初升高数学衔接知识点
初高中数学衔接知识归纳有哪些

初高中数学衔接知识归纳有哪些很多新高一的同学,暑假里都忙着“衔接”,步入高中,无论是学习方法还是知识难度都有了很大的改变,大家都想趁着暑假来全方位提升自己,让这一级台阶迈得更稳。
以下是店铺分享给大家的初高中数学衔接知识归纳,希望可以帮到你!初高中数学衔接知识归纳1. 立方和与差的公式这部分内容在初中教材中已删去不讲,但进入高中后,它的运算公式却还在用。
比如说:2. 因式分解十字相乘法在初中已经不作要求了,同时三次或三次以上多项式因式分解也不作要求了,但是到了高中,教材中却多处要用到。
3. 二次根式中对分子、分母有理化这也是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧,特别是分子有理化。
4. 二次函数二次函数的图象和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容。
二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰。
5. 根与系数的关系(韦达定理)在初中,我们一般会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程,而到了高中却不再学习,但是高考中又会出现这一类型的考题,因此建议:(1)理解一元二次方程的根的判别式,并能用判别式判定根的情况;(2)掌握一元二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式这里指“对称式”)的值,能构造以实数p,q 为根的一元二次方程。
6. 图象的对称、平移变换初中只作简单介绍,而在高中讲授函数后,对其图象的上、下;左、右平移,两个函数关于原点,对称轴、给定直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点。
方程、不等式、函数的综合考查常成为高考综合题。
8.几何部分很多概念(如重心、垂心、外心、内心等)和定理(如平行线分线段比例定理,射影定理,圆幂定理等),初中生大都没有学习,而高中教材多常常要涉及。
初高中数学知识点衔接 -回复

初高中数学知识点衔接 -回复
初中数学和高中数学在知识点上是有很多衔接的,初中数学是高中数学的基础,高中数学是初中数学的深化和拓展。
下面列举一些初高中数学知识点的衔接:
1. 数的四则运算:初中数学主要学习整数、分数和小数的四则运算,而高中数学中会深入研究有理数和无理数的运算,及其在方程、函数等方面的应用。
2. 代数方程与函数:初中数学主要学习一次方程与一次函数,而高中数学中会学习二次方程与二次函数、指数函数、对数函数、三角函数等更高阶的函数。
3. 几何:初中数学主要学习平面几何,高中数学中会学习空间几何、解析几何以及更高级的几何推理与证明。
4. 概率与统计:初中数学主要学习基本的概率与统计知识,高中数学中会深入研究概率与统计的定理与应用。
5. 数列与数列极限:初中数学学习数列的概念、性质及常见数列的求和公式等,而高中数学中会学习数列的极限及其在函数极限中的应用。
以上仅是初高中数学知识点的一些衔接示例,实际上初高中数学在很多知识点上都存在衔接与拓展的关系。
为了学好高中数
学,建议学生在初中数学时要扎实掌握基础知识,理解原理和定理,做好知识的迁移和拓展准备。
初高中数学衔接内容

初高中数学衔接内容初中数学和高中数学在知识体系、思维方式和学习方法等方面存在着一定的差异。
为了让同学们能够顺利地从初中数学过渡到高中数学,做好衔接工作至关重要。
接下来,让我们一起来探讨一下初高中数学的衔接内容。
一、知识内容的衔接1、数与式在初中,我们主要学习了有理数、无理数、整式、分式等基本的数与式的概念和运算。
而在高中,会进一步拓展到复数的概念和运算,同时对代数式的变形和化简要求更高,例如乘法公式的灵活运用、因式分解的技巧等。
2、方程与不等式初中阶段,我们学习了一元一次方程、二元一次方程组、一元二次方程以及简单的不等式。
到了高中,会接触到一元二次方程根与系数的关系(韦达定理)、高次方程、分式方程、绝对值不等式等内容,并且需要掌握更复杂的求解方法和应用。
3、函数函数是初高中数学的重点和难点。
初中主要学习了一次函数、反比例函数和二次函数的基本性质和图像。
高中则在此基础上,引入了指数函数、对数函数、幂函数等更多类型的函数,同时对函数的性质(单调性、奇偶性、周期性等)、函数的图像变换以及函数的综合应用有更深入的要求。
4、几何图形初中的几何主要集中在平面几何,如三角形、四边形、圆等的性质和定理。
高中则将几何拓展到空间几何,学习空间点、线、面的位置关系,空间几何体的表面积和体积等,并且需要具备较强的空间想象能力和逻辑推理能力。
5、三角函数初中阶段,我们初步了解了锐角三角函数的概念和简单应用。
高中会对三角函数进行系统的学习,包括任意角的三角函数、诱导公式、三角函数的图像和性质、两角和与差的三角函数公式等。
二、思维方式的衔接1、从形象思维到抽象思维初中数学的内容相对较为直观和形象,例如通过图形来理解几何问题,通过实际例子来学习函数。
而高中数学则更加抽象,需要同学们具备更强的抽象思维能力,例如理解函数的概念、空间几何的位置关系等。
2、从常量思维到变量思维初中数学中,大多数问题涉及的是常量的计算和求解。
而高中数学中,变量的概念无处不在,函数就是研究变量之间关系的重要工具。
初升高初中数学与高中数学衔接紧密的知识点

初升高初中数学与高中数学衔接紧密的知识点初中数学与高中数学之间存在许多紧密的衔接点,这些知识点的学习和掌握对于学生顺利过渡到高中数学学习非常重要。
下面我将分别从数学概念、代数与函数、几何与三角、概率与统计等几个方面进行阐述。
首先,数学概念是高中数学的基石,初中数学的学习为学生提供了必要的基础。
在初中数学中,学生学会了整数、有理数、无理数等数的概念和性质,这为高中数学中的实数概念打下了坚实的基础。
另外,初中数学中的等式、不等式、方程等也为高中数学中的方程、不等式等内容的学习奠定了基础。
其次,代数与函数是数学学科中重要的内容,也是初高中数学衔接紧密的部分。
初中数学中的代数式、二次根式、指数、对数等概念和运算法则为高中数学中的代数式、指数函数、对数函数打下了坚实的基础。
高中数学中进一步深入研究了这些概念和内容,加深了对其运算法则的理解和应用。
接下来,几何与三角是初高中数学中相互衔接紧密的部分。
初中数学中学生学习了平面几何的基本知识,包括图形的性质、相似、全等等;同时初中数学还引入了三角学的基本概念和性质。
这些知识为高中数学中的立体几何、三角函数等内容的学习铺垫了基础。
高中数学中着重研究了几何的证明方法和分析性的推导,通过这种方式深化了初中阶段所学的几何和三角内容。
综上所述,初高中数学之间存在着许多紧密的衔接点,这些衔接点的学习和掌握对于学生顺利过渡到高中数学学习非常关键。
数学概念、代数与函数、几何与三角、概率与统计等方面的知识点是初高中数学衔接的核
心内容。
掌握了初中数学中的基本概念和方法,学生就能够更好地适应高中数学的学习,为将来的学习打下坚实的基础。
数学初高衔接内容

数学初高中的衔接内容是非常重要的,它涉及到学生在数学学科中的连贯性和深入理解。
下面列举了一些常见的数学初高中衔接内容:
1. 数学基础知识的复习和巩固:
-复习初中数学的基本概念、公式和运算规则,如整数、分数、代数等;
-温故而知新,通过练习和应用,巩固和熟练掌握初中数学的基础知识。
2. 函数与方程的深入学习:
-学习更高级的函数类型,如指数函数、对数函数、三角函数等,并掌握它们的性质和图像;
-学习更复杂的方程类型,如二次方程、立方方程、指数方程等,进一步提升解方程的能力。
3. 几何的推广与拓展:
-进一步学习平面几何和立体几何的相关知识,如平行线、相似三角形、立体几何的体积与表面积等;
-学习使用向量方法解决几何问题,如向量的加法、减法、数量积、向量夹角等。
4. 数据与统计的扩展应用:
-学习更复杂的数据统计方法,如概率、抽样调查和统计推断等;
-开展实际问题的统计与分析,培养学生的数据处理和解决问题的能力。
5. 探究型学习与证明思维的培养:
-引导学生进行探究性学习,鼓励他们提出问题、验证猜想和发现规律;
-培养学生的数学思想和证明能力,引导他们理解数学定理和定律的证明过程。
通过初高中数学的衔接,旨在帮助学生建立起对数学的整体性理解和扎实的基础,为进一步深入学习和应用数学打下坚实的基础。
重要的是,教师需要根据学生的具体情况和学科特点,适当调整教学内容和方式,使学生能够顺利过渡到高中数学,并进一步拓展数学思维和应用能力。
初中数学与高中数学衔接紧密的知识点

初中数学与高中数学衔接紧密的知识点初中数学与高中数学有很多紧密的知识点联系,其中包括以下几个重要的知识点:1.绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
正数的绝对值是它本身,负数的绝对值是它的相反数。
需要注意的是,两个负数比较大小时,绝对值大的反而小。
另外,对于绝对值不等式,当|x|0)时,解为-aa(a>0)时,解为xa。
2.乘法公式:包括平方差公式、立方差公式、立方和公式、完全平方公式和完全立方公式。
这些公式在解题时非常有用,需要熟练掌握。
3.分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
有多种方法可以分解因式,包括提公因式法、运用公式法、分组分解法和十字相乘法。
4.一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
解一元一次方程的步骤包括去分母、移项、合并同类项和未知数系数化为1.需要注意的是,当方程为ax=b时,当a≠0时,方程有唯一解x=b/a;当a=0,b≠0时,方程无解;当a=0,b=0时,方程有无数解。
5.二元一次方程组:由两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
解二元一次方程组的方法包括代入消元法和加减消元法。
6.不等式与不等式组:不等式是用符号(。
≠、<)连接的式子,不等式的解集是能使不等式成立的未知数的值。
解不等式的过程需要注意不等式的变形,包括两边加减同一个整式、两边乘除同一个正数以及两边乘除同一个负数。
对于一元一次不等式,需要求出解集。
2.改写每段话:5)二次函数的性质:1.二次函数y = ax^2 + bx + c (a ≠ 0)的图像关于直线x = -b/2a对称。
2.当a。
0时,在对称轴左侧,y值随x值的增大而减少;在对称轴右侧,y的值随x值的增大而增大。
初升高数学衔接知识点

初升高数学衔接知识点从初中升入高中,数学学科的难度和深度都有了明显的提升。
为了更好地适应高中数学的学习,做好初升高的数学衔接至关重要。
以下是一些重要的衔接知识点。
一、函数函数是高中数学的重点和难点,而初中阶段对函数的学习只是一个基础。
在初中,我们主要学习了一次函数、反比例函数和二次函数的基本性质和图像。
但在高中,函数的概念更加抽象和广泛,不仅要深入研究函数的性质,如单调性、奇偶性、周期性等,还要学习更多类型的函数,如指数函数、对数函数、幂函数等。
对于函数的单调性,初中我们通过图像来直观判断,而高中则需要用定义和导数来进行严格的证明和计算。
例如,对于函数 f(x),如果在区间(a, b)内,当 x1 < x2 时,有 f(x1) < f(x2),则函数在该区间单调递增。
奇偶性方面,初中接触较少,高中则要求掌握奇偶函数的定义和常见的奇偶函数,如奇函数有正弦函数等,偶函数有余弦函数等。
周期性在高中也是一个重要概念,比如正弦函数和余弦函数就是周期函数。
二、代数式与方程初中阶段我们学习了一元一次方程、二元一次方程组、一元二次方程等。
高中会在此基础上拓展到高次方程、分式方程、无理方程等。
在求解方程时,初中主要运用消元法、配方法等,高中则会引入更多的方法,如换元法、参数法等。
对于代数式的运算,初中重点是整式和分式的运算,高中则会涉及到更多的复合运算,如指数式、对数式的运算,并且要求更高的运算技巧和准确性。
三、不等式初中学习了一元一次不等式和简单的一元二次不等式的解法。
高中会进一步深入学习不等式的性质、均值不等式以及不等式的证明。
均值不等式在高中数学中应用广泛,如对于正实数 a、b,有 a + b ≥ 2√ab ,当且仅当 a = b 时,等号成立。
不等式的证明方法多样,如比较法、综合法、分析法等,需要我们灵活运用。
四、几何图形初中的几何主要集中在平面几何,如三角形、四边形、圆等的性质和计算。
高中则会拓展到空间几何,包括空间直线与平面的位置关系、空间向量等。
初高中数学衔接知识点专题

初高中数学衔接知识点专题一、引言初中和高中是数学学科中两个重要的阶段,初中数学是高中数学的基础,初中数学的学习成绩对于高中数学的学习有着至关重要的影响。
因此,初高中数学的衔接是学生数学学习中不可忽视的一部分。
本文将对初高中数学衔接的一些重要知识点进行总结和梳理,帮助同学们顺利过渡,并提升高中数学学习的效果。
二、整数和有理数1. 整数的概念和性质初中数学中,我们学习了整数的概念和运算法则。
在高中数学中,整数的概念会更加深入,并引入了更多的性质和应用。
在初高中数学的衔接过程中,同学们需要对整数的概念、四则运算、绝对值以及整除性质等进行复习和巩固。
2. 有理数的概念和运算有理数是初高中数学中的一个重要概念,它包括整数和分数,常用的有理数运算有加法、减法、乘法和除法。
在高中数学中,有理数的概念还会进一步扩展,引入有理数的比较大小、约分、整除性质等内容。
在初高中数学的衔接过程中,同学们需要对有理数的基本概念和运算法则进行巩固和提升。
三、代数式和方程1. 代数式的概念和运算在初中数学中,我们学习了代数式的概念和四则运算法则。
在高中数学中,代数式的概念会更加深入,并引入了更多的性质和应用。
在初高中数学的衔接过程中,同学们需要对代数式的概念、运算法则、展开和因式分解等进行复习和巩固。
2. 一元一次方程和方程组一元一次方程是初中代数中的重要内容,解一元一次方程是数学学习中的重点和难点。
在高中数学中,一元一次方程的应用更加广泛,同时还引入了一元一次方程组的概念和解法。
在初高中数学的衔接过程中,同学们需要对一元一次方程的概念、解法、应用以及一元一次方程组进行复习和巩固。
四、几何1. 平面几何初中数学中,我们学习了平面几何中的基本概念和性质,例如线段、角、三角形等。
在高中数学中,平面几何的概念会更加深入,并引入了更多的性质和应用。
在初高中数学的衔接过程中,同学们需要对平面几何的基本概念、性质、证明以及应用进行复习和巩固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初升高数学衔接知识点
初升高数学衔接知识点
1、数的分类及概念数系表:
说明:分类的原则:1)相称(不重、不漏);2)有标准。
2、非负数:正实数与零的统称。
(表为:x0)
性质:若干个非负数的和为0,则每个非负数均为0。
3、倒数:①定义及表示法
②性质:A.a1/a(a1);B.1/a中,aC.0
4、相反数:①定义及表示法
②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5、数轴:①定义(三要素)
②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
6、奇数、偶数、质数、合数(正整数自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7、绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│0,符号││是非负数的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。
一、圆的定义
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质
1、圆的对称性
(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:
平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)
8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;
直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
切点明确:连半径,证垂直。
知识点1.概念
把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点5.相似三角的判定方法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点6.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
(4)射影定理
学好数学方法
做好预习
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
认真听课
听课应包括听、思、记三个方面。
听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。
思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。
记,指课堂笔记——记方法,记疑点,记要求,记注意点。
认真解题
课堂练习是最及时最直接的反馈,一定不能错过。
不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
及时纠错
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。
不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。
当然,俗话说,艺高胆大,艺不高就胆不大。
但是,做不出是一回事,没有去做则是另一回事。
稍为难一点的数学题都不是一眼就能看出它的解法和结果的。
要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。
也同样要先分析、研究,找到正确的思路后才向你讲授。
不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。
在数学解题中,自信心是相当重要的。
要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。
集合的特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。
有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。
集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。
但就集合本身的特性而言,元素之间没有必然的序。
初升高数学知识点。