结构自重+围岩压力+公路荷载+附加恒载



结构自重+围岩压力+附加恒载+施工荷载 +温度作用力 结构自重+土压力+附加恒载+地震作用

附加恒载:伴随隧道运营的各种设备设施的荷载 等。
作用在隧道结构上的荷载,按其性质 也可以区分为主动荷载和被动荷载。 主动荷载是主动作用于结构、并引起结构 变形的荷载; 被动荷载是因结构变形压缩围岩而引起的 围岩被动抵抗力,即弹性抗力,它对结构 变形起限制作用。

从各国的地下结构设计实践看,主要采用 上述后两类计算模型,荷载-结构计算模型 主要适用于围岩因过分变形而发生松弛和 崩塌,支护结构主动承担围岩“松动”压 力的情况。利用这类模型进行隧道支护结 构设计的关键问题,是如何确定作用在支 护结构上的主动荷载,其中最主要的是围 岩所产生的松动压力,以及弹性支承给支 护结构的弹性抗力。一旦这两个问题解决 了,剩下的就只是运用普通结构力学方法 求出超静定结构的内力和位移了。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道衬砌计算
第五章隧道衬砌结构检算
5.1结构检算一般规定
为了保证隧道衬砌结构的安全,需对衬砌进行检算。

隧道结构应按破损阶段法对构件截面强度进行验算。

结构抗裂有要求时,对混凝土应进行抗裂验算。

5.2 隧道结构计算方法
本隧道结构计算采用荷载结构法。

其基本原理为:隧道开挖后地层的作用主要是对衬砌结构产生荷载,衬砌结构应能安全可靠地承受地层压力等荷载的作用。

计算时先按地层分类法或由实用公式确定地层压力,然后按照弹性地基上结构物的计算方法计算衬砌结构的内力,并进行结构截面设计。

5.3 隧道结构计算模型
本隧道衬砌结构验算采用荷载—结构法进行验算,计算软件为
ANSYS10.0。

取单位长度(1m)的隧道结构进行分析,建模时进行了如下简化处理或假定:
①衬砌结构简化为二维弹性梁单元(beam3),梁的轴线为二次衬砌厚度中线位置。

②围岩的约束采用弹簧单元(COMBIN14),弹簧单元以铰接的方式支撑在衬砌梁单元之间的节点上,该单元不能承受弯矩,只有在受压时承受轴力,受拉时失效。

计算时通过多次迭代,逐步杀死受拉的COMBIN14单元,只保留受压的COMBIN14单元。

图5-1 受拉弹簧单元的迭代处理过程
③衬砌结构上的荷载通过等效换算,以竖直和水平集中力的模式直接施加到梁单元节点上。

④衬砌结构自重通过施加加速度来实现,不再单独施加节点力。

⑤衬砌结构材料采用理想线弹性材料。

⑥衬砌结构单元划分长度小于0.5m。

隧道结构计算模型及荷载施加后如图5-2所示。

5.4 结构检算及配筋
本隧道主要验算明洞段、Ⅴ级围岩段和Ⅳ级围岩段衬砌结构。

根据隧道规范深、浅埋判定方法可知,Ⅴ级围岩段分为超浅埋段、浅埋段和深埋段。

Ⅳ级围岩段为深埋段。

根据所给的材料基本参数和修改后的程序,得出各工况下的结构变形图、轴力图、建立图和弯矩图。

从得出的结果可知,Ⅴ级围岩深埋段,所受内力均较大,故对此工况进行结构检算。

5.4.1 材料基本参数 (1)Ⅴ级围岩
围岩重度318.5/kN m γ=,弹性抗力系数300/k MPa m =,计算摩擦角
045ϕ=,泊松比u=0.4。

(2) C25钢筋混凝土
容重325/kN m γ=,截面尺寸 1.00.6b h m m ⨯=⨯,弹性模量
29.5Pa E G =。

轴心抗压强度:12.5cd a f MP =;弯曲抗压强度:
13.5cmd a f MP =;轴心抗拉强度: 1.33cd a f MP =;泊松比u=0.2;
(3) HPB235钢筋物理力学参数
密度:37800/s kg m ρ=; 抗拉抗压强度:188std scd a f f MP ==; 弹性模量:
210s a E GP =;
5.4.2 结构内力图和变形图(Ⅴ级围岩深埋段) 5.4.3 结构安全系数
从上面的轴力图和弯矩图可知,需要对截面8、11、21、47、73进行检算,
而根据对称性可知只需要对截面8、11、47进行检算。

混凝土和砌体矩形截面轴心及偏心受压构件的抗压强度应按下式计算:
a KN R bh ϕα≤ (式5-1)
式中:a R —混凝土或砌体的抗压极限强度(C25取19a MP );
K —安全系数; N —轴向力; h —截面厚度(m );
b —截面宽度,取1m ;
ϕ—构件纵向弯曲系数,取1;
α
—轴向力偏心系数系数;
按抗裂要求,混凝土矩形截面偏心受压构件的抗拉强度应按下式计算:
101.75/(6/1)KN R bh e h ϕ≤- (式5-2) 1R —混凝土的抗拉极限强度(C25取2a MP )
按照式5-1和5-2,可求出安全系数如下表:
而隧道设计规范规定,混凝土和砌体结构的强度安全系数如表5-1:
表5-1 混凝土和砌体结构的强度安全系数
故需要对截面进行配筋。

根据隧道设计规范规定及工程类比,截面配筋情况为:每延米受拉钢筋:4根Φ22,每延米受压钢筋数量:4根Φ22,为对称配筋,且混凝土保护层为5cm 。

检算原理如下:
隧道衬砌结构属于偏心受压矩形构件,根据钢筋混凝土结构偏心受压构件强度计算原理,求解结构的安全系数。

其步骤如下: (1) 计算偏心距0e
N M e /0= (式5-3)
式中:M —弯矩;
N —轴向力。

(2) 确定截面受压区高度x
先假设衬砌截面受拉钢筋和受压钢筋面积分别为s A 和s A ',按下列公式计算出受压区高度x ,即可以确定截面中性轴位置。

)2/()(0x h e bx R e A e A R w s
s g +-='' (式5-4) 解方程得:
)()/()(2)(020h e b R e A e A R h e x w s
s g --''+-= (式5-5) 式中:e —轴向力到受拉钢筋重心的距离,)2/(0a h e e -+=;
e '—轴向力到受压钢筋重心的距离,'0/2e h e a '=--;
a —钢筋s A 的重心到截面受拉边缘的距离;
a '—钢筋s A '的重心到截面受压边缘的距离;
g R —钢筋的抗拉计算强度标准值(取235a MP );
w R —混凝土弯曲抗压极限强度标准值(取18.5a MP ); 0h —混凝土受压区边缘到受拉钢筋重心的距离;
b —衬砌计算截面宽度,取1m 。

当轴向力N 位于作用于钢筋s A 和s A '重心之间时,式(5-4)和式(5-5)中取正值;当N 作用于两重心以外时,则取负号。

(3) 确定截面大小偏心类型
如果x ≤0.550h ,矩形截面为大偏心受压构件,否则为小偏心受压构件。

(4) 强度检算
1) 大偏心受压构件
如果a x '≥2,按下式进行强度检算:
)(s s
g b A A R bx R KN -'+≤ (式5-6) 否则a x '<2,按下式进行强度检算:
)(0a h A R e KN s g '-≤' (式5-7) 2) 小偏心受压构件 按下式进行强度检算:
)(5.002
0a h A R bh R KNe s
g a '-'+≤ (式5-8) 如果轴向力N 位于钢筋s A 的重心与钢筋As 的重心之间的情况下,还应符合下列式子:
)(5.002
0a h A R bh R e KN s g a -+≤' (式5-9)
根据以上步骤求得检算截面受力的相关参数如下表5-2: 表5-2 检算截面相关参数
5.5 结论
《公路隧道设计规范》中钢筋混凝土结构的强度安全系数,见表5-3:
表5-3 钢筋混凝土结构的强度安全系数[
通过比较表5-2和表5-3可知,Ⅴ级围岩二次衬砌所配钢筋符合要求,比较经济合理。

相关文档
最新文档