最新2019-章多分辨率分析与正交小波变换-PPT课件

合集下载

小波变换入门.ppt

小波变换入门.ppt

f f
(2 j , x, (2 j , x,
y)
y)
2
j
x
y
f f
(x, (x,
y) y)
a a
(x, (x,
y)
y)
2
j
grad
f
(x,
y)
a
(x,
y)
37/103
整个图像的二进小波变换即矢量:
W (1) f (2 j , x, y)
T
W
(
T
2)
f
(2
j,
x,
y)
WT
f
(2
j,
x,
尺度空间的递归嵌套关系: 0 V1 V0 V1 L2 R
小波空间 W是j 和V j 之V间j1 的差,即 时丢V 失j 的信息V j。1 推出:
V0 W0 W1 Wj V j1
V0
Vj,它Wj 捕 V捉j1 由 逼近
V j1
L2 R
V j1
Vj
多分辨率的空间关系图
19/103
两尺度方程
1 ( x, y)
(x) (y)
2 ( x, y)
(x)(y)
3 ( x, y)
(x) (y)
与 (x, y)一起就建立了二维小波变换的基础。
26/103
图像的小波变换实现
1. 正变换 图像小波分解的正变换可以依据二维小波变换按如 下方式扩展,在变换的每一层次,图像都被分解 为4个四分之一大小的图像。
线性
设: xt g t ht
WTx a,b WTg a,b WTh a,b 平移不变性
若 xt WTx a,b,则 xt WTx a,b
伸缩共变性

第六章小波分析基础ppt课件

第六章小波分析基础ppt课件
1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,

小波变换课件ch1_小波分析及在信号处理中的应用PPT文档共57页

小波变换课件ch1_小波分析及在信号处理中的应用PPT文档共57页

16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来分析及在信号处 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。 理中的应用
END

小波变换原理与应用PPT课件

小波变换原理与应用PPT课件

用傅立叶变换提取信号的频谱需要利用信号的全 部时域信息。
傅立叶变换没有反映出随着时间的变化信号频率 成分的变化情况。
傅立叶变换的积分作用平滑了非平稳信号的突变 成分。
由于上述原因,必须进一步改进,克服上述不足
,这就导致了小波分析。精选ppt
7
2.小波变换与傅里叶变换的比较
(1)克服第一个不足:小波系数不仅像傅立叶系 数那样,是随频率不同而变化的,而且对于同一个频 率指标j, 在不同时刻 k,小波系数也是不同的。
(0) (x)dx0
精选ppt
10
3.小波变换的基本原理与性质
信号的信息表示
➢ 时域表示:信号随时间变化的规律,信息包括均值、 方差、峰度以及峭陡等,更精细的表示就是概率密度 分布(工程上常常采用其分布参数)
➢ 频域表示:信号在各个频率上的能量分布,信息为频 率和谱值(频谱或功率谱),为了精确恢复原信号, 需要加上相位信息(相位谱),典型的工具为FT
与信号的初始段进行比较 ; ➢ 通过CWT的计算公式计算小波系数(反映了当前尺度
下的小波与所对应的信号段的相似程度); ➢ 改变平移因子,使小波沿时间轴位移,重复上述两个
步骤完成一次分析; ➢ 增加尺度因子,重复上述三个步骤进行第二次分析; ➢ 循环执行上述四个步骤,直到满足分析要求为止。
精选ppt
A x ( t)2 x ( t), m ,n ( t) 2 B x ( t)2 A ,B R
m ,n
x(t) Cm,n m,n(t) nZ
精选ppt
29
3.小波变换的基本原理与性质
正交小波变换与多分辨分析
多分辨分析也称为多尺度分析,是建立在函数空间概念上的理论 。它构造了一组正交基,使得尺度空间与小波空间相互正交。随 着尺度由大到小的变化,可在各尺度上由粗及精地观察目标。这 就是多分辨率分析的思想。在离散小波框架下,小波系数在时间尺度空间域上仍然具有冗余性,在数值计算或数据压缩等方面仍 然希望这种冗余度尽可能的小。在小波变换发展过程中, Stromberg、Meyer、Lemarie、Battle和Daubechies等先后成功的构 造了不同形式的小波基函数的基础上,是Meyer和Mallat将小波基 函数的构造纳入到了一个统一的框架中,形成了多分辨分析理论 。多分辨率分析理论不但将在那时之前的所有正交小波基的构造 统一了起来,而且为此后的小波基的构造设定了框架。

小波变换理论与方法ppt课件

小波变换理论与方法ppt课件
R
其中 g,t (t) g(t )eit g(t )eit ,窗口函数g(t)起着时
限作用,eit 起着频限作用。该变化具有不变化宽度(由时间 宽度决定)和不变的窗口面积4g∆g∆
10
短时傅里叶变换示意图
11
cos(440 t) x(t) cos(660 t)
傅里叶变换傅里叶变换小波变换小波变换小波变换的一些应用小波变换的一些应用1822年法国数学家傅里叶jfourier发表的研究热传导理论的热的力学分析提出每一个周期函数都可以表示成三角函数之和奠定了傅里叶级数的理论基础
1
主要内容
1. 傅里叶变换 2. 小波变换 3. 小波变换的一些应用
2
一 傅里叶变换
E(|Wn(j,t)|2)=0
D(|Wn(j,t)|2)= Ψ t 2
j
26
3.1.1小波包去噪步骤
① 选择小波基并确定最佳分解的层次,对信号 进行小波包分解; ② 对步骤(1)获得的小波包树,选择一定的嫡标准,计算最优树; ③ 估计阈值,并应用该阈值对最优树的小波包系数进行阈值量化; ④ 将经量化处理的小波包系数,重构回原始信号。
Gabor变换的基本思想为:取时间函数 g(t) 1/ e4 t2/2 作为窗口函 数,然后用 g(t ) 通待分析函数相乘,τ是时间延迟,是窗函数 g(t)的中心,窗函数根据τ进行时移,然后再进行傅里叶变换:
Gf (, ) f (t)g(t )eitdt f (t), g,t (t)
小波包阈值消噪有两个关键点:1、如何估计阈值;2 如何利用阈值量 化小波包系数。
27
熵的确定
熵:用来确定最优树的标准,熵值越小,对应的小波包基越好。
1)香农熵:约定0log(0)=0,则香农熵定义为: Es si2 logsi2

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

小波变换ppt课件

在此添加您的文本16字
自适应压缩
在此添加您的文本16字
小波变换的自适应性质使得它在压缩过程中能够根据信号 的特性进行动态调整,进一步提高压缩效率。
信号去噪
有效去噪 多尺度分析 自适应去噪
小波变换能够检测到信号中的突变点,从而在去噪过程 中保留这些重要特征,同时去除噪声。
小波变换的多尺度分析能力使其在去噪过程中能够同时 考虑信号的全局和局部特性,实现更准确的去噪效果。
小波变换的算法优化
1 2
小波变换算法的分类
介绍不同类型的小波变换算法,如连续小波变换、 离散小波变换等。
算法优化策略
探讨如何优化小波变换算法,以提高计算效率和 精度。
3
算法实现技巧
介绍实现小波变换算法的技巧和注意事项。
小波变换在实际应用中的挑战与解决方案
01
小波变换在信号处理中的应用
介绍小波变换在信号处理领域的应用,如信号去噪、特征提取等。
小波变换ppt课件
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在信号处理中的应用 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
01
小波变换是一种信号处理方法, 它通过将信号分解成小波函数的 叠加,实现了信号的多尺度分析 。
02
小波变换在图像处理中的应用
探讨小波变换在图像处理领域的应用,如图像压缩、图像增强等。
03
实际应用中的挑战与解决方案
分析小波变换在实际应用中面临的挑战,并提出相应的解决方案。
THANKS
感谢观看
离散小波变换具有多尺度、多方向和自适应的特点,能够提供信号或图像在不同尺 度上的细节信息,广泛应用于信号降噪、图像压缩和特征提取等领域。

《小波分析概述》PPT课件


Heisenberg不等式表明窗口Fourier变换的时 窗半径和频窗半径, 一个减小必然引起另一个的 增大, 不能同时减小.
窗口Fourier变换的窗函数选定以后, 其时-频 窗就固定不变了, 这样就限制了窗口Fourier变换 的实际应用. 为了提取高频分量的信息, 时窗应该 尽量地窄, 而允许频窗适当地宽; 对于低频分量, 时窗则应适当加宽, 以保证至少能包含一个周期的 过程, 频窗应当尽量缩小, 保证有较高的频率分辨率.
§4.2 窗口Fourier变换简介
窗口Fourier变换是在 Fourier 变换的框架内, 将非平稳过程看成是一系列短时平稳信号的叠加, 通过在时域上加上窗口来实现短时性. 通常选择在 有限区间外恒等于零或迅速趋于零的钟形函数g(t) 作为窗函数, 用平移滑动的窗函数g(t-t)与信号f (t) 相乘, 有效地抑制了t=t 邻域以外的信号, 在t 附近 开窗, 通过平移来覆盖整个时间域. 再进行Fourier 变换, 所得的结果反映了t=t 时刻附近的频谱信息, 从而产生了时域局部化的作用.
设 f , g Lk12, k(2R是)任,意常数, 则
W (k1 f k2g) (a,b) k1 W f (a,b) k2 W g (a,b).
(2) 平移性质
设 f L2则(R),
W f (t t0 ) (a,b) W f (t) (a,b t0).
(3) 尺度法则
第四章 小波变换基础
§4.1 小波变换的背景 §4.2 窗口Fourier变换简介 §4.3 连续小波变换 §4.4 二进小波变换和离散小波变换 §4.5 多分辨分析 §4.6 Mallat分解与重构算法
主要内容
小波分析是当前数学中一个迅速发展的 新领域,它也是一种积分变换,是一个时间和 频率的局域变换,因而能有效地从信号中提 取信息,通过伸缩和平移等运算功能对函数 或信号进行多尺度细化分析,解决了Fourier 变换不能解决的许多困难问题.本章简单介绍 小波变换的基本理论和应用.

小波分析简述(第五章)PPT课件


六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点

《小波分析》PPT课件

(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档