高中数学教案:计数原理
高中数学计数原理教案设计

高中数学计数原理教案设计
一、教学目标
1. 理解计数原理的概念及应用。
2. 能够解决包括排列、组合等在内的相关问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点和难点
重点:计数原理的理论与应用。
难点:排列组合问题的解决方法。
三、教学内容
1. 计数原理的基本概念。
2. 排列与组合的定义与性质。
3. 相关问题的解决方法。
四、教学过程
1. 导入(5分钟)
教师通过举例介绍计数原理的概念,引导学生对计数问题的思考,并问题引出排列组合的定义。
2. 讲解(15分钟)
讲解计数原理的基本概念,包括乘法原理、加法原理和排列、组合的性质,帮助学生理解计数问题的解决方法。
3. 练习(20分钟)
让学生尝试解决一些简单的排列、组合问题,帮助他们熟练运用计数原理解决实际问题。
4. 拓展(10分钟)
引导学生思考更复杂的排列、组合问题,锻炼他们的逻辑思维能力。
5. 总结(5分钟)
对本节课的内容进行总结,强调计数原理在实际生活中的应用,并提醒学生继续练习相关问题。
五、板书设计
1. 计数原理
2. 乘法原理、加法原理
3. 排列与组合
六、教学反馈
对学生进行实时反馈,及时纠正错误,鼓励正确的方法和思考方式。
七、作业布置
布置相关的练习题目作为作业,让学生巩固所学知识。
八、教学资源
多媒体教室、课件、教材、白板等。
九、教学评估
通过课堂练习和作业表现评估学生的掌握程度,调整教学策略。
高中数学计数原理合集教案

高中数学计数原理合集教案
教学目标:
1. 了解基本的排列和组合概念
2. 掌握计数原理的相关知识,能够灵活运用计数原理解决问题
3. 能够应用计数原理解决实际问题
教学内容:
1. 排列的基本概念和计算公式
2. 组合的基本概念和计算公式
3. 计数原理的基本概念和应用
教学步骤:
一、引入:
教师通过引入一道简单的排列组合问题,引发学生对计数原理的兴趣。
例如:班级有10名男同学和8名女同学,问有多少种不同的排队方式?
二、讲解排列与组合:
1. 介绍排列和组合的基本概念,并通过具体例子进行解释。
2. 讲解排列的计算公式及组合的计算公式,并分别举例说明。
三、练习:
学生进行排列与组合的练习,巩固所学知识。
四、引入计数原理:
1. 介绍计数原理的基本概念,即“乘法法则”和“加法法则”。
2. 通过具体例子解释计数原理的应用场景。
五、练习:
学生进行计数原理的练习,包括排列、组合和计数原理的综合应用题目。
六、总结:
教师对本节课所学内容进行总结,强调计数原理在解决实际问题中的重要性,并鼓励学生多加练习。
七、作业:
布置相关的作业,让学生进一步巩固所学内容。
教学反思:
通过本节课的教学,学生对排列、组合和计数原理有了初步的了解,能够灵活运用这些知识解决问题。
教师需要注意引导学生多加练习,提升他们的计数能力。
高中数学计数原理

高中数学计数原理篇一:新课标高中数学计数原理高中数学总复习教学案第11单元计数原理知识结构分类加法计数原理计数原理分步乘法计数原理排列的定义排列排列数公式排列的应用排列组合的计组合的定义综合应用数组合组合数公式原组合数性质理组合数的应用应用二项式定理二项展开式的通项应用二项式系数的性质应用重点难点本章重点难点是两原理及排列、组合、二项式的应用。
学法指导对于计数原理要在弄懂原理、学透概念、学全方法上下功夫;对于二项式定理,要在体会恒等式、公式的学法上下功夫。
高考分析与预测本章是高考数学相对独立的内容,也是密切联系实际的一部分。
在高考中,注重基本概念,基础知识和基本运算的考查。
试题难度不大,多以选择、填空的形式出现。
排列组合的试题会以现实生活中的生产问题、经济问题为背景,不会仅是人或数的排列。
以排列组合应用题为载体,考查学生的抽象概括能力,分析能力,综合解决问题的能力。
二项式着重考查展开式和系数的应用。
将排列组合与概率统计相结合是近几年高考的一大热点,应引起重视。
11.1 分类加法计数原理、分步乘法计数原理分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。
了解计数与现实生活的联系,会能应用它们解决简单的实际问题,正确理。
也是密切联系实际的一部分,是高考必考内容,每年都有1—2道有关的试题,题型一般为选择题和填空题,考查基础知识、思维能力,多数题难度与教材习题难度相当,但也有个别难度较大。
26人,女生24人,从中选一位同学为数学课代表,则不同的选法有()。
A.50B.60C.24D.6162.5个高中毕业生报考三所重点院校,每人报且只报一所,则不同的报名方法有()种。
A.35B.53C.5?4?3D.5?33.如果把两条异面直线看成是“一对”,则六棱锥的几条棱所在的直线中,异面直线共有()对。
A.12B.24C.36D.484.已知a?{0,3,4},b?{1,2,7,8},r?{8,9},则方程?x?ay?b??r表示不同的2224人、5人、6人、7人,他们自愿组成数学课外小组,选其中一人为组长,有多少种不同的选法。
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第2课时)教案 新人教A版选修2-

1.2.2 组合第二课时教学目标知识与技能了解组合数的性质,会利用组合数的性质简化组合数的运算;能把一些计数问题抽象为组合问题解决,会利用组合数公式及其性质求解计数问题.过程与方法通过具体实例,经历把具体事例抽象为组合问题,利用组合数公式求解的过程.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合数的性质、利用组合数公式和性质求解相关计数问题.教学难点:利用组合数公式和性质求解相关计数问题.教学过程引入新课提出问题1:判断以下问题哪个是排列问题,哪个是组合问题,并回顾排列和组合的区别和联系.(1)从A、B、C、D四个景点选出2个进行游览;(2)从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.活动设计:教师提问.活动成果:(1)是组合问题,(2)是排列问题.1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合与排列的区别和联系:(1)区别:①排列有顺序,组合无顺序.②相同的组合只需选出的元素相同,相同的排列那么需选出的元素相同,并且选出元素的顺序相同.(2)联系:①都是从n个不同的元素中选出m(m≤n)个元素;②排列可以看成先组合再全排列.设计意图:复习组合的概念,检查学生的掌握情况.提出问题2:利用上节课所学组合数公式,完成以下两个练习: 练习1:求证:C m n =n m C m -1n -1.(本式也可变形为:mC m n =nC m -1n -1)练习2:计算:①C 310和C 710;②C 37-C 26与C 36;③C 411+C 511. 活动设计:学生板演.活动成果:练习2答案:①120,120 ②20,20 ③792.1.组合数的概念:从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C mn 表示.2.组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).设计意图:复习组合数公式,为得到组合数的性质打下基础.探索新知提出问题1:由问题2练习中所求的几个组合数,你有没有发现一些规律,能不能总结并证明一下?活动设计:小组交流后请不同的同学总结补充. 活动成果:1.性质:(1)C mn =C n -mn ;(2)C mn +1=C mn +C m -1n .2.证明:(1)∵C n -mn =n !(n -m)![n -(n -m)]!=n !m !(n -m)!,又C mn =n !m !(n -m)!,∴C m n =C n -mn .(2)C m n +C m -1n =n !m !(n -m)!+n !(m -1)![n -(m -1)]!=n !(n -m +1)+n !m m !(n -m +1)!=(n -m +1+m)n !m !(n -m +1)!=(n +1)!m !(n -m +1)!=C mn +1,∴C mn +1=C mn +C m -1n .设计意图:引导学生自己推导出组合数的两个性质.运用新知类型一:组合数的性质 1(1)计算:C 37+C 47+C 58+C 69; (2)求证:C nm +2=C nm +2C n -1m +C n -2m .(1)解:原式=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210;(2)证明:右边=(C nm +C n -1m )+(C n -1m +C n -2m )=C nm +1+C n -1m +1=C nm +2=左边. [巩固练习]求证:C 1n +2C 2n +3C 3n +…+nC nn =n2n -1.证明:左边=C 1n +2C 2n +3C 3n +…+nC nn =C 11C 1n +C 12C 2n +C 13C 3n +…+C 1n C nn ,其中C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数.设某班有n 个同学,选出假设干人(至少1人)组成兴趣小组,并指定一人为组长.把这种选法按取到的人数i 分类(i =1,2,…,n),那么选法总数即为原式左边.现换一种选法,先选组长,有n 种选法,再决定剩下的n -1人是否参加,每人都有两种可能,所以组员的选法有2n -1种,所以选法总数为n2n -1种.显然,两种选法是一致的,故左边=右边,等式成立.[变练演编]求证:C 1n +22C 2n +32C 3n +…+n 2C nn =n(n +1)2n -2.证明:由于i 2C in =C 1i C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选两个(可重复)的组合数,所以原式左端可看成在上题中指定一人为组长的基础上,再指定一人为副组长(可兼职)的组合数.对原式右端我们可分为组长和副组长是否是同一个人两种情况.假设组长和副组长是同一个人,那么有n2n -1种选法;假设组长和副组长不是同一个人,那么有n(n-1)2n -2种选法.∴共有n2n -1+n(n -1)2n -2=n(n +1)2n -2种选法.显然,两种选法是一致的,故左边=右边,等式成立.类型二:有约束条件的组合问题2在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. (1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 C 3100=100×99×981×2×3=161 700种.(2)从2件次品中抽出1件次品的抽法有C 12种,从98件合格品中抽出2件合格品的抽法有C 298种,因此抽出的3件中恰好有1件次品的抽法有C 12×C 298=9 506种.(3)解法1 从100件产品抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有C 12×C 298种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有C 12×C 298+C 22×C 198=9 604种.解法2抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即C 3100-C 398=161 700-152 096=9 604种.点评:“至少〞“至多〞的问题,通常用分类法或间接法求解. [巩固练习]1.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有C 34,C 24×C 16,C 14×C 26种方法,所以,一共有C 34+C 24×C 16+C 14×C 26=100种方法. 解法二:(间接法)C 310-C 36=100.2.按以下条件,从12人中选出5人,有多少种不同选法? (1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选; (3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选; (5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人当选;解:(1)C 33C 29=36;(2)C 03C 59=126;(3)C 11C 49=126;(4)C 13C 49=378; (5)方法一:(直接法)C 03C 59+C 13C 49+C 23C 39=756, 方法二:(间接法)C 512-C 33C 29=756;(6)方法一:(直接法)C 13C 49+C 23C 39+C 33C 29=666, 方法二:(间接法)C 512-C 03C 59=666. [变练演编]有翻译人员11名,其中5名精通英语、4名精通法语,还有2名英、法语皆通.现欲从中选出8名,其中4名译英语,另外4名译法语,一共可列多少X 不同的?解:分三类:第一类:2名英、法语皆通的均不选,有C 45C 44=5种;第二类:2名英、法语皆通的选一名,有C 12C 35C 44+C 12C 45C 34=60种; 第三类:2名英、法语皆通的均选,有A 22C 35C 34+C 25C 44+C 45C 24=120种. 根据分类加法计数原理,共有5+60+120=185种不同的. [达标检测]1.计算:(1)C 399+C 299;(2)2C 38-C 39+C 28.2.从6位同学中选出4位参加一个座谈会,要求X 、王两人中至多有一个人参加,那么有不同的选法种数为________.3.从7人中选出3人参加活动,那么甲、乙两人不都入选的不同选法共有______种. 答案:课堂小结1.知识收获:组合数的性质,用组合数公式解决简单的计数问题. 2.方法收获:化归的思想方法. 3.思维收获:化归的思想方法.补充练习[基础练习]1.求证:(1)C mn +1=C m -1n +C mn -1+C m -1n -1;(2)C m +1n +C m -1n +2C mn =C m +1n +2.2.某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有______.3.100件产品中有合格品90件,次品10件,现从中抽取4件检查.(1)都不是次品的取法有多少种?(2)至少有1件次品的取法有多少种?(3)不都是次品的取法有多少种?4.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,那么一共有多少种不同的取法?38=56;3.解:(1)C490=2 555 190;(2)C4100-C490=C110C390+C210C290+C310C190+C410=1 366 035;(3)C4100-C410=C190C310+C290C210+C390C110+C490=3 921 015.4.解:分为三类:1奇4偶有C16C45;3奇2偶有C36C25;5奇有C56,所以一共有C16C45+C36C25+C56=236种不同的取法.[拓展练习]现有8名青年,其中有5名能胜任英语翻译工作;有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,那么有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有C24C23;②让两项工作都能担任的青年从事德语翻译工作,有C34C13;③让两项工作都能担任的青年不从事任何工作,有C34C23.所以一共有C24C23+C34C13+C34C23=42种方法.设计说明本节课是组合的第二课时,本节课的主要目标有两个,一个是学生在教师的问题驱动下自主探究组合数的性质,并在老师的带领下,体会组合数公式的应用;另一个是体会把具体计数问题化归为组合问题的过程.本节课的设计特点是:教师的问题是主线,学生的探究活动是主体,师生合作,共同完成知识和方法的总结.备课资料相同元素分组分配问题解决方法:档板法.(1)参加联赛的10个名额要分配到高三年级的8个班级中,那么每个班级至少一个名额的分配方法有______种;(2)10个相同的小球全部放入编号为1、2、3的盒子中,那么使每个盒子中球的个数不小于盒子的编号数的方法有______种.解析:利用档板法.(1)相当于在排成一排的10个“1〞所形成的9个空隙中,选出7个插入7块档板的方法,每一种插板方法对应一种名额分配方法,有C79种方法;(2)可以首先在2、3号盒子中先分别放入1、2个球,然后在剩余的7个球排成一排形成的6个空隙中选出2个空隙各插入一块板,有C26种方法.注:档板法的使用比较灵活,且对数学思想方法要求较高,现利用档板法证明一个不定方程的自然数解的组数的结论:方程x1+x2+…+x m=n(m,n∈N,m,n≥2)的自然数解有C m-1n+m-1组.简证:转化为正整数解的组数,利用档板模型有:作代换y i=x i+1(i=1,2,…,m),那么方程x1+x2+…+x m=n的自然数解的组数,即y1+y2+…+y m=n+m的正整数解的组数,相当于把n+m个球分成m份,每份至少1个的方法数,即在n+m-1个球的间隙中放置m-1个档板的方法种数,即C m-1n+m-1.。
基本计数原理教案

基本计数原理教案基本计数原理教案主要包括以下步骤:一、教材分析●地位和作用:基本计数原理是学习排列组合的基础,是推导排列数、组合数的重要理论,同时也给出了分析解决排列与组合问题的思维方法。
●重点、难点和关键:分类计数原理及分步计数原理的区别及应用。
二、学情分析和学法指导学生基础差,学习主动性差,缺乏学习兴趣。
从培养学生的兴趣入手,使学生在学习过程中学会观察问题、探究问题,自主归纳总结进而得出结论。
三、教学目标●知识目标:掌握计数的基本原理,并能用它们分析和解决一些简单的应用问题。
●能力目标:锻炼学生的观察能力和解决问题的能力。
●情感目标:培养学生对数学的兴趣和好奇心,建立自信心。
四、教学方法课堂上应积极引导学生进行思考和讨论,鼓励学生提问和发表自己的观点,以便更好地帮助他们掌握知识和提高能力。
五、教学过程●提出问题:从实例出发,提出有关排列与组合的问题,引导学生思考如何用计数原理来解决。
●讲解原理:详细解释分类计数原理和分步计数原理的定义和适用范围,对比两者的异同点。
●实例解析:通过具体的例子,让学生更好地理解如何运用计数原理来解决实际问题。
●总结反思:回顾分类计数原理和分步计数原理的主要内容,总结解题思路和方法,反思在解题过程中遇到的困难和问题。
●布置作业:根据教学内容和学生的学习情况,布置适当的练习题或思考题,巩固所学的知识。
六、教学评估通过课堂表现、作业完成情况、小组讨论等方式对学生的学习效果进行评估,及时发现问题并进行针对性的指导。
同时也可以设置一些测试题或小测验来检验学生对知识的掌握程度。
高中数学计数问题教案

高中数学计数问题教案目标:让学生能够熟练解决各种高中数学计数问题。
教学内容:
1. 基本计数原理
2. 排列与组合
3. 分子式计数
4. 递推数列求解
教学步骤:
1. 引入
- 讨论学生对计数问题的理解和认识
- 引入基本计数原理的概念和应用
2. 理论讲解
- 讲解基本计数原理的定义和公式
- 讲解排列与组合的计算方法
- 讲解分子式计数和递推数列的求解方法
3. 解题演练
- 给学生提供一些例题,让他们尝试解答
- 分组讨论,分享解题思路
- 教师指导,解答疑惑
4. 练习巩固
- 发放作业,让学生回家继续练习
- 下节课进行作业讲解,巩固知识点
5. 总结反馈
- 教师总结本节课的重点知识
- 学生反馈本节课的学习情况和问题
教学评估:
1. 通过学生的课堂表现和作业完成情况进行评估
2. 观察学生对计数问题的理解和应用能力
3. 及时给予学生反馈和指导,帮助他们提升解题能力
扩展延伸:
1. 可以给学生提供更复杂的计数问题,挑战他们的思维能力
2. 可以引导学生应用计数方法解决实际问题,提高他们的数学应用能力
结尾:通过本节课的学习,相信学生能够更加熟练地解决各种高中数学计数问题,提高他们的数学能力和解题技巧。
希望学生在以后的学习中能够继续努力,取得更好的成绩。
高中数学 第一章 计数原理 1.2 排列与组合 1.2.1 排列(第3课时)教案 新人教A版选修2-

1.2.1 排列第三课时教学目标知识与技能利用捆绑法、插空法解决排列问题.过程与方法经历把简单的计数问题化为排列问题解决的过程,从中体会“化归〞的数学思想.情感、态度与价值观能运用所学的排列知识,正确地解决实际问题,体会“化归〞思想的魅力.重点难点教学重点:利用捆绑法、插空法解决排列问题.教学难点:利用捆绑法、插空法解决排列问题.教学过程复习回顾提出问题:7位同学排队,根据上一节课所学的方法,解决以下排列问题.(1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?活动设计:学生自己做,找学生到黑板上板演.活动成果:解:(1)问题可以看作:7个元素的全排列A77=5 040.(2)根据分步乘法计数原理:7×6×5×4×3×2×1=7!=5 040.(3)问题可以看作:余下的6个元素的全排列A66=720.(4)根据分步乘法计数原理:第一步甲、乙站在两端有A22种;第二步余下的5名同学进行全排列有A55种,所以,共有A22·A55=240种排列方法.(5)第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有A25种方法;第二步从余下的5位同学中选5位进行排列(全排列)有A55种方法,所以一共有A25A55=2 400种排列方法.典型例题类型一:捆绑法例17位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?(2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种?解:(1)先将甲、乙两位同学“捆绑〞在一起看成一个元素,与其余的5个元素(同学)一起进行全排列有A66种方法;再将甲、乙两个同学“松绑〞进行排列有A22种方法.所以这样的排法一共有A66A22=1 440种.(2)方法同上,一共有A55A33=720种.(3)解法一:将甲、乙两同学“捆绑〞在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有A25种方法;将剩下的4个元素进行全排列有A44种方法;最后将甲、乙两个同学“松绑〞进行排列有A22种方法.所以这样的排法一共有A25A44A22=960种.解法二:将甲、乙两同学“捆绑〞在一起看成一个元素,此时一共有6个元素,假设丙站在排头或排尾有2A55种方法,所以,丙不能站在排头和排尾的排法有(A66-2A55)·A22=960种.解法三:将甲、乙两同学“捆绑〞在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有A14种方法,再将其余的5个元素进行全排列共有A55种方法,最后将甲、乙两同学“松绑〞,所以,这样的排法一共有A14A55A22=960种.(4)将甲、乙、丙三个同学“捆绑〞在一起看成一个元素,另外四个人“捆绑〞在一起看成一个元素,此时一共有2个元素,∴一共有排法种数:A33A44A22=288种.点评:对于相邻问题,常用“捆绑法〞(先捆后松).[巩固练习]某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂2台,假设要求同厂的产品分别集中,且甲厂产品不放两端,那么不同的陈列方式有多少种?解:将甲厂5台不同的电视机“捆绑〞在一起看成一个元素,乙厂3台不同的电视机“捆绑〞在一起看成一个元素,丙厂2台不同的电视机“捆绑〞在一起看成一个元素,此时一共有3个元素,甲不放两端,甲有1种排法,乙、丙排在两端有A22种排法,共有A55A33A22A22=2 880种不同的排法.[变练演编]7位同学站成一排,(1)甲、乙两同学之间恰好有一个人的排法共有多少种?(2)甲、乙两同学之间恰好有两个人的排法共有多少种?解:(1)先在甲、乙两同学之间排一个人,有A15种不同的排法,把甲、乙和中间的一人“捆绑〞在一起看成一个元素,此时一共有5个元素,共有A15A55A22=1 200种不同的排法.(2)先在甲、乙两同学之间排两个人,有A25种不同的排法,把甲、乙和中间的两人“捆绑〞在一起看成一个元素,此时一共有4个元素,共有A25A44A22=960种不同的排法.类型二:插空法例27位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:(1)方法一:(排除法)A77-A66·A22=3 600;方法二:(插空法)先将其余五个同学排好有A55种方法,此时他们留下六个位置(称为“空〞),再将甲、乙同学分别插入这六个位置(空)有A26种方法,所以一共有A55A26=3 600种方法.(2)先将其余四个同学排好有A44种方法,此时他们留下五个“空〞,再将甲、乙和丙三个同学分别插入这五个“空〞有A 35种方法,所以一共有A 44A 35=1 440种方法.点评:对于不相邻问题,常用“插空法〞(特殊元素后考虑).[巩固练习]5男5女排成一排,按以下要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列.解:(1)先将男生排好,有A 55种排法;再将5名女生插在男生之间的6个“空〞(包括两端,但不能同时排在两端)中,有2A 55种排法,故此题的排法有N =2A 55·A 55=28 800种.(2)方法1:N =A 1010A 55=A 510=30 240; 方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有A 510种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法.故此题的排法为N =A 510×1=30 240种.[变练演编]5男6女排成一列,问(1)5男排在一起有多少种不同排法?(2)5男不都排在一起有多少种排法?(3)5男每两个不排在一起有多少种排法?(4)男女相互间隔有多少种不同的排法?解:(1)先把5男看成一个整体,得A 77,5男之间排列有顺序问题,得A 55,共A 77A 55种.(2)全排列除去5男排在一起即为所求,得A 1111-A 77A 55.(3)因为男生人数少于女生人数,利用男生插女生空的方法解决问题,得A 66A 57.(4)利用男生插女生空的方法,但要保证两女生不能挨在一起,得A 66A 55.[达标检测]1.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1 440种B .960种C.720种 D.480种2.把4个不同的黑球,4个不同的红球排成一排,要求黑球、红球分别在一起,不同的排法种数是( )A.A88 B.A44A44C.A44A44A22D.以上都不对3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,那么不同插法的种数为( )A.42 B.96C.48 D.124答案:课堂小结1.知识收获:进一步复习排列的概念和排列数公式.2.方法收获:捆绑法、插空法.3.思维收获:化归思想、分类讨论思想.补充练习[基础练习]1.6人站成一排照相,其中甲、乙、丙三人要站在一起,且要求乙、丙分别站在甲的两边,那么不同的排法种数为( )A.12 B.24C.48 D.1442.由数字0,1,2,3,4,5组成无重复数字的四位数,其中是25的倍数的数共有______个( )A.9 B.12C.24 D.213.用数字0,1,2,3,4能组成没有重复数字的且比20 000大的五位奇数的个数为( ) A.3 B.30C.72 D.184.将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为( )A.540 B.300C.180 D.150答案:[拓展练习]5.有4名男生、5名女生,全体排成一行,问以下情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男、女生分别排在一起;(4)男女相间;(5)甲、乙、丙三人从左到右顺序保持一定.答案:(1)241 920 (2)10 080 (3)5 760 (4)2 880 (5)60 480设计说明本节课是排列的第三课时,本节课的主要目标是介绍排列中常用的捆绑法和插空法.本节课的特点是教师引导给学生以提示,在从例题中学会了方法后,马上让学生练习巩固方法,在变练演编中,举一反三,反复强化,使学生更好地掌握方法和技巧.备课资料一、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有________.解析:把A,B视为一人,且B固定在A的右边,那么此题相当于4人的全排列,有A44=24种排法.二、相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例1书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有______种不同的插法(具体数字作答).解析:A17A33+A27A23+A37=504种.例2高三(1)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,那么不同排法的种数是________.解析:不同排法的种数为A55A26=3 600.例3某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后才能进行.那么安排这6项工程的不同排法种数是________.解析:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个“空〞中,可得有A25=20种不同排法.例4某市春节晚会原定10个节目,导演最后决定添加3个与“抗冰救灾〞有关的节目,但是赈灾节目不排在第一个也不排在最后一个,并且已经排好的10个节目的相对顺序不变,那么该晚会的节目单的编排总数为________种.解析:A19A33+A29A23+A39=990种.例53个人坐在一排8个椅子上,假设每个人左右两边都有空位,那么坐法的种数有多少种?解析:解法1:先将3个人(各带一把椅子)进行全排列有A33,○*○*○*○,在四个“空〞中分别放一把椅子,还剩一把椅子再去插空有A14种,所以每个人左右两边都有空位的排法有A14A33=24种.解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个“空〞,*○*○*○*○*,再让3个人每人带一把椅子去插空,于是有A34=24种.注:题中*表示元素,○表示空.例6停车场划出一排12个停车位置,今有8辆车需要停放.要求空位置连在一起,不同的停车方法有多少种?解析:先排好8辆车有A88种方法,要求空位置连在一起,那么在每2辆之间及其两端的9个空档中任选一个,将空位置插入有A19种方法,所以共有A19A88种方法.。
高中数学的计数原理教案

高中数学的计数原理教案
教学对象:高中生
教学目标:掌握计数原理的基本概念及应用方法,能够解决相关问题教学步骤:
一、导入(10分钟)
1. 引入计数原理的概念,让学生回顾一下之前所学的排列与组合知识;
2. 引入计数原理的重要性,介绍计数原理在数学中的应用;
3. 提出一个简单的排列与组合问题,让学生思考如何解决。
二、理论讲解(20分钟)
1. 讲解计数原理的基本概念:乘法原理和加法原理;
2. 讲解排列和组合的区别与联系,引入二项式定理的概念;
3. 通过实例演示计数原理的应用方法。
三、练习与讨论(20分钟)
1. 学生进行打卡练习,解决一些基本的计数问题;
2. 学生互相讨论解题思路,分析其中的问题和解决方法;
3. 有选择性地让学生上台解题,展示不同的解题思路。
四、拓展应用(15分钟)
1. 带领学生应用计数原理解决更加复杂的问题;
2. 引导学生思考计数原理在实际生活中的应用场景;
3. 提出一个挑战性问题,鼓励学生尝试解决。
五、课堂小结(5分钟)
1. 对本节课的重点内容进行总结归纳;
2. 强调计数原理的重要性及实际应用;
3. 鼓励学生多加练习,巩固所学知识。
教学反馈:提醒学生在课后加强练习,加深对计数原理的理解和掌握,及时反馈学生在课上的表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学教案:计数原理
教学目标:
对差不多概念,差不多知识和差不多运算的把握
注重对分析咨询题和解决咨询题的能力的培养
对综合咨询题要注意数学思想的培养
教学重难点:
对两个差不多计数原理的把握和运用
排列组合以及二项式定理典型题解题技巧
教学设计:
知识网络:
一、两个差不多计数原理:
1、分类计数原理:完成一件事,有n 类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第n 类方法中有mn 种不同的方法,那么完成这件事共有 N=m1+m2+…+mn 种不同的方法。
〔加法原理〕
2、分步计数原理:完成一件事,需要分成n 个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n 步有mn 种不同的方法,那么完成这件事有 N=m1×m2×…×mn 种不同的方法。
〔乘法原理〕
二、排列
排列:一样地,从n 个不同的元素中取出m 〔m ﹤n 〕个元素,并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
注意:1、排列的定义中包含两个差不多内容:①〝取出元素〞;②〝按照一定顺序排列〞,〝一定顺序〞确实是与位置有关,这也是判定一个咨询题是不是排列咨询题的重要标志。
2、依照排列的定义,两个排列相同,是指当且仅当两个排列的元素完全相同,而且元素的排列顺序也相同
排列数公式: )!(!)1()2()1(m n n m n n n n A m n
-=+-⋅⋅⋅-⋅-⋅= !12)2()1(n n n n A n n =⋅⋅⋅⋅-⋅-⋅=
三、组合
组合:一样地,从n 个不同元素中取出m 个不同元素并成一组,叫做从n 个不同元素中取出m 个不同元素的一个组合。
组合数公式: 〔组合数公式1—适用于运算〕
〔组合数公式2—适用于化简证明〕 组合数公式性质:性质1: m n n m n C C -=
! )1()2)(1(m m n n n n m m m n m n C +---=A =A !
)(! ! m n m n C
m n -=
性质2:
111+++=+k n k n k n C C C 推论:1t n t n k k k C C C C C 1
22110+++=+⋅⋅⋅+++ 推论2:
1121++++=+⋅⋅⋅+++k n k n k k k k k k C C C C C
四、二项式定理:
1、二项式定理
右边的多项式叫做(a+b)n 的二项展开式,其中 Cnr an-rbr 叫做二项展开式的通项,记作Tr+1 ,Cnr 叫做 二项式系数.
2、二项展开式的特点:
〔1〕项数:共n +1项
〔2〕指数:a 按降幂排列,b 按升幂排列,每一项中a 、b 的指数和为n
〔3〕系数:第r +1项的二项式系数为Cnr (r =0,1,2,…,n)
排列组合典型题解析:
三边长分不为整数,且最大边长为11的三角形的个数为______
在一块并排10垄的田地中选择2龙分不种植A 、B 两种作物,每种作物种一垄,要求两种作物之间间隔不得小于6垄,那么不同的种植方法有_______种
将3种作物种植在如以下图的5块试样田里,每块种植一种,且相邻的试验田不能种植同一种作物,那么不同的种植方法有_______种
小结:按元素的性质进行分类,按事件发生的过程分步
正确使用两个差不多计数原理的前提是要清晰俩个差不多计数原理的使用条件,合理进行分类和分步。
一定要做到分类明确,层次清晰,不重不漏;按逻辑分步。
5名成年人带两个小孩排队上山,小孩不排在一起也不排在头尾,共有____种排法
某天上午有 5节课,要排好语、数、外、体育、政治5门课,其中英语排在中间一节,体育不排在第1、2节,数学不排在最后一节,共有_____种排法
书架上原先有5本书,现将2本新书放入,不改变原有5本书位置,共有___种排法 8个人排两排,第一排3人,第二排5人,共有___种排法
10级台阶分3步走完,共有____种走法
小结:
1、解排列组合咨询题通常考察的是有附加条件的咨询题,解决这类咨询题通常有三种途径: 以元素为主,应先满足专门元素的要求,再考虑其他元素
以位置为主,应先满足专门位置的要求,再考虑其他位置
先不考虑附加条件,运算出总数再减去不符合条件的个数
求解排列组合咨询题常见题型方法
〔一〕〔1〕相邻咨询题捆绑法,〔2〕不相邻咨询题插空法 011222()n n n n r n r r n n n n n n n a b C a C a b C a b C a b C b
---+=++++++013C C C . n n n n +++=(11)n +2
n =
〔3〕分排咨询题直排法,〔4〕定序咨询题除法
〔二〕分组,分配咨询题
平均分组〔除〕
部分平均分组〔部分除〕假设有分配任务就要排列
不平均分组
例如:〔1〕作业本上的
〔2〕排列组合与二项式定理测试试卷12、14〔3〕、17
〔三〕分类选派咨询题:注意要分类清晰
分不选择咨询题,例如:4男5女中选择5人,要求至少2女,有多少种选法?
多面手咨询题,例如:8个人中有5人会英语,5人会日语,现在选日语和英语翻译各2人,有多少种选法?
〔四〕数字咨询题:注意0的专门性,注意有无重复数字,注意数字位数
例如:用0,1,3,4,5六个数字组成无重复数字的数字,分不求以下各类数的个数
五位奇数,〔2〕能被5整除的三位数,〔3〕比20300大的五位数
〔排列组合与二项式定理测试试卷16〕
排列数组合数运算:
例如:排列组合与二项式定理测试试卷13
二项式定理:
排列组合与二项式定理测试试卷6、7、10、15
创新活页37页1、8、9、12
小结:
熟记二项式定理公式,会熟练应用公式得到二项展开式、二项展开式的第r+1项、常数项、含xi的项
熟记几个组合数公式性质以及推论,会熟练应用其求值f
会依照多项式还原二项式,注意项数以及次数的对应
会用赋值法求所有项系数的和
区不系数和二项式系数,并会求系数最大的项以及二项式系数最大的项。