人教版2020高中数学 第1章 计数原理 1.1 两个基本计数原理教学案 苏教版选修2-3
两个基本计数原理教学案

§1.1两个基本计数原理教学目标:(1)理解分类计数原理与分步计数原理(2)会利用两个原理分析和解决一些简单的应用问题教学重点:分类计数原理与分步计数原理教学过程一.知识要点:1、分类计数原理(加法原理):完成一件事有n 类方式,由第1种方法中有1m 种不同的方法可以完成,由第2种方法有2m 种不同的方法可以完成,……由第n k 种途径有n m 种方法可以完成。
那么,完成这件事共有=N 种不同的方法。
2、分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第 n 步有n m 种不同的方法,那么完成这件事共有=N 种不同的方法。
三、典例分析:例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?例2.为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。
在某网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个? (2)密码为4位,每位是0到9这10个数字中的一个,或是从A 到Z 这26个英文字母中的1个。
这样的密码共有多少个?(3)密码为4到6位,每位均为0到9这10个数字中的一个。
这样的密码共有多少个?例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?例4.用4种不同颜色给如左图所示的地图上色,要求相邻两块涂不同的颜色,共有多少种不同的涂法?变式:1、如果按照①、②、④、③的次序填涂,怎样解决这个问题?2、如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为( )A. 180B. 160C. 96D. 60 若变为图二,图三呢?练习:1、乘积))()((54321321321c c c c c b b b a a a ++++++++展开后共有多少项?2、(2006,北京,5分)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有 ( )A .36个 B.24个 C.18个 D.6个4、(2005,北京春(文),5分)从0,1,2,3这四个数中选三个不同的数作为函数c bx ax x f ++=2)(的系数,可组成不同的一次函数共有 个,不同的二次函数共有 个。
高中数学第一章计数原理1.1两个基本计数原理学案苏教版选修

高中数学第一章计数原理1.1两个基本计数原理学案苏教版选修1、1 两个基本计数原理1、掌握分类计数原理与分步计数原理、(重点)2、会用两个基本计数原理解决一些简单的应用问题、(难点)[基础初探]教材整理1 分类计数原理阅读教材P5~P6“例1”以上部分,完成下列问题、如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法、判断(正确的打“√”,错误的打“”)(1)在分类计数原理中,两类不同方案中的方法可以相同、()(2)在分类计数原理中,每类方案中的方法都能完成这件事、()(3)从甲地到乙地有两类交通方式:坐飞机和乘轮船,其中飞机每天有3班,轮船有4班、若李先生从甲地去乙地,则不同的交通方式共有7种、()(4)某校高一年级共8个班,高二年级共6个班,从中选一个班级担任星期一早晨升旗任务,安排方法共有14种、( )【解析】(1) 在分类计数原理中,分类标准是统一的,两类不同方案中的方法是不能相同的、(2)√在分类计数原理中,是把能完成这件事的所有方法按某一标准分类的,故每类方案中的每种方法都能完成这些事、(3)√由分类计数原理,从甲地去乙地共3+4=7(种)不同的交通方式、(4)√根据分类计数原理,担任星期一早晨升旗任务可以是高一年级,也可以是高二年级,因此安排方法共有8+6=14(种)、【答案】(1) (2)√(3)√(4)√教材整理2 分步计数原理阅读教材P5~P6“例1”以上部分,完成下列问题、如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n 步有mn种不同的方法,那么完成这件事共有N=m1m2…mn种不同的方法、判断(正确的打“√”,错误的打“”)(1)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的、( )(2)在分步计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事、()(3)已知x∈{2,3,7},y∈{-3,-4,8},则xy可表示不同的值的个数为9个、()(4)在一次运动会上有四项比赛,冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有43种、()【解析】(1)√因为在分步计数原理中的每一步都有多种方法,而每种方法各不相同、(2) 因为在分步计数原理中,要完成某件事需分几个步骤,而每步都不能完成这件事,只有各步都完成了,这件事才算完成、(3)√因为x从集合{2,3,7}中任取一个值共有3个不同的值,y从集合{-3,-4,8}中任取一个值共有3个不同的值,故xy可表示33=9个不同的值、(4) 因为每个项目中的冠军都有3种可能的情况,根据分步计数原理共有34种不同的夺冠情况、【答案】(1)√(2) (3)√(4)[质疑手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]分类计数原理(1)从高三年级的四个班中共抽出22人,其中一、二、三、四班分别为4人,5人,6人,7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法?(2)在所有的两位数中,个位数字大于位数字的两位数共有多少个?【精彩点拨】(1)按所选组长来自不同年级为分类标准、(2)按个位(或位)取0~9不同的数字进行分类、【自主解答】(1)分四类:从一班中选一人,有4种选法;从二班中选一人,有5种选法;从三班中选一人,有6种选法;从四班中选一人,有7种选法、共有不同选法N=4+5+6+7=22种、(2)法一按位上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个、由分类计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个)、法二按个位上的数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是1个,2个,3个,4个,5个,6个,7个,8个,所以按分类计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个)、1、应用分类计数原理解题的策略(1)标准明确:明确分类标准,依次确定完成这件事的各类方法、(2)不重不漏:完成这件事的各类方法必须满足不能重复,又不能遗漏、(3)方法独立:确定的每一类方法必须能独立地完成这件事、2、利用分类计数原理解题的一般思路[再练一题]1、(1)某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有________种、(2)有三个袋子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个、若从三个袋子中任取1个小球,有________种不同的取法、【解析】(1)分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3种、(2)有3类不同方案:第1类,从第1个袋子中任取1个红色小球,有6种不同的取法;第2类,从第2个袋子中任取1个白色小球,有5种不同的取法;第3类,从第3个袋子中任取1个黄色小球,有4种不同的取法、其中,从这三个袋子的任意一个袋子中取1个小球都能独立地完成“任取1个小球”这件事,根据分类计数原理,不同的取法共有6+5+4=15种、【答案】(1)3 (2)15分步计数原理一种号码锁有4个拨号盘,每个拨号盘上有从0到9共个数字,这4个拨号盘可以组成多少个四位数的号码(各位上的数字允许重复)?【精彩点拨】根据题意,必须依次在每个拨号盘上拨号,全部拨号完毕后,才拨出一个四位数号码,所以应用分步计数原理、【自主解答】按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10、根据分步计数原理,共可以组成N=10101010=10 000个四位数的号码、1、应用分步计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可、2、利用分步计数原理解题的一般思路(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果、[再练一题]2、张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债、人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种、问:张涛共有多少种不同的理财方式?【解】由题意知,张涛要完成理财目标应分步完成、第1步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第2步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式、由分步计数原理,得23=6种、[探究共研型]两个计数原理的辨析探究1 某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?【提示】“完成这件事”是指从6种荤菜中选出一种,再从5种素菜中选出一种,最后从3种汤中选出一种,这时这件事才算完成、而只选出“一荤一素”不能算“完成这件事”、探究2 在探究1中,要“完成配成套餐”这件事需分类,还是分步?为什么?【提示】要配成一荤一素一汤的套餐,需分步完成、只配荤菜、素菜、汤中的一种或两种都不能达到“一荤一素一汤”的要求,即都不能完成“配套餐”这件事、探究3 在探究1中若要配成“一素一汤套餐”试问可配成多少种不同的套餐?你能分别用分类计数原理和分步计数原理求解吗?你能说明分类计数原理与分步计数原理的主要区别吗?【提示】5种素菜分别记为A,B,C,D,E、3种汤分别记为a,b,c、利用分类计数原理求解:以选用5种不同的素菜分类:选素菜A时,汤有3种选法;选素菜B时,汤有3种选法;选素菜C时,汤有3种选法;选素菜D时,汤有3种选法;选素菜E时,汤有3种选法、故由加法计数原理,配成“一素一汤”的套餐共有3+3+3+3+3=15(种)不同的套餐、利用分步计数原理求解:第一步:从5种素菜中,任选一种共5种不同的选法;第二步:从3种汤中,任选一种共3种不同的选法、由分步计数原理,配成“一素一汤”的套餐共有53=15(种)不同套餐、两个计数原理的主要区别在于分类计数原理是将一件事分类完成,每类中的每种方法都能完成这件事,而分步计数原理是将一件事分步完成,每步中的每种方法都不能完成这件事、有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑、从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?【精彩点拨】从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为4类,然后每一类再分步完成、即解答本题可“先分类,后分步”、【自主解答】第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作电脑,有22=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人操作电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人操作电脑只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法、根据分类计数原理,共有4+2+1+1=8种选派方法、1、能用分步计数原理解决的问题具有如下特点:(1)完成一件事需要经过n个步骤,缺一不可;(2)完成每一步有若干种方法;(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数、2、利用分步计数原理应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的、(2)“步”与“步”之间是连续的、不间断的、缺一不可的,但也不能重复、交叉、(3)若完成某件事情需n 步,则必须依次完成这n个步骤后,这件事情才算完成、[再练一题]3、一个袋子里有10张不同的中国移动手机卡,另一个袋子里有12张不同的中国联通手机卡、(1)某人要从两个袋子中任取一张自己使用的手机卡,共有多少种不同的取法?(2)某人手机是双卡双待机,想得到一张移动和一张联通卡供自己使用,问一共有多少种不同的取法?【解】(1)第一类:从第一个袋子取一张移动卡,共有10种取法;第二类:从第二个袋子取一张联通卡,共有12种取法、根据分类计数原理,共有10+12=22种取法、(2)第一步,从第一个袋子取一张移动卡,共有10种取法;第二步,从第二个袋子取一张联通卡,共有12种取法、根据分步计数原理,共有1012=120种取法、[构建体系]1、一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这项工作,不同选法有________种、【解析】由分类计数原理知,有3+5=8种不同的选法、【答案】82、有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有________种、【导学号:】【解析】分四步完成:第一步:第1位教师有3种选法;第二步:由第一步教师监考班的数学老师有3种选法;第二步:第3位教师有1种选法;第四步:第4位教师有1种选法、共有3311=9种监考的方法、【答案】93、3名学生报名参加艺术体操、美术、计算机、游泳课外兴趣小组,每人选报一种,则不同的报名种数有______种、【解析】第1名学生有4种选报方法;第2,3名学生也各有4种选报方法,因此,根据分步计数原理,不同的报名种数有444=64、【答案】 644、某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成、如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种、(用数字作答)【解析】分两类,第一棒是丙有124321=48(种);第一棒是甲、乙中一人有214321=48(种)、根据分类计数原理得,共有方案48+48=96(种)、【答案】965、某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息、(1)若小明爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?【解】(1)小明爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法、根据分类计数原理,小明爸爸共有8+6=14(种)坐法、(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14(个)凳子中选一个坐下,共有14种坐法;(小明坐下后,空闲凳子数变成13)第二步,小明爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,共13种坐法、由分步计数原理,小明与爸爸分别就坐共有1413=182(种)坐法、我还有这些不足:(1) (2) 我的课下提升方案:(1) (2) 学业分层测评(建议用时:45分钟)[学业达标]一、填空题1、高一年级三好学生中有男生6人,女生4人,从中选一人去领奖,共有________种不同的选法;从中选一名男生,一名女生去领奖,则共有________种不同的选法、【解析】从中选一人去领奖有6+4=10(种)方法、从中选一名男生一名女生去领奖有64=24(种)选法、【答案】10 242、一名志愿者从沈阳赶赴南京为游客提供导游服务,但需在北京停留、已知从沈阳到北京每天有7个航班,从北京到南京每天有6列火车,该志愿者从沈阳到南京共有________种不同的方法、【导学号:】【解析】根据分步计数原理,此人可选择的行车方式共有67=42(种)、【答案】 423、(xx徐州高二检测)某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队方法有________种、【解析】先选1男有6种方法,再选1女有5种方法,故共有65=30种不同的组队方法、【答案】304、由1,2,3,4可以组________个自然数、(数字可以重复,最多只能是四位数字) 【解析】组成的自然数可以分为以下四类:第一类:一位自然数,共有4个、第二类:两位自然数,又可分两步来完成、先取出位上的数字,再取出个位上的数字,共有44=16(个)、第三类:三位自然数,又可分三步来完成、每一步都可以从4个不同的数字中任取一个,共有444=64(个)、第四类:四位自然数,又可分四步来完成,每一步都可以从4个不同的数字中任取一个,共有4444=256(个)、由分类计数原理知,可以组成的不同的自然数为4+16+64+256=340(个)、【答案】3405、商店里有适合女学生身材的女上衣3种,裙子3种,裤子2种、若一位女生要买一套服装,则共有________种不同选法、【解析】3(3+2)=15(种)、【答案】 156、(xx无锡高二检测)设集合A中有3个元素,集合B中有2个元素,可建立A→B的映射的个数为________、【解析】建立映射,即对于A中的每一个元素,在B中都有一个元素与之对应,故由分步计数原理得映射有222=8(个)、【答案】87、用4种不同的颜色涂入如图111所示的矩形A,B,C,D 中,要求相邻的矩形涂色不同,则不同的涂色方法共有______种、ABCD图111【解析】按A,B,C,D顺序涂色,共有4323=72种方法、【答案】728、甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面、不同的安排方法共有________种、【解析】分三类:若甲在周一,则乙丙有43=12种排法;若甲在周二,则乙丙有32=6种排法;若甲在周三,则乙丙有21=2种排法、所以不同的安排方法共有12+6+2=20种、【答案】20二、解答题9、已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?【解】(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法、根据分步计数原理,得知P可表示平面上的点数是66=36(个)、(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法、由分步计数原理,得到第二象限的点的个数是32=6(个)、(3)点P(a,b)在直线y=x上的充要条件是a=b、因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个、结合(1)得,不在直线y=x上的点共有36-6=30(个)、10、由0,1,2,3这四个数字,可组成多少个?(1)无重复数字的三位数?(2)可以有重复数字的三位数?【解】(1)0不能做百位数字,所以百位数字有3种选择,位数字有3种选择,个位数字有2种选择,所以无重复数字的三位数共有332=18(个)、(2)百位数字有3种选择,位数字有4种选择,个位数字也有4种选择、由分步计数原理知,可以有重复数字的三位数共有344=48(个)、[能力提升]1、将1,2,3填入33的方格中,要求每行、每列都没有重复数字,如图112是一种填法,则不同的填写方法共有___________________________________种、123312231图112 【解析】假设第一行为1,2,3,则第二行第一列可为2或3,此时其他剩余的空格都只有一种填法,又第一行有321=6(种)填法、故不同的填写方法共有62=12(种)、【答案】 122、从正方体六个面的对角线中任取两条作为一对,其中所成的角为60的共有________对、【导学号:】【解析】与正方体的一个面上的一条对角线成60角的对角线有8条,故共有8对,正方体的12条面对角线共有96对,且每对均重复计算一次,故共有=48对、【答案】 483、将三种作物种在如图113所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种、图113【解析】分别用a,b,c代有3种作物,先安排第一块试验田有3种方法,不妨设放入a,再安排第二块试验田有b或c两种方法,不防设放入b,第三块试验田也有a或c两种方法、(1)若第三块田放c:,则第四、五块田分别有2种方法,共22种方法、(2)若第三块田放a:,第四块田放b或c有2种方法、①若第四块田放c:,第五块田仍有2种方法、②若第四块田放b:,第五块田只能放c,有1种方法、综上,共有32(22+3)=42(种)方法、【答案】 424、(1)从5种颜色中选出三种颜色,涂在一个四棱锥的五个顶点上,每个顶点上染一种颜色,并使同一条棱上的两端点异色,求不同的染色方法总数、(2)从5种颜色中选出四种颜色,涂在一个四棱锥的五个顶点上,每个顶点上染一种颜色,并使同一条棱上的两端点异色,求不同的染色方法总数、【解】(1)如图,由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,则A,C必须颜色相同,B,D必须颜色相同,所以,共有54311=60(种)、(2)法一由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,则A,C可以颜色相同,B,D可以颜色相同,并且两组中必有一组颜色相同、所以,先从两组中选出一组涂同一颜色,有2种选法(如:B,D颜色相同);再从5种颜色中,选出四种颜色涂在S,A,B,C四个顶点上,有5432=120(种)涂法、根据分步计数原理,共有2120=240(种)不同的涂法、法二分两类、第一类,C与A颜色相同、由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,它们共有543=60(种)染色方法、共有54312=120(种)方法;第二类,C与A颜色不同、由题意知,四棱锥SABCD的顶点S,A,B所染色互不相同,它们共有543=60(种)染色方法、共有54321=120(种)方法、由分类计数原理,共有120+120=240(种)不同的方法、。
高中数学1.1两个基本计数原理教案2苏教版选修2_3

花:也是上下结构,草字头两竖要内斜;下面单人旁起笔对准上面的左竖,竖弯钩起笔对准上面的右竖;竖弯钩要舒展,(用红笔描竖弯钩,并在旁边书写一个大的竖弯钩)要求弯处圆转,不能僵硬(书写僵硬的竖弯钩,并在旁边打×)。
板书设计:结构特点(6)宝、穷、写、会、奔
我的思考:使学生更好的把握好字的结构,同时在教师的指导下提高学生辨别能力。激励学生更好的书写。
第(5)课时
课题:怎样写好字
课型:复习课
教学目标:1、让学生能够正确认识,端正态度。
教学过程:
一、正确的学书之路
1.临帖
临帖是学习书法的最根本的方法。古往今来,没有一个书法家是不经临习而成功的,没有一个字写得好的人是不经过临帖的。只有临帖,取法唐楷、晋行、汉隶、秦篆等传统的东西,才会有所获。
二、指导“车”字旁写法:
1、出示范字,观察“车”字旁写法。2、讨论明确其书写要领:“车”字旁分四笔完成,整个偏旁左重右轻,不超过竖中线。第一笔横稍短。第二笔撇折收笔于横中线。第三笔垂露竖,应在第一笔横下的正中位置起笔。最后一笔,比第一横长一些,离折笔稍近一些。3、练写“车”字旁。
三、指导临写“轻”字。
春:上部三横都是短横,收笔处不要顿;撇画最长,捺画从哪里起笔?从第三横下面起笔,不能碰到撇;下面“日”的两竖要竖直,不能斜。
雨:旁边两竖要内斜,上横短,中竖写在竖中线上;从下面看,哪一笔最低?钩最低,中竖最短;四个点都是斜点。
江:左右结构,左窄右宽左边三点水第二点略向外展;右边“工”字上横是短横,下横是长横;中竖略斜。
总第(2)课时
高中数学苏教版选修2-3第1章《1.1.1两个基本计数原理》优质课教案省级比赛获奖教案公开课教师面试试讲教案

高中数学苏教版选修2-3第1章《1.1.1两个基本计数原理》优质课教案省级比赛获奖教案公开课教师面试试讲教案
【名师授课教案】
1教学目标
1.能说出分类计数原理和分步计数原理;
2.会用分类计数原理或分步计数原理分析和解决一些简单的实际问题
2重点难点
区分两个基本计数原理,正确地选用两个计数原理解决实际问题
3教学过程
3.1第一学时
教学活动
1【导入】课前预习
完成一件事,有类方式,在第1类方式中有种不同的方法,在第2类方式中有种不同的方法,……,在第类方式中有种不同的方法,那么完成这件事共有
种不同的方法.分类计数原理又称为原理。
注:做一件事有类方式,每一类方式中的每一种方法均完成了这件事。
完成一件事,需要分成个步骤,做第1步有种不同的方法,在第2步有种不同的方法,……,在第步有种不同的方法,那么完成这件事共有种不同的方法.分类计数原理又称为原理。
注:做一件事要分个步骤完成,只有所有步骤完成时,才完成这件事,也就是说,每一步骤中每种方法均不能完成这件事。
2【讲授】例题剖析
例1某班共有男生28名、女生20名,从该班选出学生代表参加校学代会。
(1)若学校分配给该班1名代表,则有多少种不同的选法?
(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法?。
人教版数学选修2-3第一章《计数原理》教案

XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。
那么,完成这件工作共有n1+n2+……+n k种不同的方法。
2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。
2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。
XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。
高中数学 第1章 计数原理 1.1 两个基本计数原理教学案 苏教版选修2-3

1.1 两个基本计数原理第1课时分类计数原理与分步计数原理1.2016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,每天有7次航班,5列火车.问题1:该志愿者从北京到南京可乘的交通工具可分为几类?提示:两类,即乘飞机、乘火车.问题2:这几类方法相同吗?提示:不同.问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7+5=12(种).2.甲盒中有3个不同的红球,乙盒中有5个不同的白球,某同学要从甲盒或乙盒中摸出一球.问题4:不同的摸法有多少种?提示:3+5=8(种).3.某班有男生26人,女生24人,从中选一位同学为生活委员.问题5:不同选法的种数为多少?提示:26+24=50.完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.1.2016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,但需在天津停留,已知从北京到天津有7次航班,从天津到南京有5列火车.问题1:该志愿者从北京到南京需要经历几个步骤?提示:两个,即从北京到天津、从天津到南京.问题2:这几个步骤之间相互有影响吗?提示:没有,第一个步骤采取什么方式完成与第二个步骤采用的方式没有任何关系.问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7×5=35 种.2.若x∈{2,3,5},y∈{6,7,8}.问题4:能组成的集合{x,y}的个数为多少?提示:3×3=9(个).3.某班有男生26人,女生24人,从中选一位男同学和一位女同学担任生活委员.问题5:不同的选法的种数为多少?提示:26×24=624种.完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.1.分类计数原理中的每一种方法都可以完成这件事情,而分步计数原理的每一个步骤只是完成这件事情的中间环节,不能独立完成这件事情.2.分类计数原理考虑的是完成这件事情的方法被分成不同的类别,求各类方法之和;而分步计数原理考虑的是完成这件事情的过程被分成不同的步骤,求各步骤方法之积.[例1] 某单位职工义务献血,在体检合格的人中,O型血的共有29人,A型血的共有7人,B型血的共有9人,AB型血的共有3人,从中任选1人去献血,共有多少种不同的选法?[思路点拨] 先按血型分类,再求每一类的选法,然后求和.[精解详析] 从中选1人去献血的方法共有4类:第一类:从O型血的人中选1人去献血共有29种不同的方法;第二类:从A型血的人中选1人去献血共有7种不同的方法;第三类:从B型血的人中选1人去献血共有9种不同的方法;第四类:从AB型血的人中选1人去献血共有3种不同的方法.利用分类计数原理,可得选1人去献血共有29+7+9+3=48种不同的选法.[一点通] 利用分类计数原理,首先搞清要完成的“一件事”是什么,其次确定一个合理的分类标准,将完成“这件事”的方法进行分类;然后,对每一类中的方法进行计数,最后由分类计数原理计算总方法数.1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出1种种植,不同的种植方法有________种.解析:分4种品种种植,根据分类计数原理可知,共有4种不同的种植方法.答案:42.所有边长均为整数,且最大边长均为11的三角形的个数为________.解析:假设另两边长分别为a,b(a,b∈Z),不妨设a≤b≤11,要构成三角形,必有a +b≥12,因此b≥6.当b=11时,a可取1,2,3,…11;当b=10时,a可取2,3,…,10;当b=6时,a只能是6.故所有三角形的个数为11+9+7+5+3+1=36.答案:363.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:如果这名同学只能选一个专业,那么他共有多少种选择呢?解:这名同学可以选择A,B两所大学中的一所,在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,因此根据分类计数原理,这名同学可能的专业选择共有5+4=9(种).[例2] 要安排一份 5 天的值班表,每天有一个人值班,共有 5 个人,每个人值多天或不值班,但相邻两天不准由同一个人值班,此值班表共有多少种不同的排法?[思路点拨] 该问题是计数问题,完成一件事是排值班表,因而需一天一天的排,用分步计数原理,分步进行.[精解详析] 先排第一天,可排5人中任一人,有 5 种排法;再排第二天,此时不能排第一天已排的人,有 4 种排法;再排第三天,此时不能排第二天已排的人,有 4 种排法;同理,第四、五天各有 4 种排法.由分步计数原理可得值班表不同的排法共有:N=5×4×4×4×4=1 280 (种).[一点通] 利用分步计数原理解决问题应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的;(2)各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.4. 用6种不同的颜色给图中的“笑脸”涂色,要“眼睛”(如图A,B所示区域)用相同颜色,则不同的涂色方法共有________种.解析:第1步涂眼睛有6种涂法,第2步涂鼻子有6种涂法,第三步涂嘴有6种涂法,所以共有63=216种涂法.答案:2165.现有4件不同款式的上衣和3条不同颜色的长裤,若一条长裤与一件上衣配成一套,则不同的配法种数为________.解析:要完成长裤与上衣配成一套,分两步:第一步,选上衣,从4件中任选一件,有4种不同选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.答案:126.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,问:(1)点P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限内的点?解:(1)确定平面上的点P(a,b),可分两步完成:第一步确定a的值,有6种不同方法;第二步确定b的值,也有6种不同方法.根据分步计数原理,得到平面上点P的个数为6×6=36.(2)确定平面上第二象限内的点P,可分两步完成:第一步确定a的值,由于a<0,所以有3种不同方法;第二步确定b的值,由于b>0,所以有2种不同方法.由分步计数原理,得到平面上第二象限内的点P的个数为3×2=6.[例3] 有一项活动,需在3名老师,8名男同学和5名女同学中选人参加.(1)若只需一人参加,有多少种不同选法?(2)若需老师、男同学、女同学各一人参加,有多少种不同选法?(3)若需一名老师,一名学生参加,有多少种不同选法?[思路点拨] (1)从老师、男、女同学中选 1人,用分类计数原理.(2)从老师、男、女同学中各选1人,用分步计数原理.(3)分类计数原理与分步计数原理的综合.[精解详析] (1)有三类选人的方法:3名老师中选一人,有3种方法;8名男同学中选一人,有8种方法;5名女同学中选一人,有5种方法.由分类计数原理,共有3+8+5=16种选法.(2)分三步选人:第一步选老师,有3种方法;第二步选男同学,有8种方法;第三步选女同学,有5种方法.由分步计数原理,共有3×8×5=120种选法.(3)可分两类,每一类又分两步.第一类:选一名老师再选一名男同学,有3×8=24种选法;第二类:选一名老师再选一名女同学,共有3×5=15种选法.由分类计数原理,共有24+15=39种选法.[一点通] 用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准.在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性.7.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的直线共有________条.解析:解决这件事分两类完成:第1类,当A或B中有一个为0时,表示直线为y=0或x=0,共2条;第2类,当A,B都不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步计数原理,共可确定4×3=12(条)直线.所以由分类计数原理,方程所表示的不同直线共有2+12=14(条).答案:148.从5名医生和8名护士中选出1名医生和1名护士组成一个两人医疗组,共有________种不同的选法.解析:完成这件事需分两步:第一步,从5名医生中选一名,有5种不同的选法;第二步,从8名护士中选一名,有8种不同的选法,故共有5×8=40种不同的选法.答案:409.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明的爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?解:(1)小明的爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类计数原理,小明的爸爸共有8+6=14种坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14个凳子中选一个坐下,共有14种坐法;第二步,小明的爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,(小明坐下后,空闲凳子数变成13)共13种坐法.由分步计数原理,小明与爸爸分别就坐共有14×13=182种坐法.1.利用分类计数原理解题的步骤(1)分类:理解题意,确定分类标准,做到不重不漏;(2)计数:求出每一类中的方法数;(3)结论:将每一类中的方法数相加得最终结果.2.利用分步计数原理解题的步骤(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.课下能力提升(一)一、填空题1.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这项工作,不同选法有________种.解析:由分类计数原理知,有3+5=8种不同的选法.答案:82.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有________种.解析:分四步完成:第一步:第1位教师有3种选法;第二步:由第一步教师监考班的数学老师选有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法.共有3×3×1×1=9种监考的方法.答案:93.3名学生报名参加艺术体操、美术、计算机、游泳课外兴趣小组,每人选报一种,则不同的报名种数有________种.解析:第1名学生有4种选报方法;第2、3名学生也各有4种选报方法,因此,根据分步计数原理,不同的报名种数有4×4×4=64.答案:644.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)解析:分两类,第一棒是丙有1×2×4×3×2×1=48(种);第一棒是甲、乙中一人有2×1×4×3×2×1=48(种),根据分类计数原理得:共有方案48+48=96(种).答案:965.从集合A={1,2,3,4}中任取2个数作为二次函数y=x2+bx+c的系数b,c,且b ≠c ,则可构成________个不同的二次函数.解析:分成两个步骤完成:第一步选出b ,有4种方法;第二步选出c ,由于b ≠c ,则有3种方法.根据分步计数原理得:共有4×3=12个不同的二次函数.答案:12二、解答题6.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列有多少个?解:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个.7.已知a ∈{3,4,6},b ∈{1,2,7,8},r ∈{8,9},则方程(x -a )2+(y -b )2=r 2可表示多少个不同的圆?解:按a ,b ,r 取值顺序分步考虑:第一步:a 从3,4,6中任取一个数,有3种取法;第二步:b 从1,2,7,8中任取一个数,有4种取法;第三步:r 从8、9中任取一个数,有2种取法;由分步计数原理知,表示的不同圆有 N =3×4×2=24(个).8.书架上层放有6本不同的数学书,下层放有5本不同的语文书.(1)从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两类方法:第一类方法是从上层取一本数学书,有6种方法;第二类方法是从下层取一本语文书,有5种方法.根据分类计数原理,得到不同的取法的种数是6+5=11.答:从书架上任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种取法;第二步取一本语文书,有5种取法.根据分步计数原理,得到不同的取法的种数是6×5=30.答:从书架上取数学书与语文书各一本,有30种不同的取法.第2课时分类计数原理与分步计数原理的应用[例1] 从0,1,2,3,4,5这些数字中选出4个,能组成多少个无重复数字且能被5整除的四位数?[思路点拨] 能被5整除的数分为末位数字为0及末位数字为5两类.[精解详析] 满足条件的四位数可分为两类:第一类是0在末位的,需确定前三位数,分三步完成,第一步:确定首位有5种方法;第二步,确定百位有4种方法;第三步,确定十位有3种方法.所以第一类共有5×4×3=60(个).第二类是5在末位,前三位数也分三步完成.第一步确定首位有4种方法,第二步,确定百位有4种方法,第三步确定十位有3种方法.第二类共有4×4×3=48(个).所以,满足条件的四位数共有60+48=108(个).[一点通] 对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成.如果正面分类较多,可采用间接法从反面求解.1.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有________种.解析:由于3×3方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起.如图中的△,当△全为1时,有2种(即第一行第2列为2或3,当第二列填2时,第三列只能填3,当第一行填完后,其他行的数字便可确定),当△全为2或3时,分别有2种,共有6种;当△分别为1,2,3时,也共有6种,共12种.答案:122.由0,1,2,3,…,9十个数字和一个虚数单位可以组成虚数的个数为________.解析:复数a+b i(a,b∈R)为虚数,则a有10种选法,b有9种选法,根据分步计数原理,共计90种选法.答案:903.从 1,2,3,4 中选三个数字,组成无重复数字的整数,问:满足下列条件的数有多少个?(1)三位数;(2)三位偶数.解:(1)三位数有三个数位,故可分三个步骤完成:第一步,排个位,从1,2,3,4 中选 1 个数字,有 4 种方法;第二步,排十位,从剩下的 3 个数字中选 1 个,有 3 种方法;第三步,排百位,可以从剩下的 2 个数字中选 1 个,有 2 种方法.根据分步计数原理,共有4×3×2=24 个满足要求的三位数.(2)分三个步骤完成:第一步,排个位,从2,4中选1个,有2种方法;第二步,排十位,从余下的3个数字中选1个,有3种方法;第三步,排百位,只能从余下的2个数字中选1个,有2种方法.故共有2×3×2=12个三位偶数.[例2] 如图,要给地图A,B,C,D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?[思路点拨] 根据地图的特点确定涂色的顺序,再进行计算,注意分类讨论.[精解详析] 按地图A,B,C,D四个区域依次涂色,分四步完成:第一步,涂A区域,有3种选择;第二步,涂B区域,有2种选择;第三步,涂C区域,由于它与A,B区域颜色不同,有1种选择;第四步,涂D区域,由于它与B,C区域颜色不同,有1种选择.所以根据分步计数原理,得到不同的涂色方案种数共有3×2×1×1=6.[一点通] 给区域涂色(种植)问题的一般思路:为了便于分析问题,先给区域(种植的品种)标上相应序号,然后按涂色(种植)的顺序分步或颜色(种植的品种)当选情况分类,最后利用两个原理计数.4.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同种法的种数为________种.解析:先种A地有4种,再种B地有3种,若C地与A地种相同的花,则C地有1种.D 地有3种;若C地与A地种不同花,则C地有2种,D地有2种,即不同种法的种数为N=4×3×(1×3+2×2)=84.答案:845.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L型(每次旋转90°仍为L型图案),那么在由4×5个小方格组成的方格纸上可以画出不同位置的L型图案的个数是________.解析:因为每四个小方格(2×2型)中有L型图案4个,共有2×2型小方格12个,所以共有L型图案4×12=48(个).答案:486. 将红、黄、绿、黑四种不同的颜色涂入如图所示的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?解:①当B与D同色时,有4×3×2×1×2=48种不同的涂色方法;②当B与D不同色时,有4×3×2×1×1=24种不同的涂色方法.故共有48+24=72种不同的涂色方法.[例3] 有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同结果?[思路点拨] (1)分四步,让每一位同学都选择一项竞赛;(2)分三步,每一项竞赛都有一名同学参加.[精解详析] (1)学生可以选择竞赛项目,而竞赛项目对于学生无条件限制,所以每位学生均有3个不同的机会.要完成这件事必须是每位学生参加的竞赛全部确定下来才行,因此需分四步.而每位学生均有3个不同机会,所以用分步计数原理可得3×3×3×3=34=81种不同结果.(2)竞赛项目可挑选学生,而学生无选择项目的机会,每一个项目可挑选4位不同学生中的一位.要完成这件事必须是每项竞赛所参加的学生全部确定下来才行,因此需分三步,用分步计数原理可得4×4×4=43=64种不同结果.[一点通] 解答此题,每位学生选定竞赛或每项竞赛选定学生对完成整个事件的影响至关重要,否则容易把两问结果混淆,其原因是对题意的理解不清,对事情完成的方式有错误的认识.7.保持例题条件不变,若每位学生只能参加一项竞赛,且每项竞赛只许一位学生参加,则有________种不同结果.解析:第一个项目可挑选4位学生中的一位,有4种不同的选法;第二个项目可从剩余的3位学生中选一位,有3种不同的选法;第三个项目可从剩余的2位学生中选一位,有2种不同的选法.故共有4×3×2=24种不同结果.答案:248.(1)8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法?(2)将4封信投入3个邮筒,有多少种不同的投法?(3)3位旅客到4个旅馆住宿,有多少种不同的住宿方法?解:(1)分三步,每位同学取书一本,第1,2,3个同学分别有8,7,6种取法,因而由分步计数原理,不同分法共有N=8×7×6=336(种).(2)完成这件事情可以分作四步,第一步,投第一封信,可以在3个邮筒中任选一个,因此有3种投法;第二步,投第二封信,同样有3种投法;第三步,投第三封信,也同样有3种投法;第四步,投第四封信,仍然有3种投法.由分步计数原理,可得出不同的投法共有N=3×3×3×3=81种.(3)分三步,每位旅客都有4种不同的住宿方法,因而不同的方法共有N=4×4×4=64种.两个计数原理在解决实际问题时常采用的方法课下能力提升(二)一、填空题1.用1,2,3,4可组成________个三位数.解析:组成三位数这件事可分为三步完成:第一步,确定百位,共有4种选择方法;第二步,确定十位,共有4种选择方法;第三步,确定个位,共有4种选择方法,由分步计数原理可知,可组成4×4×4=64个三位数.答案:642.若在登录某网站时弹出一个4位的验证码:XXXX(如2a8t),第一位和第三位分别为0到9这10个数字中的一个,第二位和第四位分别为a到z这26个英文字母中的一个,则这样的验证码共有________个.解析:要完成这件事可分四步:第一步,确定验证码的第一位,共有10种方法;第二步,确定验证码的第二位,共有26种方法;第三步,确定验证码的第三位,共有10种方法;第四步,确定验证码的第四位,共有26种方法.由分步计数原理可得,这样的验证码共有10×26×10×26=67 600个.答案:67 6003.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是________.解析:当x=2时,x≠y,点的个数为1×7=7;当x≠2时,x=y,点的个数为7×1=7,则共有14个点.答案:144.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为________.解析:每封电子邮件都有3种不同的发法,由分步计数原理可得,共有35=243种不同的发送方法.答案:2435. 如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有________种.解析:从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,故不同涂法有6×5×4×(1+3)=480(种).答案:480二、解答题6.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择.由分类计数原理,共有5+6+4=15种选法.(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择.由分步计数原理,共有5×6×4=120种选法.(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法;由分类计数原理,共有30+20+24=74种选法.7.用0,1,…,9这十个数字,可以组成多少个(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?解:由于0不可在最高位,因此应对它进行单独考虑.(1)百位的数字有9种选择,十位和个位的数字都各有10种选择,由分步计数原理知,适合题意的三位数共有9×10×10=900 个.(2)由于数字不可重复,可知百位的数字有9种选择,十位的数字也有9种选择,但个位数字仅有8种选择,由分步计数原理知,适合题意的三位数共有9×9×8=648个.(3)百位只有4种选择,十位可有9种选择,个位数字有8种选择,由分步计数原理知,适合题意的三位数共有4×9×8=288个.8.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻(有公共边)的盒子中,求不同的放法有多少种.解:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C,D,E,有6种不同的放法,根据分步计数原理得,有3×3×2×1=18种不同的放法.综上所述,由分类计数原理得不同的放法共有6+6+18=30种.。
高中数学的计数原理教案
高中数学的计数原理教案
教学对象:高中生
教学目标:掌握计数原理的基本概念及应用方法,能够解决相关问题教学步骤:
一、导入(10分钟)
1. 引入计数原理的概念,让学生回顾一下之前所学的排列与组合知识;
2. 引入计数原理的重要性,介绍计数原理在数学中的应用;
3. 提出一个简单的排列与组合问题,让学生思考如何解决。
二、理论讲解(20分钟)
1. 讲解计数原理的基本概念:乘法原理和加法原理;
2. 讲解排列和组合的区别与联系,引入二项式定理的概念;
3. 通过实例演示计数原理的应用方法。
三、练习与讨论(20分钟)
1. 学生进行打卡练习,解决一些基本的计数问题;
2. 学生互相讨论解题思路,分析其中的问题和解决方法;
3. 有选择性地让学生上台解题,展示不同的解题思路。
四、拓展应用(15分钟)
1. 带领学生应用计数原理解决更加复杂的问题;
2. 引导学生思考计数原理在实际生活中的应用场景;
3. 提出一个挑战性问题,鼓励学生尝试解决。
五、课堂小结(5分钟)
1. 对本节课的重点内容进行总结归纳;
2. 强调计数原理的重要性及实际应用;
3. 鼓励学生多加练习,巩固所学知识。
教学反馈:提醒学生在课后加强练习,加深对计数原理的理解和掌握,及时反馈学生在课上的表现。
第1章 计数原理
第1章计数原理江苏省宿迁市马陵中学范金泉本章是组合数学的最基础的知识,共包含1. 1两个基本计数原理、1. 2排列、1. 3组合、1. 4计数应用题和1. 5二项式定理五节内容,其中分类加法计数原理、分步乘法计数原理这两个计数原理是解决计数问题的最基本、最重要的方法,它们为解决很多实际问题提供了思想和工具.一、《课程标准》关于《计数原理》的表述及教学要求1.表述:计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具.在本模块中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题.2.教学要求:(1)分类加法计数原理、分步乘法计数原理.通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题.(2)排列与组合.通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题.(3)二项式定理.能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题.二、《课程标准》与《教学大纲》在要求上的主要变化1.2002年4月由教育部颁布实施的《教学大纲》,将这一部分的教学内容的标题定为《排列、组合、二项式定理》,教学目标规定为:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.2.对比2003年4月由教育部颁布的《课程标准》,一是章节名称变为《计数原理》,突显了计数原理的基础地位,同时在教学要求上,发生了明显的变化,主要变化有:(1)“计数原理”的要求由“掌握”变为“通过实例,总结出加法计数原理、分步乘法计数原理”;(2)“排列、组合”的要求也由“理解排列、组合的意义”变为“通过实例,理解排列、组合的概念”,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)关于“排列数、组合数”,则由“掌握排列数计算公式,掌握组合数计算公式和组合数的性质”变为“能利用计数原理推导排列数公式、组合数公式”.(4)“二项式定理”由“掌握二项式定理和二项展开式的性质”变为“能用计数原理证明二项式定理”,省去了“二项展开式的性质”,并给出了参考例题1.以上变化,主要是为了防止教学过程中“人为地加深难度,对知识点进行深挖”.(5)教学课时也有所变化,《教学大纲》规定为18课时,而《课程标准》规定为14课时,减少了学时数.三、《江苏省普通高考数学学科考试说明》中“计数原理”部分的考试范围与要求层次四、江苏高考考题《计数原理》作为选修内容,只能出现在江苏省普通高考数学试卷的附加题部分,由于这一部分内容的考点较多,故涉及排列、组合、二项式定理的考题仅在2008年江苏省普通高考数学试卷中出现,为第23题(真题如下):请先阅读:在等式cos2x =2cos 2x -1(x ∈R )的两边求导,得:(cos2x )'=(2cos 2x -1)',由求导法则,得(-sin2x )·2=4cos x ·(-sin x ),化简得等式:sin2x =2cos x ·sin x .(1)利用上题的想法(或其他方法),结合等式(1+x )n =122C C C C n n n n n n x x x ++++ (x ∈R ,整数n ≥2),证明:n [(1+x )n -1-1]=12C nk k n k k x-=∑. (2)对于正整数n ≥3,求证:(i )1(1)C n k k n k k =-∑=0;(ii )21(1)C n k k n k k =-∑=0;(iii )10121C 11n nk n k k n +=-=++∑. 本题重在考查二项式定理,并融入了导数的内容!(1)证明:在等式(1+x )n =0122C C C C n n n n n n x x x ++++两边求导得:n (1+x )n -1=12321C 2C 3C C n n n n n n x x n x -++++=n +12C nk k n k k x -=∑, 故n [(1+x )n -1-1]=12C n k k n k k x-=∑. (2) (i )在等式n (1+x )n -1=12321C 2C 3C C n n n n n n x x n x -++++中,令x=-1,则有0=12321C 2C (1)3C (1)C (1)n n n n n n n -+⋅-+⋅-++⋅-两边同乘以-1得,0=12233C (1)2C (1)3C (1)C (1)n n n n n n n ⋅-+⋅-+⋅-++⋅-=1(1)C n k k n k k =-∑.即1(1)C n k k n k k =-∑=0. (ii )对等式n (1+x )n -1=12321C 2C 3C C n n n n n n x x n x -++++再求导,得n (n -1)(1+x )n -2=23221C 32C (1)C n n n n n x n n x -⨯⋅+⨯⋅++⋅-⋅. 令x =-1,则有0=23221C 32C (1)(1)C (1)n n n n n n n -⨯⋅+⨯⋅⋅-++⋅-⋅⋅-.两边乘以(-1)2,得0=223321C (1)32C (1)(1)C (1)n n n n n n n ⨯⋅⋅-+⨯⋅⋅-++⋅-⋅⋅- =1223310C (1)21C (1)32C (1)(1)C (1)nn n n n n n n ⨯⋅⋅-+⨯⋅⋅-+⨯⋅⋅-++⋅-⋅⋅-=1(1)C (1)n kk n k k k =--∑=21(1)C n k k nk k =-∑-1(1)C nk kn k k =-∑. 由(i )得21(1)C nk kn k k =-∑=0.(iii )因为11!!C 11!()!(1)!()!k n n n k k k n k k n k =⋅=++⋅-+⋅- =111(1)!1(1)!1C 1(1)!()!1(1)![(1)(1))!1kn n n n k n k n k n k n ++++⋅=⋅=++⋅-++⋅+-++ 所以1111111110011121C C (C C C )1111n n n k k n n n n n n k k k n n n +++++++==-==+++=++++∑∑. 五、江苏省数学学科关于《计数原理》的教学建议1.分类计数原理和分步计数原理是处理计数问题的两种基本思想方法.教学中应引导学生根据计数原理分析、处理问题,而不是机械地套用公式.通过对实际问题的分析,确定解决该问题是需要分类,还是需要分步,再选用相应的公式计算.在本章的教学中,应注意控制题目的难度,避免繁琐的、技巧性过高的计数问题.2.在解决问题时,要让学生正确理解“完成一件事”的具体含义是什么,怎样才算“完成”,以及采用何种方式“完成”.3.解决计数应用问题的关键是设计完成一件事的过程,教学中要引导学生合理设计完成这件事的过程.4.解决本章的应用题,方法灵活多样,教学中要引导学生多方向地思考,选择最佳方案,使一些较复杂的问题得到简化.5.在教学中,可通过试验、画简图等方法帮助学生将问题直观化,进而寻求解题途径.在计数问题中,由于结果的正确性往往难以直接验证,因而可以用多种不同的方法求解来加以验证.本章教学约需14课时,具体分配如下:六、本章教学中应注意的几个问题1.教材开篇在列举一些贴近生活的典型实例的基础上,用明确的语言指出了两个计数原理与加法、乘法运算之间的关系,并提出“不通过一个一个地数而确定这个数”的问题,从而使学生体会学习计数原理的必要性.由于两个计数原理的这种基础地位,并且在应用它们解决问题时具有很大的灵活性,是训练学生推理技能的好素材.面对一个复杂的计数问题时,通过分类或分步将它分解为若干个简单计数问题,在解决这些简单问题的基础上,将它们整合起来而得到原问题的答案,可以达到以简驭繁、化难为易的效果.2.“完成一件事情”是一个比较抽象的词汇,它比学生熟悉的“完成一件工作”、“完成一项工程”……的含义要广泛得多,教学中应当结合实例让学生辨析.例如:“从甲地到乙地”、“从甲地经丙地再到乙地”、“从中任取一本书”、“从中任取数学书、语文书各一本”、“从1~9这九个数字中任取两个组成没有重复数字的两位数”等等,这些都是原理中所说的“完成一件事情”.排列、组合中的“确定一个满足条件的排列”、“确定一个满足条件的组合”也是指“完成一件事情”.建议在概念和例题的教学中,都要求学生先思考并说出要完成的一件事情是什么.在实际应用中,学生容易把“完成一件事情”与“计算完成这件事情的方法总数”混同.例如,在分析“从1~9这九个数字中任取两个,共可组成多少没有重复数字的两位数?”时,学生容易把要完成的事情理解成为“求满足条件的两位数的个数”.教学时应当注意利用简单实例引导学生消除这种误解.只有准确理解了什么叫“完成一件事情”,才能进一步分析可以用什么方法完成,是否需要分类或分步完成,这样才能确定到底应该用哪个计数原理.3.排列与组合的区别就是是否有“一定顺序”,为了让学生理解其含义,要结合实例进行认真分析.例如,学生熟悉的排队问题中,“从前到后”、“从左到右”、都是“一定顺序”;安排工作时“上午在前下午在后”也是“一定顺序”;“从1~9这九个数字中选三个不同数字组成三位数”中,“一定顺序”可以规定为“百十个”等等.最后要使学生明确,若干个元素按照一定的顺序排成一列,元素不同或元素相同但顺序不同的排列都是不同的排列,即当且仅当两个排列的元素和顺序都相同时才是同一个排列.4.关于“一个排列”与“排列数”、“一个组合”与“组合数”的区别与联系,不应抽象地解释与强调,而应多通过实例引导学生分析.5.关于组合数公式的推导,不要急于求成,而要通过具体的实例加以引导.例如课本是通过从a ,b ,c 三个元素中每次取出两个元素给出的,在此基础上,又通过表1-3-1给出了从四个元素中每次取出三个的组合数与排列数的对比,进一步引导学生理解组合与组合数的计算,以及组合数与排列数的关系.6.一题多解.在计数问题中,由于结果的正确性往往难以直接验证,因而可以用多种不同的方法求解来加以验证.7.二项式定理是本章的重点内容,二项式定理的学习过程是应用两个计数原理解决问题的典型过程,其基本思路是“先猜后证”.与以往教科书比较,猜想不是通过对n b a )(+中n 取1,2,3,4的展开式的形式特征的分析而归纳得出,而是直接应用两个计数原理对2)(b a +展开式的项的特征进行分析.这个分析过程不仅使学生对二项式的展开式与两个计数原理之间的内在联系获得认识的基础,而且也为证明猜想提供了基本思路.在二项式定理的推导中,学生自觉地联系到两个计数原理是不容易的.为此,教科书安排了如下过程:1.在“情境问题”中给出了2)(b a +,3)(b a +,4)(b a +的展开式,导出了n b a )(+的展开式问题;2.详细写出用多项式乘法法则得到2)a+,3)(ba+的展开式的过程,并从(b两个计数原理的角度对展开过程进行分析,概括出项数以及项的形式;3.用组合知识分析n(+的展开式中应有的项,以及每一个项的构成原由,a)b得出系数的计数方法,从而得出n(+的展开式.a)b从上述安排可以看到,得到二项式定理的猜想及其证明方法的核心就是应用两个计数原理.总之,计数问题是解决计数问题的最基本、最重要的方法,是根据实际问题的需要而提出的,教学中,不把那些人为编制的计数难题、需要特殊技巧的计数问题纳入课堂,而计算机程序设计中程序模块命名、字符编码、程序测试路径,以及核糖核酸分子、汽车牌照号码等计数问题,涉及大量的物理、生物、计算机的专业知识,体现了学科之间的渗透,同时体现了问题的时代特征,虽然这些例题背景复杂,所蕴含的数学知识却相对简单,可以根据学生的实际情况,补充一些例题,以增强学生思维的灵活性和发散性,提高学生分析问题和解决问题的能力.参考文献:1.中华人民共和国教育部,《普通高中数学课程标准》;2.江苏省教育厅,《江苏省普通高中数学课程标准教学要求》;3.江苏省教育厅,《2008年江苏省高考数学科考试说明》与《2011江苏高考数学科考试说明》.。
《1.1两个基本计数原理》精品PPT课件
重要的.在目前学生如果遇到与计数有关问题,基本采用列
业
课 举法.
教
堂
师
互
备
动
课
探
资
究
源
பைடு நூலகம்菜单
SJ ·数学 选修2-3
教
易
学
错
教
易
法
误
分
辨
析
析
教 学 方 案 设 计
在初中概率学中也学过树状图,也可解决这种问题,但 当这个数很大时,都很难实施.结合本节教材及学生的认知 情况,本节课采用问题式、引导探究式为主的教学方法.本
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
课 前 自 主 导 学
课 堂 互 动 探 究
菜单
SJ ·数学 选修2-3
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
当 堂 双 基 达 标
课 前
3.情感、态度与价值观
课
自
时
主
体会知识来源生活,并为生活服务的道理,激发了学生 作
导
业
学
学习数学的兴趣.体现数学实际应用和理论相结合的统一美.
课
教
堂
师
互
备
动
课
探
资
究
源
菜单
SJ ·数学 选修2-3
教
易
学
错
教
易
法 分
●重点难点
误 辨
析
析
教 学 方 案 设 计
人教版2020高中数学 第一章 计数原理 1.1 计数原理习题课教案 新人教A版选修2-3
你知道怎么求极值吗?
比照老师问题,自主学习,在过程中可与下一环节结合起来进行讨论。
提纲式引领学习,让学生有的放矢,不至于茫然抓不住重点。不知道自己要干什么。
议
总结求极值的一般步骤
学生感觉难度增加,但又不是说下不了手的感觉,小组中学习较好的充分发挥作用.
小组合作学习,充分发挥小组同学的力量,让每一个都成为学习的主人。
展
运用所学解决问题
由小组长带头总结
集体讨论,各个击破。
评
老师总结,并指出易出现的问题
学生听讲并做笔记
知识形成体系,对于该节内容有了一个比较清晰的认识。对于这两节内容也有了质的提升,从而极大地增加了学生学习的信心.
检
教学反思
教学后完成
重点
进一步理解和掌握分类加法计数原理和分步乘法计数原理.
难点
能根据实际问题特征,正确选择计数原理解决实际问题.
教学过程
教师活动
学生活动
设计意图(备注)
导
你知道什么是函数的极值吗?
主动思考,带着问题翻书自行阅读当页内容。并回答老师提出的问题并将自己疑惑的东西记下
问题引如,激发学生兴趣,学生易于从书上内容中找到答案。增加学习的信心。
教材内容分析
借助几何直观体会定积分的基本思想,初步了解定积分的概念。
学生分析
学生对数学的学习已经有了一定的认识,需要从一个更加全面的方面的了解、分析以及掌握逻辑用语,对于我们的学习和生活都有一定的作用。
学习目标
1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.
2.能根据实际问题特征,正确选择计数原理解决实际问题.
1.1 计数原理习题课
课程标准描述
通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。 ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 两个基本计数原理第1课时分类计数原理与分步计数原理1.2016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,每天有7次航班,5列火车.问题1:该志愿者从北京到南京可乘的交通工具可分为几类?提示:两类,即乘飞机、乘火车.问题2:这几类方法相同吗?提示:不同.问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7+5=12(种).2.甲盒中有3个不同的红球,乙盒中有5个不同的白球,某同学要从甲盒或乙盒中摸出一球.问题4:不同的摸法有多少种?提示:3+5=8(种).3.某班有男生26人,女生24人,从中选一位同学为生活委员.问题5:不同选法的种数为多少?提示:26+24=50.完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.1.2016年世界速度轮滑锦标赛期间,一名志愿者从北京赶赴南京为游客提供导游服务,但需在天津停留,已知从北京到天津有7次航班,从天津到南京有5列火车.问题1:该志愿者从北京到南京需要经历几个步骤?提示:两个,即从北京到天津、从天津到南京.问题2:这几个步骤之间相互有影响吗?提示:没有,第一个步骤采取什么方式完成与第二个步骤采用的方式没有任何关系.问题3:该志愿者从北京到南京共有多少种不同的方法?提示:7×5=35 种.2.若x∈{2,3,5},y∈{6,7,8}.问题4:能组成的集合{x,y}的个数为多少?提示:3×3=9(个).3.某班有男生26人,女生24人,从中选一位男同学和一位女同学担任生活委员.问题5:不同的选法的种数为多少?提示:26×24=624种.完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.1.分类计数原理中的每一种方法都可以完成这件事情,而分步计数原理的每一个步骤只是完成这件事情的中间环节,不能独立完成这件事情.2.分类计数原理考虑的是完成这件事情的方法被分成不同的类别,求各类方法之和;而分步计数原理考虑的是完成这件事情的过程被分成不同的步骤,求各步骤方法之积.[例1] 某单位职工义务献血,在体检合格的人中,O型血的共有29人,A型血的共有7人,B型血的共有9人,AB型血的共有3人,从中任选1人去献血,共有多少种不同的选法?[思路点拨] 先按血型分类,再求每一类的选法,然后求和.[精解详析] 从中选1人去献血的方法共有4类:第一类:从O型血的人中选1人去献血共有29种不同的方法;第二类:从A型血的人中选1人去献血共有7种不同的方法;第三类:从B型血的人中选1人去献血共有9种不同的方法;第四类:从AB型血的人中选1人去献血共有3种不同的方法.利用分类计数原理,可得选1人去献血共有29+7+9+3=48种不同的选法.[一点通] 利用分类计数原理,首先搞清要完成的“一件事”是什么,其次确定一个合理的分类标准,将完成“这件事”的方法进行分类;然后,对每一类中的方法进行计数,最后由分类计数原理计算总方法数.1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出1种种植,不同的种植方法有________种.解析:分4种品种种植,根据分类计数原理可知,共有4种不同的种植方法.答案:42.所有边长均为整数,且最大边长均为11的三角形的个数为________.解析:假设另两边长分别为a,b(a,b∈Z),不妨设a≤b≤11,要构成三角形,必有a +b≥12,因此b≥6.当b=11时,a可取1,2,3,…11;当b=10时,a可取2,3,…,10;当b=6时,a只能是6.故所有三角形的个数为11+9+7+5+3+1=36.答案:363.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学B大学生物学数学化学会计学数学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?解:这名同学可以选择A,B两所大学中的一所,在A大学中有5种专业选择方法,在B大学中有4种专业选择方法,因此根据分类计数原理,这名同学可能的专业选择共有5+4=9(种).[例2] 要安排一份 5 天的值班表,每天有一个人值班,共有 5 个人,每个人值多天或不值班,但相邻两天不准由同一个人值班,此值班表共有多少种不同的排法?[思路点拨] 该问题是计数问题,完成一件事是排值班表,因而需一天一天的排,用分步计数原理,分步进行.[精解详析] 先排第一天,可排5人中任一人,有 5 种排法;再排第二天,此时不能排第一天已排的人,有 4 种排法;再排第三天,此时不能排第二天已排的人,有 4 种排法;同理,第四、五天各有 4 种排法.由分步计数原理可得值班表不同的排法共有:N=5×4×4×4×4=1 280 (种).[一点通] 利用分步计数原理解决问题应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的;(2)各步中的方法互相依存,缺一不可,只有各个步骤都完成才算完成这件事.4. 用6种不同的颜色给图中的“笑脸”涂色,要“眼睛”(如图A,B所示区域)用相同颜色,则不同的涂色方法共有________种.解析:第1步涂眼睛有6种涂法,第2步涂鼻子有6种涂法,第三步涂嘴有6种涂法,所以共有63=216种涂法.答案:2165.现有4件不同款式的上衣和3条不同颜色的长裤,若一条长裤与一件上衣配成一套,则不同的配法种数为________.解析:要完成长裤与上衣配成一套,分两步:第一步,选上衣,从4件中任选一件,有4种不同选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.答案:126.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,问:(1)点P可表示平面上多少个不同的点?(2)点P可表示平面上多少个第二象限内的点?解:(1)确定平面上的点P(a,b),可分两步完成:第一步确定a的值,有6种不同方法;第二步确定b的值,也有6种不同方法.根据分步计数原理,得到平面上点P的个数为6×6=36.(2)确定平面上第二象限内的点P,可分两步完成:第一步确定a的值,由于a<0,所以有3种不同方法;第二步确定b的值,由于b>0,所以有2种不同方法.由分步计数原理,得到平面上第二象限内的点P的个数为3×2=6.[例3] 有一项活动,需在3名老师,8名男同学和5名女同学中选人参加.(1)若只需一人参加,有多少种不同选法?(2)若需老师、男同学、女同学各一人参加,有多少种不同选法?(3)若需一名老师,一名学生参加,有多少种不同选法?[思路点拨] (1)从老师、男、女同学中选 1人,用分类计数原理.(2)从老师、男、女同学中各选1人,用分步计数原理.(3)分类计数原理与分步计数原理的综合.[精解详析] (1)有三类选人的方法:3名老师中选一人,有3种方法;8名男同学中选一人,有8种方法;5名女同学中选一人,有5种方法.由分类计数原理,共有3+8+5=16种选法.(2)分三步选人:第一步选老师,有3种方法;第二步选男同学,有8种方法;第三步选女同学,有5种方法.由分步计数原理,共有3×8×5=120种选法.(3)可分两类,每一类又分两步.第一类:选一名老师再选一名男同学,有3×8=24种选法;第二类:选一名老师再选一名女同学,共有3×5=15种选法.由分类计数原理,共有24+15=39种选法.[一点通] 用两个计数原理解决具体问题时,首先要分清是“分类”还是“分步”,其次要清楚“分类”或“分步”的具体标准.在“分类”时要做到“不重不漏”,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性.7.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的直线共有________条.解析:解决这件事分两类完成:第1类,当A或B中有一个为0时,表示直线为y=0或x=0,共2条;第2类,当A,B都不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步计数原理,共可确定4×3=12(条)直线.所以由分类计数原理,方程所表示的不同直线共有2+12=14(条).答案:148.从5名医生和8名护士中选出1名医生和1名护士组成一个两人医疗组,共有________种不同的选法.解析:完成这件事需分两步:第一步,从5名医生中选一名,有5种不同的选法;第二步,从8名护士中选一名,有8种不同的选法,故共有5×8=40种不同的选法.答案:409.某公园休息处东面有8个空闲的凳子,西面有6个空闲的凳子,小明与爸爸来这里休息.(1)若小明的爸爸任选一个凳子坐下(小明不坐),有几种坐法?(2)若小明与爸爸分别就坐,有多少种坐法?解:(1)小明的爸爸选凳子可以分两类:第一类:选东面的空闲凳子,有8种坐法;第二类:选西面的空闲凳子,有6种坐法.根据分类计数原理,小明的爸爸共有8+6=14种坐法.(2)小明与爸爸分别就坐,可以分两步完成:第一步,小明先就坐,从东西面共8+6=14个凳子中选一个坐下,共有14种坐法;第二步,小明的爸爸再就坐,从东西面共13个空闲凳子中选一个坐下,(小明坐下后,空闲凳子数变成13)共13种坐法.由分步计数原理,小明与爸爸分别就坐共有14×13=182种坐法.1.利用分类计数原理解题的步骤(1)分类:理解题意,确定分类标准,做到不重不漏;(2)计数:求出每一类中的方法数;(3)结论:将每一类中的方法数相加得最终结果.2.利用分步计数原理解题的步骤(1)分步:将完成这件事的过程分成若干步;(2)计数:求出每一步中的方法数;(3)结论:将每一步中的方法数相乘得最终结果.课下能力提升(一)一、填空题1.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这项工作,不同选法有________种.解析:由分类计数原理知,有3+5=8种不同的选法.答案:82.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有________种.解析:分四步完成:第一步:第1位教师有3种选法;第二步:由第一步教师监考班的数学老师选有3种选法;第三步:第3位教师有1种选法;第四步:第4位教师有1种选法.共有3×3×1×1=9种监考的方法.答案:93.3名学生报名参加艺术体操、美术、计算机、游泳课外兴趣小组,每人选报一种,则不同的报名种数有________种.解析:第1名学生有4种选报方法;第2、3名学生也各有4种选报方法,因此,根据分步计数原理,不同的报名种数有4×4×4=64.答案:644.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)解析:分两类,第一棒是丙有1×2×4×3×2×1=48(种);第一棒是甲、乙中一人有2×1×4×3×2×1=48(种),根据分类计数原理得:共有方案48+48=96(种).答案:965.从集合A={1,2,3,4}中任取2个数作为二次函数y=x2+bx+c的系数b,c,且b ≠c ,则可构成________个不同的二次函数.解析:分成两个步骤完成:第一步选出b ,有4种方法;第二步选出c ,由于b ≠c ,则有3种方法.根据分步计数原理得:共有4×3=12个不同的二次函数.答案:12二、解答题6.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列有多少个?解:当公比为2时,等比数列可为1,2,4;2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同时,4,2,1;8,4,2;9,3,1和9,6,4也是等比数列,共8个.7.已知a ∈{3,4,6},b ∈{1,2,7,8},r ∈{8,9},则方程(x -a )2+(y -b )2=r 2可表示多少个不同的圆?解:按a ,b ,r 取值顺序分步考虑:第一步:a 从3,4,6中任取一个数,有3种取法;第二步:b 从1,2,7,8中任取一个数,有4种取法;第三步:r 从8、9中任取一个数,有2种取法;由分步计数原理知,表示的不同圆有 N =3×4×2=24(个).8.书架上层放有6本不同的数学书,下层放有5本不同的语文书.(1)从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两类方法:第一类方法是从上层取一本数学书,有6种方法;第二类方法是从下层取一本语文书,有5种方法.根据分类计数原理,得到不同的取法的种数是6+5=11.答:从书架上任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种取法;第二步取一本语文书,有5种取法.根据分步计数原理,得到不同的取法的种数是6×5=30.答:从书架上取数学书与语文书各一本,有30种不同的取法.第2课时分类计数原理与分步计数原理的应用[例1] 从0,1,2,3,4,5这些数字中选出4个,能组成多少个无重复数字且能被5整除的四位数?[思路点拨] 能被5整除的数分为末位数字为0及末位数字为5两类.[精解详析] 满足条件的四位数可分为两类:第一类是0在末位的,需确定前三位数,分三步完成,第一步:确定首位有5种方法;第二步,确定百位有4种方法;第三步,确定十位有3种方法.所以第一类共有5×4×3=60(个).第二类是5在末位,前三位数也分三步完成.第一步确定首位有4种方法,第二步,确定百位有4种方法,第三步确定十位有3种方法.第二类共有4×4×3=48(个).所以,满足条件的四位数共有60+48=108(个).[一点通] 对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成.如果正面分类较多,可采用间接法从反面求解.1.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有________种.12 331 223 1解析:由于3×3方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起.如图中的△,当△全为1时,有2种(即第一行第2列为2或3,当第二列填2时,第三列只能填3,当第一行填完后,其他行的数字便可确定),当△全为2或3时,分别有2种,共有6种;当△分别为1,2,3时,也共有6种,共12种.△△△答案:122.由0,1,2,3,…,9十个数字和一个虚数单位可以组成虚数的个数为________.解析:复数a+b i(a,b∈R)为虚数,则a有10种选法,b有9种选法,根据分步计数原理,共计90种选法.答案:903.从 1,2,3,4 中选三个数字,组成无重复数字的整数,问:满足下列条件的数有多少个?(1)三位数;(2)三位偶数.解:(1)三位数有三个数位,故可分三个步骤完成:第一步,排个位,从1,2,3,4 中选 1 个数字,有 4 种方法;第二步,排十位,从剩下的 3 个数字中选 1 个,有 3 种方法;第三步,排百位,可以从剩下的 2 个数字中选 1 个,有 2 种方法.根据分步计数原理,共有4×3×2=24 个满足要求的三位数.(2)分三个步骤完成:第一步,排个位,从2,4中选1个,有2种方法;第二步,排十位,从余下的3个数字中选1个,有3种方法;第三步,排百位,只能从余下的2个数字中选1个,有2种方法.故共有2×3×2=12个三位偶数.[例2] 如图,要给地图A,B,C,D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?[思路点拨] 根据地图的特点确定涂色的顺序,再进行计算,注意分类讨论.[精解详析] 按地图A,B,C,D四个区域依次涂色,分四步完成:第一步,涂A区域,有3种选择;第二步,涂B区域,有2种选择;第三步,涂C区域,由于它与A,B区域颜色不同,有1种选择;第四步,涂D区域,由于它与B,C区域颜色不同,有1种选择.所以根据分步计数原理,得到不同的涂色方案种数共有3×2×1×1=6.[一点通] 给区域涂色(种植)问题的一般思路:为了便于分析问题,先给区域(种植的品种)标上相应序号,然后按涂色(种植)的顺序分步或颜色(种植的品种)当选情况分类,最后利用两个原理计数.4.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同种法的种数为________种.解析:先种A地有4种,再种B地有3种,若C地与A地种相同的花,则C地有1种.D 地有3种;若C地与A地种不同花,则C地有2种,D地有2种,即不同种法的种数为N=4×3×(1×3+2×2)=84.答案:845.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L型(每次旋转90°仍为L型图案),那么在由4×5个小方格组成的方格纸上可以画出不同位置的L型图案的个数是________.解析:因为每四个小方格(2×2型)中有L型图案4个,共有2×2型小方格12个,所以共有L型图案4×12=48(个).答案:486. 将红、黄、绿、黑四种不同的颜色涂入如图所示的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?解:①当B与D同色时,有4×3×2×1×2=48种不同的涂色方法;②当B与D不同色时,有4×3×2×1×1=24种不同的涂色方法.故共有48+24=72种不同的涂色方法.[例3] 有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同结果?[思路点拨] (1)分四步,让每一位同学都选择一项竞赛;(2)分三步,每一项竞赛都有一名同学参加.[精解详析] (1)学生可以选择竞赛项目,而竞赛项目对于学生无条件限制,所以每位学生均有3个不同的机会.要完成这件事必须是每位学生参加的竞赛全部确定下来才行,因此需分四步.而每位学生均有3个不同机会,所以用分步计数原理可得3×3×3×3=34=81种不同结果.(2)竞赛项目可挑选学生,而学生无选择项目的机会,每一个项目可挑选4位不同学生中的一位.要完成这件事必须是每项竞赛所参加的学生全部确定下来才行,因此需分三步,用分步计数原理可得4×4×4=43=64种不同结果.[一点通] 解答此题,每位学生选定竞赛或每项竞赛选定学生对完成整个事件的影响至关重要,否则容易把两问结果混淆,其原因是对题意的理解不清,对事情完成的方式有错误的认识.7.保持例题条件不变,若每位学生只能参加一项竞赛,且每项竞赛只许一位学生参加,则有________种不同结果.解析:第一个项目可挑选4位学生中的一位,有4种不同的选法;第二个项目可从剩余的3位学生中选一位,有3种不同的选法;第三个项目可从剩余的2位学生中选一位,有2种不同的选法.故共有4×3×2=24种不同结果.答案:248.(1)8本不同的书,任选3本分给3个同学,每人1本,有多少种不同的分法?(2)将4封信投入3个邮筒,有多少种不同的投法?(3)3位旅客到4个旅馆住宿,有多少种不同的住宿方法?解:(1)分三步,每位同学取书一本,第1,2,3个同学分别有8,7,6种取法,因而由分步计数原理,不同分法共有N=8×7×6=336(种).(2)完成这件事情可以分作四步,第一步,投第一封信,可以在3个邮筒中任选一个,因此有3种投法;第二步,投第二封信,同样有3种投法;第三步,投第三封信,也同样有3种投法;第四步,投第四封信,仍然有3种投法.由分步计数原理,可得出不同的投法共有N=3×3×3×3=81种.(3)分三步,每位旅客都有4种不同的住宿方法,因而不同的方法共有N=4×4×4=64种.两个计数原理在解决实际问题时常采用的方法课下能力提升(二)一、填空题1.用1,2,3,4可组成________个三位数.解析:组成三位数这件事可分为三步完成:第一步,确定百位,共有4种选择方法;第二步,确定十位,共有4种选择方法;第三步,确定个位,共有4种选择方法,由分步计数原理可知,可组成4×4×4=64个三位数.答案:642.若在登录某网站时弹出一个4位的验证码:XXXX(如2a8t),第一位和第三位分别为0到9这10个数字中的一个,第二位和第四位分别为a到z这26个英文字母中的一个,则这样的验证码共有________个.解析:要完成这件事可分四步:第一步,确定验证码的第一位,共有10种方法;第二步,确定验证码的第二位,共有26种方法;第三步,确定验证码的第三位,共有10种方法;第四步,确定验证码的第四位,共有26种方法.由分步计数原理可得,这样的验证码共有10×26×10×26=67 600个.答案:67 6003.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是________.解析:当x=2时,x≠y,点的个数为1×7=7;当x≠2时,x=y,点的个数为7×1=7,则共有14个点.答案:144.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为________.解析:每封电子邮件都有3种不同的发法,由分步计数原理可得,共有35=243种不同的发送方法.答案:2435. 如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有________种.解析:从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,故不同涂法有6×5×4×(1+3)=480(种).答案:480二、解答题6.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择.由分类计数原理,共有5+6+4=15种选法.(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择.由分步计数原理,共有5×6×4=120种选法.(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法;由分类计数原理,共有30+20+24=74种选法.7.用0,1,…,9这十个数字,可以组成多少个(1)三位整数?(2)无重复数字的三位整数?(3)小于500的无重复数字的三位整数?解:由于0不可在最高位,因此应对它进行单独考虑.(1)百位的数字有9种选择,十位和个位的数字都各有10种选择,由分步计数原理知,适合题意的三位数共有9×10×10=900 个.(2)由于数字不可重复,可知百位的数字有9种选择,十位的数字也有9种选择,但个位数字仅有8种选择,由分步计数原理知,适合题意的三位数共有9×9×8=648个.(3)百位只有4种选择,十位可有9种选择,个位数字有8种选择,由分步计数原理知,适合题意的三位数共有4×9×8=288个.8.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻(有公共边)的盒子中,求不同的放法有多少种.解:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步计数原理得,有3×2×1=6种不同的放法;(3)若A球放在4号盒子内,则B球可以放在2号、3号、5号盒子中的任何一个,余下的三个盒子放球C,D,E,有6种不同的放法,根据分步计数原理得,有3×3×2×1=18种不同的放法.综上所述,由分类计数原理得不同的放法共有6+6+18=30种.。