初升高数学衔接知识专题

合集下载

初高中数学衔接知识总汇

初高中数学衔接知识总汇

第一章数与式的运算1、1 绝对值知识清单1.绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零,即(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩2.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离。

3.两个数的差的绝对值的几何意义:ba-表示在数轴上,数a和数b之间的距离。

4.两个重要绝对值不等式:axaxaaxax>或<)>(>,<<)>(<-⇔-⇔0axaa;问题导入:问题1:化简:(1):12-x(2) : 31-+-xx问题2:解含有绝对值的方程(1)642=-x; (2): 5223=--x、问题3:至少用两种方法解不等式 41>-x知识讲解例1:化简下列函数,并分别画出它们的图象:(1)!(2)x y =; (2)32+-=x y .例2:解不等式:431>-+-x x{巩固拓展:1.(1)若等式a a -= , 则成立的条件是----------(2)数轴上表示实数 x 1,x 2 的两点A,B 之间的距离为--------2.已知数轴上的三点A,B,C 分别表示有理数a ,1,-1,那么1+a表示( )A 、 A,B 两点间的距离 B 、 A,C 两点间的距离C 、 A,B 两点到原点的距离之和D 、 A,C 两点到原点的距离之和 3.<4.如果有理数x ,y 满足()01212=+-+-y x x ,则=+22y x ______5.化简:(1)3223+=-x x ; (2)31--x6.已知 x= -2是方程612-=--m x 的解,求m 的值。

;6.已知a ,b ,c 均为整数,且 1=-+-a c b a ,求: c b b a a c -+-+-的值)方法指导学习本节知识,要充分领会绝对值的代数意义,从数和形两方面去研究,体会分类讨论与数形结合的两种数学思想方法。

1、2 二次根式与分式知识清单1.二次根式(1)二次根式的定义:形如a (a ≥0)的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义。

初中数学与高中数学衔接紧密的知识点

初中数学与高中数学衔接紧密的知识点

初中数学与高中数学衔接紧密的知识点第一个衔接的知识点是函数。

初中数学中,我们学习了一元一次方程、一元二次方程等基本的代数知识,而高中数学中,我们学习了函数的定义、性质以及满足不等式的函数、函数的图像等。

函数的概念是高中数学的核心概念之一,初中数学中已经培养了学生对方程的理解和运用能力,为学习函数打下了基础。

第二个衔接的知识点是图形的变换。

初中数学中,我们学习了平移、旋转、翻转等图形的变换,而高中数学中,我们学习了函数的图像和坐标系的变化等。

这些内容都要求学生对图形的变换有深入的理解和熟练的运用能力,而初中数学中的图形变换知识就为学习高中数学中的图形变换知识提供了基础。

第三个衔接的知识点是三角函数。

初中数学中,我们学习了正弦、余弦、正切等三角函数的定义和性质,而高中数学中,我们学习了三角函数的图像、三角函数的性质、三角函数的运用等。

初中数学中的三角函数知识为学习高中数学中的三角函数知识提供了基础,学生可以通过初中数学中的知识来了解高中数学中更加深入的三角函数。

第四个衔接的知识点是向量。

初中数学中,我们学习了向量的定义、相等、夹角等基本知识,而高中数学中,我们学习了向量的线性运算、点与向量的关系、向量与平面的关系等。

初中数学中的向量知识为学习高中数学中的向量知识提供了基础,学生可以通过初中数学中的知识来了解高中数学中更加深入的向量。

第五个衔接的知识点是概率统计。

初中数学中,我们学习了事件与概率、频数分布、抽样调查等基本知识,而高中数学中,我们学习了离散型随机变量、连续型随机变量、统计推断等。

初中数学中的概率统计知识为学习高中数学中的概率统计知识提供了基础,学生可以通过初中数学中的知识来了解高中数学中更加深入的概率统计。

这些是初中数学与高中数学之间衔接紧密的知识点。

学习这些知识点有助于学生更好地理解和运用高中数学知识,使学习更加连贯、顺利。

因此,在初中数学的学习中,要注重这些知识点的学习和巩固,为进入高中数学打下坚实基础。

初高中数学衔接内容

初高中数学衔接内容

初高中数学衔接内容初中数学和高中数学在知识体系、思维方式和学习方法等方面存在着一定的差异。

为了让同学们能够顺利地从初中数学过渡到高中数学,做好衔接工作至关重要。

接下来,让我们一起来探讨一下初高中数学的衔接内容。

一、知识内容的衔接1、数与式在初中,我们主要学习了有理数、无理数、整式、分式等基本的数与式的概念和运算。

而在高中,会进一步拓展到复数的概念和运算,同时对代数式的变形和化简要求更高,例如乘法公式的灵活运用、因式分解的技巧等。

2、方程与不等式初中阶段,我们学习了一元一次方程、二元一次方程组、一元二次方程以及简单的不等式。

到了高中,会接触到一元二次方程根与系数的关系(韦达定理)、高次方程、分式方程、绝对值不等式等内容,并且需要掌握更复杂的求解方法和应用。

3、函数函数是初高中数学的重点和难点。

初中主要学习了一次函数、反比例函数和二次函数的基本性质和图像。

高中则在此基础上,引入了指数函数、对数函数、幂函数等更多类型的函数,同时对函数的性质(单调性、奇偶性、周期性等)、函数的图像变换以及函数的综合应用有更深入的要求。

4、几何图形初中的几何主要集中在平面几何,如三角形、四边形、圆等的性质和定理。

高中则将几何拓展到空间几何,学习空间点、线、面的位置关系,空间几何体的表面积和体积等,并且需要具备较强的空间想象能力和逻辑推理能力。

5、三角函数初中阶段,我们初步了解了锐角三角函数的概念和简单应用。

高中会对三角函数进行系统的学习,包括任意角的三角函数、诱导公式、三角函数的图像和性质、两角和与差的三角函数公式等。

二、思维方式的衔接1、从形象思维到抽象思维初中数学的内容相对较为直观和形象,例如通过图形来理解几何问题,通过实际例子来学习函数。

而高中数学则更加抽象,需要同学们具备更强的抽象思维能力,例如理解函数的概念、空间几何的位置关系等。

2、从常量思维到变量思维初中数学中,大多数问题涉及的是常量的计算和求解。

而高中数学中,变量的概念无处不在,函数就是研究变量之间关系的重要工具。

数学学科初高中知识点衔接清单

数学学科初高中知识点衔接清单

数学学科初高中知识点衔接清单近年来,除了中考,初高中数学教学衔接的问题成了我们数学教学的另一个关注重点。

因为我们不仅关心学生的中考成绩,还关心初中的数学学习能否为高中的继续学习打下一个良好的基础。

根据《教育部办公厅初中数学超前培训负面清单》梳理了一些初中数学教师在教学中需要重点关注,为后续的高中数学学习打基础的知识点。

制定基于初中数学超前培训视角下的初高中衔接点清单。

专题一:数与式的运算1.绝对值[1]绝对值的代数意义:.[2]绝对值的几何意义:[3]两个数的差的绝对值的几何意义:2.乘法公式[1]平方差公式:;[2]完全平方和公式:;[3]完全平方差公式:.3.根式[1]0)a ≥叫做二次根式,其性质如下:(1)2=;=;=;=.[2]平方根与算术平方根的概念:叫做a 的平方根,记作0)x a =≥(0)a ≥叫做a 的算术平方根.[3]立方根的概念:叫做a 的立方根,记为x =4.分式[1]分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B为分式. 专题二:一元二次方程根与系数的关系一元二次方程的根与系数的关系定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,x x x x +==专题三:平面直角坐标系一次函数、反比例函数12.函数图象[1]一次函数: y kx b =+(k 、b 是常数,k ≠0)特别的,当b =0时,称y 是x 的正比例函数。

[2]正比例函数的图象与性质:函数y =kx (k 是常数,k ≠0)的图象是的一条直线,[3]一次函数的图象与性质:函数y kx b =+(k 、b 是常数,k ≠0)的图象是过点(0,b )且与直线y =kx 平行的一条直线.[4]反比例函数的图象与性质:函数k y x=(k ≠0)是双曲线,当k>0时,图象在第一、第三象限,在每个象限中,y 随x 的增大而减小;当k<0时,图象在第二、第四象限,在每个象限中,y 随x 的增大而增大.双曲线是轴对称图形,对称轴是直线y x =与y x =-;又是中心对称图形,对称中心是原点.专题四:二次函数1.二次函数y =ax 2+bx +c (a ≠0)的性质:2.二次函数的三种表示方式:(1).一般式:(2)顶点式:(3)交点式:专题五: 二次函数的最值问题1.二次函数2 (0)y ax bx c a =++≠的最值.2.二次函数(x 为全体实数时)最大值或最小值的求法.3.求二次函数在某一范围内的最值.。

初高中数学衔接知识点专题

初高中数学衔接知识点专题

初高中数学衔接知识点专题数学作为一门重要的学科,是学生学习中不可或缺的一部分。

在学生从初中升入高中的过程中,数学的难度和要求都会有所提高,因此初高中数学之间的衔接问题也就显得尤为重要。

本文将就初高中数学之间的衔接知识点进行专题讨论,希望能够帮助学生顺利度过这一关键阶段。

一、代数部分1. 整式的化简与展开初中阶段,学生已经学习了整式的加减乘除,高中阶段则会更深入地学习整式的化简与展开。

在初中阶段,学生应该掌握好整式的基本运算法则,包括加减乘除的各种情况。

而在高中阶段,学生需要进一步学会应用分配律、乘法公式等知识,进行整式的化简与展开。

2. 方程与不等式的解法初中阶段学生学习的主要是一元一次方程和一元一次不等式的解法,高中阶段则会学习到更多种类的方程和不等式。

学生在学习初中数学时,要牢固掌握一元一次方程和不等式的解法,这样在高中学习更高阶的方程和不等式时,就会更加得心应手。

3. 函数的概念与性质初中阶段学生已经接触到了一些简单的函数,比如一次函数、二次函数等。

而高中阶段学生则会学习到更多种类的函数,比如指数函数、对数函数、三角函数等。

学生在初中要学会理解函数的概念和性质,这样在高中学习更复杂的函数时,就会更容易掌握。

二、几何部分1. 相似三角形的性质初中阶段学生学习的主要是相似三角形的性质,高中阶段则会学习到更多种类的相似性质。

学生在学习初中数学时,要学会判断两个三角形是否相似,掌握相似三角形的性质,这样在高中学习更复杂的相似性质时,就会更加游刃有余。

2. 圆的相关性质初中阶段学生学习的主要是圆的面积和周长的计算,高中阶段学生则会学习到更多种类的圆的性质。

学生在学习初中数学时,要学会计算圆的面积和周长,了解圆的相关性质,这样在高中学习更多的圆的性质时,就会更容易掌握。

3. 三角函数的概念与性质初中阶段学生学习的主要是三角函数的初步概念,高中阶段学生则会学习到更多种类的三角函数的性质。

学生在学习初中数学时,要学会理解三角函数的概念和性质,这样在高中学习更多的三角函数的性质时,就会更加得心应手。

2024年初升高教材衔接衔接讲义

2024年初升高教材衔接衔接讲义

第1讲初高衔接-计算衔接模块一绝对值知识梳理一、初中知识回顾:1、数轴上,一个数所对应的点与原点的叫做该数的绝对值.2、正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即 .3、负数比较大小,绝对值大的反而.4、绝对值不等式:∣x∣<a(a>0);∣x∣>a(a>0).5、两个数的差的绝对值的几何意义:∣a-b∣表示.二、高中知识对接:1、数轴上两点之间的距离:若M、N是数轴上的两个点,它们表示的数分别为x 1、x2,则M、N之间的距离为MN=2、含有绝对值的方程和函数:(1)含有绝对值的方程要先去掉绝对值符号,再求未知数的值;(2)绝对值函数的定义:y=∣x∣= ,绝对值函数的定义域是,值域是。

题型精练题型一、利用绝对值性质化简:例1、化简:|3x+1|+|2x-1|.例2、解不等式:|x-1|+|x-3|>4.变式训练:1.解不等式:|x+3|+|x-2|<7题型二、化简求最值例3、已知0≤a≤4,那么|a-2|+|3-a|的最大值为()A. 1B. 5C. 8D. 3变式训练:1、已知实数x、y满足|x+7|+|1-x|=19-|y-10|-|1+y|,则x+y的最小值为,最大值为 .秋季延伸探究已知-1<x<4,2<y<3,则x-y的取值范围是(),3x+2y的取值范围是()若将条件改为-1<x+y<4,2<x-y<3,求3x+2y的取值范围题型三、绝对值方程和函数例4、解下列方程:(1)|2x+3|-5=0 (2)4|x-1|-6=0 例5、做出y=|x-2|-1的函数图像。

变式训练:1、画出下列函数的图像:(1)y=-|x+3|+2秋季延伸探究1、求函数y=|x-1|+|x-3|的最小值;2、已知关于x的方程|x-2|+|x-3|=a,试着根据a的取值,讨论该方程解的情况。

模块二乘法公式知识梳理一、初中知识回顾:1、平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b22、实际应用中经常将公式进行变形:(1)a2+b2=(a+b)2-2ab (2)a2+b2=(a-b)2+2ab(3)(a+b)2=(a-b)2+4ab (4)(a-b)2=(a+b)2-4ab(5)(a+b)2+(a-b)2=2(a2+b2)(6)(a+b)2-(a-b)2=4ab二、高中知识对接:1、立方和公式:(a+b)(a2-ab+b2)=a3+b3;2、立方差公式:(a-b)(a2+ab+b2)=a3-b3;3、三数和平方公式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;4、两数和立方公式:(a+b)3=a3+b3+3a2b+3ab2;5、两数差立方公式:(a-b)3=a3-3a2b+3ab2-b3.【公式1】(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc 例1、计算:(x 2-2x+13)2【公式2】(a+b )(a 2-ab+b 2)=a 3+b 3(立方和公式) 例2、计算:(2a+b )(4a 2-2ab+b 2)【公式3】(a-b )(a 2+ab+b 2)=a 3-b 3(立方差公式) 例3、计算:(2x-3)(4x 2+6xy+9)变式训练:1、已知a+b+c=4,ab+bc+ac=4,求a 2+b 2+c 2的值.例4、已知x 2-3x+1=0,求33x1x 的值.1、已知a 、b 是方程x 2-7x+11=0的两个根,求:(1)a 2b+ab 2; (2)a bb a +;(3)a 3+b 3; (4)(a-b )4.变式训练2:1、已知x (x+1)-(x 2+y )=-3,求2y x 22+-xy 的值。

数学初高衔接内容

数学初高衔接内容

数学初高中的衔接内容是非常重要的,它涉及到学生在数学学科中的连贯性和深入理解。

下面列举了一些常见的数学初高中衔接内容:
1. 数学基础知识的复习和巩固:
-复习初中数学的基本概念、公式和运算规则,如整数、分数、代数等;
-温故而知新,通过练习和应用,巩固和熟练掌握初中数学的基础知识。

2. 函数与方程的深入学习:
-学习更高级的函数类型,如指数函数、对数函数、三角函数等,并掌握它们的性质和图像;
-学习更复杂的方程类型,如二次方程、立方方程、指数方程等,进一步提升解方程的能力。

3. 几何的推广与拓展:
-进一步学习平面几何和立体几何的相关知识,如平行线、相似三角形、立体几何的体积与表面积等;
-学习使用向量方法解决几何问题,如向量的加法、减法、数量积、向量夹角等。

4. 数据与统计的扩展应用:
-学习更复杂的数据统计方法,如概率、抽样调查和统计推断等;
-开展实际问题的统计与分析,培养学生的数据处理和解决问题的能力。

5. 探究型学习与证明思维的培养:
-引导学生进行探究性学习,鼓励他们提出问题、验证猜想和发现规律;
-培养学生的数学思想和证明能力,引导他们理解数学定理和定律的证明过程。

通过初高中数学的衔接,旨在帮助学生建立起对数学的整体性理解和扎实的基础,为进一步深入学习和应用数学打下坚实的基础。

重要的是,教师需要根据学生的具体情况和学科特点,适当调整教学内容和方式,使学生能够顺利过渡到高中数学,并进一步拓展数学思维和应用能力。

初升高数学衔接题及答案

初升高数学衔接题及答案

初升高数学衔接题及答案【题目一:代数基础】题目:求解方程 \( x^2 - 5x + 6 = 0 \) 的根。

【答案】首先,我们可以通过因式分解来解这个方程:\( x^2 - 5x + 6 = (x - 2)(x - 3) = 0 \)。

因此,方程的根是 \( x = 2 \) 和 \( x = 3 \)。

【题目二:几何基础】题目:在直角三角形ABC中,角C是直角,AB是斜边,如果AC=6,BC=8,求斜边AB的长度。

【答案】根据勾股定理,直角三角形的斜边平方等于两直角边的平方和,即:\( AB^2 = AC^2 + BC^2 \)。

代入已知值:\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,斜边AB的长度为 \( AB = \sqrt{100} = 10 \)。

【题目三:函数基础】题目:如果函数 \( f(x) = 2x - 3 \),求 \( f(5) \) 的值。

【答案】将 \( x = 5 \) 代入函数 \( f(x) = 2x - 3 \) 中,我们得到:\( f(5) = 2 \cdot 5 - 3 = 10 - 3 = 7 \)。

所以,\( f(5) \) 的值为7。

【题目四:不等式基础】题目:解不等式 \( 3x - 5 < 10 \)。

【答案】首先,我们将不等式两边加上5:\( 3x - 5 + 5 < 10 + 5 \),得到 \( 3x < 15 \)。

然后,我们将不等式两边除以3:\( \frac{3x}{3} < \frac{15}{3} \),得到 \( x < 5 \)。

所以,不等式的解为 \( x < 5 \)。

【题目五:概率基础】题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。

【答案】总共有 \( 5 + 3 = 8 \) 个球。

取出红球的概率为红球数量除以总球数,即:\( P(\text{红球}) = \frac{5}{8} \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初升高数学衔接知识专题讲义1
【典型例题】
[例1] 判断对错:
1. 坐标平面上的点与全体实数一一对应( )
2. 横坐标为0的点在x 轴上( )
3. 纵坐标小于0的点一定在x 轴下方( )
4. 到x 轴、y 轴距离相等的点一定满足横坐标等于纵坐标( )
5. 若直线l //x 轴,则l 上的点横坐标一定相同( ) [例2] 已知函数x
y 6=与函数3+=kx y 的图象交于点),(11y x A ,),(22y x B 且52
221=+x x ,求k 值及A 、B 的坐标。

[例3] 在函数)0(>=
k x
k
y 的图象上有三点:),(11y x A ,),(22y x B ,),(33y x C ,已知3210x x x <<<,则下列各式中正确的是( )
A. 321y y y <<
B. 130y y <<
C. 312y y y <<
D. 213y y y << [例4] 比较大小:2
x 2
1-
x [例5] 以矩形ABCD 的顶点A 为圆心作⊙A ,要使B 、C 、D 三点中至少有一点在⊙A 内,且至少有一个点在⊙A 外,如果12=BC ,5=CD ,则⊙A 的半径r 的取值范围为 。

[例6] 函数x
x y 3
2+=
(x 为整数)的最小值为 。

【模拟试题】
一. 选择题
A
B
C
D
1. 在函数x
y 2=
,2
x y =和5+=x y 的图象中,是中心对称图形且对称中心是原点的有( ) A. 0个 B. 1个 C. 2个 D. 3个 2. 已知点)8,3(-在反比例函数)0(≠=
k x
k
y 的图象上,那么下列各点中在此函数图象上的是( ) A. )8,3( B. )6,4( C. )6,4(- D. )8,3(-- 3. 下列说法中,不正确的是( )
A. 直径相等的两个圆是等圆
B. 同圆或等圆的半径相等
C. 圆中的最大的弦是直径
D. 一个圆只有一条直径
4. 用a 、d 分别表示圆的弦和直径的长,则它们的关系是( ) A. 0>>a d
B. 0≠=a d
C. a d <<0
D. 0>≥a d
5. 线段AB=5cm ,在以AB 为直径的圆上,到AB 的距离为2.5cm 的点有( )个。

A. 无数个 B. 1个 C. 2个 D. 4个
6. 已知⊙O 的圆心在坐标原点,半径为33,又A 点坐标为)3,4(,则点A 与⊙O 的位置关系是( ) A. A 点在⊙O 上 B. 点A 在⊙O 内 C. A 点在⊙O 外 D. 点A 在x 轴上
二. 填空题: 7. 若点M (2-a ,1+b )与点N (52+a ,b 23+)关于y 轴对称,则=a ,=b 。

8. 已知点P (52-m ,43+m )在第一、三象限的角平分线上,则=m 。

9. 若ABC ∆的各顶点坐标为A (3-,2),B (2,2),C (1,1-),则ABC ∆的面积为 。

10. 已知矩形ABCD 的顶点A (0,0),B (0,2-),D (3-,0),则点C 的坐标为 。

初升高数学衔接知识专题讲义2
【典型例题】 一、因式分解:
因式分解的主要方法有:提取公因式法、公式法、分组分解法、十字相乘法,另外还应了解求根法。

我们在初中已经学习过了下列一些乘法公式:
(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;
(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明.
D
1.提取公因式法与分组分解法、公式法 例1 分解因式: (1)2(y -x )2
+3(x -y )
(2)mn (m -n )-m (n -m )2
22223
2
2
3
292442456()(1)x y xy a ab b a b x x y xy y
a b a ab b --+++----++---(3)(4)()()
2.十字相乘法
例2 分解因式:
(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)2262x xy y +-
3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解(求根法)
若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式
2(0)ax bx c a ++≠就可分解为12()()a x x x x --.
例3 把下列关于x 的二次多项式分解因式:
(1)221x x +-; (2)2244x xy y +-.
【模拟试题】
1.选择题:
(1)多项式2
2
215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y - (2)若21
2
x mx k +
+是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )21
16
m
2.填空:
(1)221111
()9423
a b b a -=+( ); (2)(4m + 22
)164(m m =++ );
(3 ) 2222
(2)4(a b c a b c +-=+++ ).
3.分解因式:
(1)5(x -y )3
+10(y -x )2
()()2
2
222c ab a b c +-+()·
2224)()()(2)3(x y xy y x x y x -+--- 44322
a
a -()
(5)8a 3
-b 3
; (6)x 2
+6x +8;
(7)4(1)(2)x y y y x -++- (8)42
4139x x -+;
()()4224
2
2292033710510596
a a
b b x x x x -+-+--()()
4.在实数范围内因式分解:
(1)253x x -+ ; (2
)2
3x --;
(3)2
2
34x xy y +-; (4)2
2
2
(2)7(2)12x x x x ---+.
5.分解因式:x 2
+x -(a 2
-a ).
初升高数学衔接知识专题讲义3
有两相等实根
(1)x 2+2x -3≤0; (2)x -x 2+6<0;
(3)4x 2+4x +1≥0; (4)x 2-6x +9≤0; (5)-4+x -x 2<0.
例2 解关于x 的不等式0)1(2
>---a a x x
例3 已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式2
0bx ax c ++>的解.
练 习
1.解下列不等式:
(1)3x 2-x -4>0; (2)x 2-x -12≤0; (3)x 2+3x -4>0; (4)16-8x +x 2≤0.
2.解关于x 的不等式x 2+2x +1-a 2
≤0(a 为常数).
课后作业:
1.若0<a <1,则不等式(x -a )(x -
a
1
)<0的解是 ( )
A.a <x <a
1
B. a 1
<x <a
C.x >a 1或x <a
D.x <a
1
或x >a
2.如果方程ax 2+bx +b =0中,a <0,它的两根x 1,x 2满足x 1<x 2,那么不等式ax 2+bx +b <0的解是______.
3.解下列不等式:
(1)3x 2-2x +1<0; (2)3x 2-4<0;
(3)2x -x 2≥-1; (4)4-x 2≤0.
(5)4+3x -2x 2≥0; (6)9x 2-12x >-4;
4.解关于x 的不等式x 2-(1+a )x +a <0(a 为常数).
5.关于x 的不等式02
<++c bx ax 的解为122
x x <->-或,求关于x 的不等式02
>+-c bx ax 的解.。

相关文档
最新文档