高中数学选修2-3计数原理概率知识点总结

合集下载

高二数学(选修2-3人教B版)-计数原理全章总结

高二数学(选修2-3人教B版)-计数原理全章总结
解:(1)第三项的二项式系数 C52 10 .
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和. 解:(2)由通项可知,展开式的第三项是
T3 C52 13 (2x)2 40x2
所以,第三项的系数为40.
例6、求 (1 2x)5的展开式的:
表示?
(a b)n (a b)(a b) (a b)
n个a b
Tr1 Cnr anr br
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
例6、求 (1 2x)5的展开式的:
(1)第三项的二项式系数; (2)第三项的系数; (3)所有项的系数和.
解:首先将A、B、C、D排成一排,共有 A44 种排法,每一种
排法都会产生五个“空”,在这五个“空”中任选一个,将E
放入,共有 C51 种方法;其次,E中的两个元素可以交换,有 A22
种方法.
所以,共有 A44 C51 A22 240 种不同的排法.
问题4 (a b)n 的展开式中的系数为什么可以用组合数的形式

Cm n1
ቤተ መጻሕፍቲ ባይዱ
Cmn
Cm1 n
)?
作业: 1.一个集合由8个元素组成,这个集合含有3个元素的子集有多 少个? 2.将6名应届大学毕业生分配到两个用人单位,每个单位至少 两人,一共有多少种不同的分配方案? 3.求 (9x 1 )18 展开式的常数项,并说明它是展开式的第几项.
3x
入,共有 A43 种排法. 所以,一共有A33 A43 144 种不同的排法.
例5、有6位同学站成一排,符合下列各题要求的不同排法有多 少种? (2)甲、乙相邻. 解:(2) 设除甲、乙之外的另外四个同学为A、B、C、D. 因为甲、乙要相邻,所以可以把甲、乙“绑”在一起看作一个 元素(记为E).

高中数学选修2-3知识点

高中数学选修2-3知识点

111--++=⋅+=m n m n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点第一章 计数原理1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ5、公式:,11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

7、公式:)!(!!!)1()1(m n m n C m m n n A A C m nm m m n mn-=+--==Λ)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ;mn n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r+-==101() 10、二项式系数C n r为二项式系数(区别于该项的系数) 11、杨辉三角:()()对称性:,,,……,1012C C r n n r nn r==- ()系数和:…2C C C n n nn n012+++= (3)最值:n 为偶数时,n +1为奇数,中间一项的二项式系数最大且为第n C n n nn2112+⎛⎝ ⎫⎭⎪+项,二项式系数为;为奇数时,为偶数,中间两项的二项式() 系数最大即第项及第项,其二项式系数为n n C C n n nn +++=-+121211212第二章 随机变量及其分布1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

人教版高二数学选修2-3第一章计数原理《《计数原理》小结与复习》

人教版高二数学选修2-3第一章计数原理《《计数原理》小结与复习》

第一章 计数原理《计数原理》小结与复习班 :高二()班学号:姓名:一.知识点整理价:1、两个基本 数原理:( 1)分 数原理:达成一件事,有n 法 , 达成 件事共有 N=m +m+⋯+m种不一样的方法。

12n( 2)分步 数原理:达成一件事,需要分红n 个步 ,达成 件事有N=m × m ×⋯× m 种不一样的方法。

12n2、摆列( 1)摆列:一般地,从n 个不一样的元素中拿出m ( m n )个元素,并按必定的 序排成一列,叫做从n 个不一样元素中拿出 m 个元素的一个摆列。

( 2)摆列数公式:A n mn (n1) (n 2) (n m 1)n! ,(n m)!3、 合( 1) 合:一般地,从n 个不一样元素中拿出 m 个不一样元素并成一 ,叫做从n 个不一样元素中拿出 m 个不同元素的一个 合。

m( 2) 合数公式:C mn ( n 1)( n2)(nm 1) ,Cmn !nnmm !nm !( nm ) !( 3) 合数公式性 :m性 1: C n mC n n m性 2:C n k C n k 1 C n k 11推 1: C k 0 C k 1 1C k 2 2 C n t C n t 1推 2:C k kC k k 1 C k k 2C n k C n k 114、二 式定理:( 1)二 式定理: (a b)nC n 0a n C n 1a n 1 b C n 2a n2b 2C n r a n r b rC n n b n( 2)通 是睁开式的第,即:2、二 睁开式的特色:( 1) 数:共 n + 1 ;( 2)指数: a 按降 摆列, b 按升 摆列,每一 中a 、b 的指数和 n( 3)系数 : 第 r + 1 的二 式系数 Cr(r =0,1,2, ⋯, n )n二.稳固练习价: 1.( 西安 )4 个男生与 3 个女生站成一排,假如两头不站女生且3 个女生必 相 的排法有( ) 。

数学选修2-3知识点总结

数学选修2-3知识点总结

数学选修2-3知识点总结
计数原理:这部分主要讲解分类加法计数原理与分步乘法计数原理。

分类加法计数原理指的是,如果完成一件事情有N类方法,每类方法中有不同的方法数,那么完成这件事情的总方法数就是各类方法数之和。

而分步乘法计数原理则是说,如果完成一件事情需要分成N 个步骤,每个步骤中有不同的方法数,那么完成这件事情的总方法数就是各步骤方法数之积。

二项式定理:这部分主要讲解二项式定理及其通项公式,以及二项式系数的性质。

二项式定理给出了(a+b)^n的展开式,而二项式通项公式则给出了展开式中每一项的具体形式。

二项式系数的性质包括对称性、增减性与最大值以及各二项式系数和等。

概率论初步:这部分主要讲解随机事件、概率等基本概念,以及概率的基本性质。

随机事件是指在一次试验中可能出现的结果,而概率则是衡量随机事件发生的可能性的数值。

随机变量及其分布:这部分主要讲解随机变量的概念及其分布。

随机变量是随机试验可能出现的结果的数值表示,常见的随机变量分布有离散型分布和连续型分布。

以上就是数学选修2-3的主要知识点,通过学习这些内容,学生可以掌握基本的计数原理、二项式定理、概率论以及随机变量及其分布等数学知识,为进一步学习数学或其他相关学科打下基础。

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

(完整版)高中选修2-3第一章计数原理知识点总结与训练

(完整版)高中选修2-3第一章计数原理知识点总结与训练

第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。

用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。

用符号 表示。

6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质: m n A m n A ()()()()!!121m n n m n n n n A m n -=+---=Λ.,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=Λ.,,*n m N m n ≤∈并且mn n m nC C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x ,则可以得到公式:2、性质:02413512n n n n n n nC C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+C C C C C 求值:。

高中数学选修2-3基础知识归纳(排列组合、概率问题)

高中数学选修2-3基础知识归纳(排列组合、概率问题)

高中数学选修2-3基础知识归纳(排列组合、概率问题)一. 基本原理1 •加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2 .乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二. 排列:从n 个不同元素中,任取 m (m<n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,所有排列的个数记为2卫“+倔7加习…2 L 规定;C! = 1(2) «fl ! = [ (« -bl) -1] m =(母+1)近卫1一卫!二 3 +1) \-n !; (背)_ J7+1 ™ 1 JU- 1 1 _ 1 I5+1)! -(M + l)l - 5 + 1) ;" (n + l^l ~71~G + 1)!三-组合三从口个不同元素中任取n (mWn)个 元素并组成一组.叫做以口个不 同元紊中腿出珀个元索的一个组合,所有组合个数记为CJ规定;诗=1塞组合的亡;=c 厂.c : y'二% +……+cr;二巴① ^临二②躅十③心"呜 ④导隔…二碍若帶 二g 则厂口 四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序 ③分步还是分类。

2 .解排列、组合题的基本策略(1) 两种思路:① 直接法:② 间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况 去掉。

这是解决排列组合应用题时一种常用的解题方法。

分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为 全集。

(3) 分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步, 再由分步计数原理解决。

在处理排列组合问题时,常常既要分类,又要分步。

高中数学选修2-3知识点

高中数学选修2-3知识点

高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。

那么完成这件事情共有M1+M2+。

+MN种不同的方法。

2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。

那么完成这件事情共有XXX种不同的方法。

3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。

从n个不同元素中取出m个元素的一个排列数,用符号An表示。

An=m!/(n-m)!(m≤n,n,m∈N)。

5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。

*(n-m+1)=n!/(n-m)。

6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。

8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。

+C(n,n)*a^0*b^n。

9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。

10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。

11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-3定理概念及公式总结
第一章基数原理
1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法
2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整”
3.两个计数原理的区别:
如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.
4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.
(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A m
n
用于计算, 或m n
A )!
(!
m n n -=()
n m N m n ≤∈*,, 用于证明。

n
n
A =!n =()1231⨯⨯⨯⨯- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合
(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m
n C 表示
(2)组合数公式: (1)(2)(1)
!
m m n n
m m A n n n n m C A m ---+== 用于计算,
或)!
(!!
m n m n C m n -=
),,(n m N m n ≤∈*且 用于证明。

(3)组合数的性质:
①m n n m n C C -=.规定:10=n C ; ②m n C 1+=m n C +1-m n
C . ③ n C C n n n ==-11 ④1=n
n C
6.二项式定理及其特例:
(1)二项式定理()()
*--∈+++++=+N n b C b a C b a C a C b a n n n n n n n n n n
r r r 1
10
展开式共有n+1项,其中各项的系数{}()n C n ,,2,1,
0r r ∈叫做二项式系数。

(2)特例:1
(1)1n r r
n n
n x C x C x x +=++++
+.
7.二项展开式的通项公式: r r r 1r b a C T n n -+= (为展开式的第r+1项) 8.二项式系数的性质:
(1)对称性:在()n
b a +展开式中,与首末两端 “等距”的两个二项式系数相等,
即m
n n m n C C -=,直线2
n
r =
是图象的对称轴. (2)增减性与最大值:当2
1
r +<
n 时,二项式系数逐渐增大,由对称性知它的
后半部分是逐渐减小的,且在中间取得最大值。

当n 是偶数时,在中间一项2
2n +T 的二项式系数2n n
C 取得最大值;
当n 是奇数时,在中间两项2
1n +T ,2
3n +T 的二项式系数12n n
C
-,12n n
C
+取得最大值.
9.各二项式系数和:
(1)
=+++n 21
0n n n n C C C C n 2, (2)1
5314202
-=+++=+++n n n n n n n C C C C C C .
10.各项系数之和:(采用赋值法)
例:求()932y x -的各项系数之和
解:()992728190932y a y x a y x a x a y x ++++=-
令1,1==y x
,则有()()132329
92109
-=-=++++=-a a a a y x ,
故各项系数和为-1
第二章 概率
知识点:
1、随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。

2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 所有可能的值能一一列举出来,这样的随机变量叫做离散型随机变量.
3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i 的概率p 1,p 2,..... , p i ,......, p n ,则称表为离散型随机变量X 的概率分布,简称分布列
4、分布列性质① p i ≥0, i =1,2,… n ;② p 1 + p 2 +…+p n = 1.
5、二点分布:如果随机变量X 的分布列为:
其中0<p<1,q=1-p ,则称离散型随机变量X 服从参数p 的二点分布
6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为m 时的概率为
为和中的较小的一个()(0,n M )m n m M N M
n
N
C C P X m m l l C --==≤≤, 7、条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫
做条件概率.记作P(B|A),读作A 发生的条件下B 的概率 8、公式:
.
0)(,)()
()|(>=
A P A P
B A P A B P
9、相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件
叫做相互独立事件。

(|)
()P B A P B =
10、n 次独立重复试验:在相同条件下,重复地做n 次试验,各次试验的结果相互独立,一般
就称它为n 次独立重复试验
11、二项分布: 设在n 次独立重复试验中某个事件A 发生的次数设为X .如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中 ,事件A
恰好发生k 次的概率是()k k n k
n P X k C p q -==(其中 k=0,1, ……,n )
于是可得随机变量X 的分布列如下:
这样的离散型随机变量X 服从参数为n ,p 二项分布,记作X ~B(n ,p) 。

12、数学期望:一般地,若离散型随机变量X 的概率分布为
则称1122()n n E X x p x p x p =++
+为离散型随机变量X 的数学期望或均值(简称为期望).
13、方差:22
21122()(())(())(())n n D X x E X p x E X p x E X p =-+-+
+-叫随机变量X
的方差,简称方差。

14、集中分布的期望与方差一览:
15、正态分布:
若正态变量概率密度曲线的函数表达式为
)
,(,21
)(2
22)(+∞-∞∈=
--
x e x f x σμσ
π
的图像,其中解析式中的实数、μσ是参数,且0σ>,、μσ分别表示总体的期望与标准差. 期望为μ与标准差为σ的正态分布通常记作2
(,)μσN ,正态变量概率密度曲线的函数的图象称为正态曲线。

期望
方差
两点分布
()E X p = ()D X pq = 二项分布,X ~ B (n,p ) ()E X np = ()D X npq =
超几何分布N ,M ,n
()nM
E X N
=
16、正态曲线基本性质:
(1)曲线在x 轴的上方,并且关于直线x=μ对称.
(2)曲线在x=μ时处于最高点,并且由此处向左、右两边无限延伸时,曲线逐渐降低,呈现“中间高,两边低”的形状.
(3)曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体的分布越分散;
σ越小,曲线越“高瘦”,表示总体的分布越集中.
17、3σ原则:
容易推出,正变量在区间(2,2)μσμσ-+以外取值的概率只有 4.6%,在(3,3)μσμσ-+以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.
(,)68.3%P μσμσ-+= (2,2)95.4%P μσμσ-+= (3,3)99.7%P μσμσ-+=。

相关文档
最新文档