关于-超声波结构的设计要点
基于超声波的智能结构健康监测系统设计

基于超声波的智能结构健康监测系统设计随着工业化和城市化进程不断加快,建筑、桥梁、飞机、汽车等大型工程和设备使用越来越频繁,而这些设备和结构体的安全性与其健康状况密切相关。
因此,如何及时、准确地监测这些结构体的健康状态变得尤为重要。
基于超声波的智能结构健康监测系统是一种目前广泛应用的结构健康监测技术,本文将介绍其设计原理和关键技术。
一、超声波的应用超声波是频率超过20kHz的一种机械波,它的特点是能够穿透固体物体,并在不同介质边界上发生反射、折射和透射等现象。
超声波在材料、加工、医学、物流等领域有广泛的应用,在结构健康监测领域中,超声波可用于检测材料的损伤和裂纹、预警结构的损坏等。
二、超声波的检测原理超声波检测依据的原理是当超声波与材料相互作用时,声波能够被吸收、散射、折射、反射等,当遇到材料中的缺陷、裂纹等缺陷时,声波会发生反射和散射,通过检测反射和散射声波的信号,即可确认材料中是否存在缺陷。
在结构健康监测中,超声波检测可以实现对结构体的无损检测,能够及时发现结构体的损伤,以便及时采取维修和保养措施,争取尽早消除潜在隐患。
三、智能结构健康监测系统设计基于超声波的智能结构健康监测系统主要由传感器、信号处理、数据分析和报警处理等组成。
其中传感器负责对结构体进行超声波检测,信号处理负责对检测到的信号进行处理和分析,数据分析则负责对处理后的数据进行分析和预警,报警处理则负责向管理人员发送预警信息,实现对结构体的全面、及时、准确地监测和管理。
1. 传感器传感器是监测系统的核心部件,其主要作用是采集结构体的声波信号,并将信号转换为数字信号进行处理和传输。
针对不同的结构体和监测要求,传感器的选择也不同。
常用的传感器有压电传感器、光纤传感器等,其中压电传感器具有成本低、抗干扰能力强、响应速度快等优点,因此被广泛应用于基于超声波的结构体监测中。
2. 信号处理信号处理关键是对采集到的信号进行滤波和增强,以清晰地分离出目标信号,并对信号进行解调和调制等操作,以准确获得材料中存在的缺陷。
浅谈塑料超声波产品的设计

浅谈塑料超声波产品的设计摘要:在超声波产品实际设计的过程中,应结合当前的实际工作特点与要求等进行合理的设计与掌控,并制定完善的管理方案与控制方案,结合当前的情况进行分析,了解超声波原理和利处,加大设计工作力度,并针对产品的结构进行合理设计,明确各方面要求与内容,并建立现代化的管理与控制体系,优化整体工作方式与方法,为其后续发展奠定坚实基础。
关键词:选材;设计;优点基本纲要:一、塑料超声波的选材和设计二、塑料超声波焊接结构的设计三、塑料超声的优点塑料超声波简介塑料超声波是当超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。
又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。
当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。
一、塑料超声波产品材料的选择和设计塑料的性能影响超声波的成功焊接。
塑料的超声波焊接性取决于塑料对超声振动的衰减能力和熔化温度的高低以及物理性能如弹性模量、抗冲击性、摩擦系数及导热系数等等。
实验证明,塑料的焊接性G 正比于弹性模量E、导热系数λ、摩擦系数μ,反比于塑料的密度ρ、比热C、熔点t,如下式表示:G = K·E·λ·μ/ρ·C·t(W/m2·K)式中K -焊件形状因子,取决于焊件的壁厚、尺寸大小及焊头的形状尺寸E -塑料的弹性模量(GN/m2)λ -导热系数(W/m·K)μ -塑料的摩擦系数ρ -塑料的密度(kg / m3)C -比热(J /kg·K)t -熔点(K)通常限定选择特定用途材料的性能是那些使焊接变困难的性能如高的熔点或结晶度。
超声波模具的设计与制作

超声波模具的设计与制作
超声波模具,是超声波技术中最具有技术深度的一个方面。
今天小编就给大家讲讲超声波模具的设计与制作,大家一起来看看吧。
我们生产的每一套焊头和模具,不管是标准产品,还是根据客户要求定制的,都是用最好的材料制成的,同时经过反复的测试。
焊头的外形、强度以及音频等各种参数经过多次试验,能符合最为严格的标准,焊头和模具达到最完美的匹配。
一.模具的振幅参数
振幅,对于需要焊接的材料来说是一个关键参数,相当于铬铁的温度,温度达不到,就会熔接不上;温度过高,就会使原材料烧焦或导致结构破坏而强度变差。
因为每一间GS 选择的换能器不同,换能器输出的振幅都有所不同,经过适配不同变比的变幅杆及焊头,能够校正焊头的工作振幅以符合要求,通常换能器的输出振幅为10-20μm,而工作振幅一般为
30μm 左右,变幅杆及焊头的变比同变幅杆及焊头的形状、前后面
积比等因素有关。
以形状来说,如指数型变幅、函数型变幅、阶梯型变幅等,对变比影响很大,前后面积比与总变比成正比。
若贵GS 选用的是不同GS 品牌的焊接机,最简单的方法是,按已工作的焊头的比例尺寸制作,能保证振幅参数的稳定。
二.模具频率参数
任何GS 的超声波焊接机都有一个中心频率,例如20KHz、
40KHz 等,焊接机的工作频率主要由换能器(Transducer)、变幅杆(Booster)和焊头(Horn)的机械共振频率所决定。
发生器的频率根据机械共振频率调整,以达到一致,使焊头工作在谐振状态,每一个部分都设计成一个半波长的谐振体。
发生器及机械。
超声波焊接线结构设计-基本型.阶梯型

( 0.7 ) 防止位置偏移
( 0.9 ) 引導孔
阶梯型设计及用处
防止溢料 改善外观
阶梯型设计例子
榫槽型设计例子
超声线及火花纹设计
Branson/Mold-Tech Texture Designation
Branson300 Branson450 Branson600
Pattern Depth
(0.03)
0.3
0.4R型很重要来自45°~ 60° 1.0
Join Design③
肉厚約 0.8 mm以下時 ( 0.4 )
0.03 0.4
0.25
0.5
30°~ 45°
0.8
Join Design④ 防止位置偏移(斷差)
肉厚 0.7 mm以下時
0.7>
( 0.5 )
防止位置偏移 引導加厚部
0.25
0.010” to 0.025” (0.25 to 0.64mm)
0.060” (< 1.50 mm)
Chisel energy director 45º 0.015 to 0.019” tall (0.4 to 0.5mm)
Before
After
超声焊接结构
阶梯型
Step Joint
0.8 0.03
75 μm 115 μm 150 μm
超声线及火花纹样板
刀边型加上火花纹
超声熔化效果
无火花纹
有火花纹
超声焊接结构
阶梯型
Continuous Criss-Cross Energy Director
超声焊接结构
榫槽型
Tongue & Groove
3.0
2.0
超声波式烟雾传感器整体结构设计

超声波式烟雾传感器整体结构设计超声波式烟雾传感器整体结构主要由超声波发送器、接收器、微处理器和电源组成。
其中,超声波发送器负责发射超声波,接收器则负责接收反射回来的超声波。
微处理器通过对接收到的信号进行分析处理,然后判断是否存在烟雾。
电源部分则负责给整个设备供电。
超声波发送器的设计主要考虑其工作频率、功率和发射角度。
工作频率应选择在几十到几百千赦这个范围内,以此可以有效穿透空气中的烟雾。
功率的大小则直接影响超声波的传播距离。
发射角度则需要根据实际环境和应用需求来确定。
接收器的设计则主要考虑其灵敏度和接收角度,灵敏度要求较高,以便接收到微弱的反射信号。
接收角度应尽可能大,使设备能覆盖更大的区域。
微处理器是整个超声波式烟雾传感器的核心部分,它控制超声波的发射和接收,并通过算法分析接收到的信号,判断烟雾的大小和分布。
微处理器的设计要求高性能、低功耗,且需要有足够的存储空间,用于存储算法和数据。
另外,微处理器还需要有一定的接口,以便与其他设备连接,传输数据。
电源部分的设计需要考虑设备的供电需求和电池寿命。
在选择电池时,需要考虑其容量、电压和工作温度范围。
另外,为了延长电池的使用寿命,应选择低功耗的电子元器件,并对电源的工作状态进行管理。
各部分的设计完成后,还需要对整个设备进行结构安装和固定。
结构的设计需要考虑设备的安全性、耐用性和使用环境。
对于需要在恶劣环境中工作的设备,还需要做防水、防尘等处理。
总的来说,超声波式烟雾传感器的整体结构设计是一个涉及多个学科的复杂工程,需要综合考虑电子、声学、信号处理等多方面的知识。
同时,还要满足实际应用中对设备的性能和使用环境的需求。
超声波焊接线设计标准

超声波焊接线设计标准一、概述超声波焊接是一种高效、环保的连接工艺,广泛应用于塑料、金属、陶瓷等材料的连接。
本文旨在提供超声波焊接线设计的基本标准,帮助工程师和设计师在产品开发中更好地应用超声波焊接技术。
二、设计标准1. 材料选择:选择适合超声波焊接的材料是关键。
一般来说,高分子材料如塑料、橡胶等较易焊接,而金属、陶瓷等硬质材料则较难焊接。
2. 结构设计:超声波焊接线的结构设计应遵循简单、稳定的原则。
避免有过多的转折、弯曲等复杂结构,以减少能量的损失和焊接不良的风险。
3. 声学匹配:在超声波焊接过程中,声学匹配是影响焊接效果的重要因素。
声学匹配包括声阻抗、声速等参数的匹配,确保超声波在焊接线中传播时能量损失最小。
4. 焊接参数设置:正确设置焊接参数是保证焊接质量的关键。
包括超声波频率、振幅、功率、焊接时间等参数,应根据材料类型和厚度等因素进行合理设置。
5. 焊接质量检测:为确保焊接质量,应在生产过程中定期对焊接线进行检查和测试。
可以采用目视检查、破坏性试验等方法,以确保产品的可靠性。
6. 安全性考虑:超声波焊接过程中会产生高频振动和高温,因此设计时应考虑安全性,包括设备固定、防护措施等。
7. 生产效率:设计超声波焊接线时,应考虑生产效率。
选择合适的设备型号和配置,以提高生产效率。
8. 维护与保养:为确保超声波焊接线的长期稳定运行,应定期对设备进行维护和保养。
包括检查紧固件、更换易损件、清洁设备等。
9. 环境适应性:考虑到生产环境可能存在的温差、湿度等因素,设计时应选择适应性强、耐用的设备及部件。
10. 经济性:在满足生产需求的前提下,应考虑设备的经济性。
选择性价比高的设备型号和配置,以降低生产成本。
三、总结超声波焊接线的设计标准是确保焊接质量和生产效率的关键因素。
在设计过程中,应充分考虑材料选择、结构设计、声学匹配、焊接参数设置、质量检测、安全性、生产效率、维护保养、环境适应性和经济性等方面的要求,以确保设计的有效性。
建筑钢结构焊缝超声波检测技术分析
建筑钢结构焊缝超声波检测技术分析【摘要】:高层建筑的钢结构是由钢结构焊接成一定的框架形状,是一个空间刚度体系,它广泛应用于高塑性、高抗恢复性的民用建筑中。
本文根据多年工作积累的经验,详细分析了高层建筑焊接钢结构超声波检测技术的关键点,以供参考。
【关键词】:钢结构;焊缝超声波;检测技术1工程概况某项目高188.00m,共46层,其中包括地上43层,地下3层,购物中心位于1-5层,办公楼位于6-43层。
结构采用全金属结构,总重量约12500吨,该结构系统用于在项目中配置矩形混凝土管(钢墙)。
2 技术特点及要求(1)钢结构由车间结构、生产车间和安装现场焊接组成。
钢结构施工为超高钢结构,必须满足《钢结构工程施工质量验收规范》和《钢结构通用结构规范》中规定的设计水平最高的超声波检测要求。
(2)主体钢结构由钢梁、H型钢筋、柱和支撑材料组成。
Q345c-15z板厚度至少为25mm的Q345B和Q235B用作其他柱、钢柱和梁的类型材料,如真空、棱镜和水平屋顶,钢柱的厚度为8~50mm。
(3)例如,钢结构的焊接要求分为I类和II类。
其中,超声波检测100%为一次焊,20%为二次焊。
(4)对于30mm以上的板材,首先要对普通金属进行超声波探伤,然后在200mm范围内焊接梁、柱和柱。
焊接后,不仅要对焊接缺陷进行超声波检测,还还要对热影响区的起始材料进行超声波检测。
(5)连接钢结构的焊接塔、梁、柱和钢壁之间的焊接,一般采用流动电弧焊。
保护手工支架不受CO2气体的影响,连接焊接箱的立柱自动焊接在覆盖玻璃表面的活动层下方,焊接和现场安装需要气体保护CO2手工焊接。
3 超声波检测工艺及技术要点3.1 工艺流程首先检查设备表面,检查并修改缺陷,然后发送超声波检查和恢复报告。
3.2 检测工艺和检测技术1)检查焊接表面。
使用一次反射法时,焊接本身就是一个非常好的表面宽度。
因此,焊缝每侧为基材厚度的30%,最小截面为10mm,最大截面为20mm,运动检测区域应大于125p(p.2Kt)。
超声波清洗机设计
超声波清洗机设计一、引言超声波清洗技术是一种物理清洗方法,利用超声波的高振动频率产生的空化现象来实现清洗的目的。
在工业生产和实验室中,超声波清洗机已经得到广泛应用。
本文将介绍超声波清洗机的设计要点,包括超声波的生成原理、设备的结构和工作原理等。
二、超声波的生成原理超声波是指频率超过20kHz的声波。
超声波清洗机通常采用水中的物理脉冲和修正相位共轭波两种方法来产生超声波。
其中,物理脉冲方法是通过高频振荡装置产生的机械脉冲信号使水产生空化现象,从而形成超声波。
修正相位共轭波方法是利用振子和压电陶瓷等材料的特性产生超声波。
三、设备结构1.超声发生器:用于产生高频信号,控制超声波的频率和功率。
2.换能器:将电能转化为机械振动能力,通过振动装置将振动转化为水中的物理脉冲或修正相位共轭波。
3.水槽:用于装载待清洗物体和超声波介质(通常是水或溶液)。
4.控制系统:用于监控和控制超声波清洗机的工作状态,包括超声波的频率、功率和清洗时间等。
四、工作原理超声波清洗机的工作原理是利用超声波的空化现象将物体表面附着的污垢彻底清除。
当超声波传入水中时,波动产生的压力变化会形成微小气泡,这些气泡在压力波的作用下膨胀和收缩。
当气泡收缩时,附着在物体表面的污垢会被剥离和击碎,从而达到清洗的效果。
五、超声波清洗机的应用超声波清洗机广泛应用于电子、光学、航空、汽车等行业。
例如,在电子行业中,超声波清洗机可以用于清洗电路板、电子元件和半导体器件等。
在光学行业中,超声波清洗机可以清洗光学仪器和光学镜片等。
此外,超声波清洗机还可以应用于实验室的清洗工作。
六、总结本文介绍了超声波清洗机的设计要点,包括超声波的生成原理、设备的结构和工作原理等。
超声波清洗机作为一种物理清洗方法,具有清洗效果好、清洗速度快和操作方便等优点,在工业生产和实验室中得到了广泛应用。
随着科技的不断进步,超声波清洗机的设计和应用也将不断发展和完善,为各个行业提供更好的清洗解决方案。
超声波焊接塑料件的设计
超声波焊接塑料件的设计超声波焊接是一种常见的塑料焊接方法,它利用高频率的声波振动将塑料件的表面加热并压合,从而达到焊接的效果。
相比于传统的热熔焊接方法,超声波焊接具有快速、高效、环保、经济等优点,因此得到了广泛的应用。
在超声波焊接塑料件时,为了保证焊接效果,需要对塑料件的设计进行一定的考虑。
下面将探讨超声波焊接塑料件设计的一些要素。
1、材料选择超声波焊接适用于大部分塑料材料,例如ABS、PP、PE、PC等。
在选择材料时需要考虑到材料熔点、熔体流动性、工艺操作温度等因素。
同时也需要考虑到塑料件的用途和环境因素等。
不同的材料可能会呈现不同的熔化状态,选择合适的材料有助于提高焊接效果。
2、结构设计超声波焊接的结构设计需要考虑到焊接面积、夹紧方式、固定件的形态等因素。
同时还需要考虑到焊接面的平整度,避免因平整度不良导致焊接质量下降。
以及线缆的合理布局等因素。
3、设计焊接区域超声波焊接时需要将塑料件的焊接区域考虑在内,这通常要求在设计时将两个零件上的边缘设计成接触面。
在设计过程时也要注意一些特殊的形状,例如圆形、锥形、椭圆形等比较特殊的零件设计。
4、加强件的设计在一些合并的塑料件上设计加强件,能够帮助增强焊点的强度,提升焊接的质量。
例如在汽车零部件、家电等领域,经常使用加强件来增强焊点的结构强度。
5、生产工艺考虑在设计时还需要考虑到生产工艺方面,例如机器设备的限制、操作人员工艺水平等因素。
这需要对焊接过程进行一定的分析,为生产提供方便实用的方案。
总之,超声波焊接塑料件设计需要综合考虑塑料材料、加强件、结构、焊接区域等方面。
设计优秀的塑料件有助于提高超声波焊接的质量和效率。
超声波原理及结构
超声波清洗原理:由超声波发生器发出的高频振荡信号,通过换能器转换成高频机械振荡而传播到介质---清洗溶剂中,超声波在清洗液中疏密相间的向前辐射,使液体流动而产生数以万计的直径为50-500μm的微小气泡,这些气泡在超声波纵向传播的负压区形成、生长,而在正压区迅速闭合,在这种被称之为“空化”效应的过程中,气泡闭合可形成几百度的高温和超过1000个气压的瞬间高压,连续不断地产生瞬间高压就象一连串小“爆炸”不断地冲击物件表面,使物件的表面及缝隙中的污垢迅速剥落,从而达到物件表面清洗净化的目的。
结构:标准超声波清洗设备由三部分组成:超声波发生器(又称超声波电源)、换能器及其它的辅助系统。
超声波发生器将工频电转变成28KHZ以上的高频电信号,通过电缆输送到换能器上。
一般超声波换能器是固定在清洗槽的底板上,清洗槽内装满了液体,当换能器被加上高频电压后,它的压电陶瓷元件在电场作用下便产生纵向振动。
超声波换能器(又称声头)是一种高效率的换能元件,能将电能转换成强有力的超声波振动,在产生超声波振动时,仿佛是一个小的活塞,振幅很小,约只有几微米。
但这个振动加速度很大(几十至几千个);槽上具有许多个换能器,施加相同的频率及相位的电能时,就合成了一个巨大的活塞进行往复振动,这种振动的现象,就是平时我们所说的超声波。
以下是超声波的组成部分说明(1)换能器:采用特种锆酸钛酸铅PZT压电陶瓷片组成的三明治式的振动头具有效率高、寿命长、不易发生故障的优点。
换能器采用特种耐高温、耐振动、高粘度的树脂胶辅以特殊的方法加以固定绝不脱落,且可耐受100℃150℃的高温(2)超声波发生器(电源):采用功率MOS管超声波发生器,电路先进,结构完整,辅以灵敏可靠的集成控制系统,保证了超声波清洗机在各种负载下稳定工作。
发生器体积小巧,外观新颖,操作十分简便,产品质量及技术水准可与国外同类产品相媲美,一经推出便受到了同行的重视,更得到了广大用户的欢迎。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于超声波结构的设计要点 1. 超音波应用原理: 利用超音波振动频率,接触摩擦产生热能使塑料熔融而结合,依目前较普遍的,即为每秒振动二万次﹙20KHZ﹚与每秒振动1.5万次﹙15KHZ﹚二种(另外尚有数种特殊振动频率)。
2. 超声波结构 一般来说,在设计超声波结构之前,需考虑
选择什么塑料 是否只需要结构性的熔接,如果需要的话,要求它能承受多少压力 是否需要水气密 是否有外观上的要求 是否允许有任何溢胶微粒的产生 是否还有其它特殊要求 等问题。
3. 熔接面的设计准则 那超声波结构设计中,最重要的就是熔接面的设计。 为了获得可接受的、稳定性高的熔接效果,必需遵循下述三项基本设计准则: 1. 两熔接面的最初接触面积必须减小,以降低初期与最后的完全熔化所需要的总能量,使 焊头与工件的接触时间降低至最少因而减低造成伤痕的机会,也因此减少溢胶; 2. 提供一种能使二熔接面相互对位的方式,在搭配塑件的设计中可采用插针与插孔,阶梯或沟槽的方式,而不应采用固定在焊头或底模内的方式,这样可确保准确与稳定的对位并避免造成伤痕; 3. 整个熔接面必须均匀一致与紧密接触,尽可能保持在同一平面,这样的形状能使能量均匀传导,有利于取得一致的与可控制的熔接效果,并且能减低溢胶产生的可能性;
4. 熔接面有导熔线和剪切两种主要设计类形. 4.1. 导熔线: 导熔线实际上是在二熔接面之一上形成一条三角形凸出材料,导熔线的基本作用是聚集能量并且迅速把要熔接的另一面熔解,导熔线能快速熔解并达到最高的熔接强度,原因是导熔线本身的材料熔解并且流到整个熔接区域,导熔线设计是非晶型材料所采用最广泛的熔接面设计,当然半晶材料亦可采用这种设计.
4.2. 导熔线的尺寸和位置取决于以下因素: 1.材料; 2.熔接要求; 3.工件大小;
导熔线必须愈尖愈好,圆顶或扁平的导熔线将减低熔胶流动的效率,当熔接相对容易熔接的塑料(如高硬度和低熔解温度的PS),建议导熔线的高度不可低于0.25㎜,若熔接半晶型或高熔解温度之非晶型塑料(如PC),导熔线高度不可低于0.5㎜;对于采用导熔线设计的半晶型塑料(如PA),熔接强度是来自导熔线三角型的底线之宽度.顶角随壁厚而改变;原则上导熔线设置在哪一边的塑件的熔接面上是没有任何分别的.但在熔接两种不同材料的特殊情况下,一般上是将导熔线设置在熔解温度和硬度较高的那一边的工件的熔接面上;导熔线的设计要有能相互对位的功能如插针与插孔,肋状对位片,沟槽设计,或需要良好的支撑.熔接区域不可放置顶针;
4.3. 下面是几种比较典型的导熔线的结构设计: 4.3.1. 阶梯熔接面 一阶梯熔接面设计主要用于需要精确对位与完全不可接受过熔或溢胶出现在外露表面的高质量要求上; 设计注意(图1.)围绕整个工件接口之额外0.25至0.64㎜的空隙,这新增的“影线(美工线)”设计特性使熔接完毕后接口四周将出现0.25至0.64㎜之空隙.如此会产生美观的效
应,因为工件与工件之间的变形不易被发觉.如果完全密合,很可能会在某些位置出现溢胶,在别的位置却出现微隙;美工线的设置使微小的变形不易被察觉.这款导熔线设计采用与平头加导熔线设计一样的基本概念(就是:材料、熔接要求、工件大小).注意这款设计的壁厚要求最小尺寸为2㎜
图片附件: 1.gif (2007-4-30 14:41, 10.02 K)
4.3.2. 沟槽式之熔接面设计 —这种设计的主要优点是能从裹外二面防止溢胶,并且可提供对位功能.由于熔胶被封,因此提高达到水气密的机会.也由于沟槽的设计需要一定的公差配合,因此也增加成型的困难度.同时,由于熔接面积的减少,往往造成它的熔接强度比不上平头接面设计,这款导熔线设计采用与平头加导熔线设计一样的基本概念(就是:材料、熔接加工要求、工件大小).注意这款设计的壁厚要求最小尺吋为2㎜
图片附件: 2.gif (2007-4-30 14:49, 13.02 K)
4.3.3. 咬花面设计 --此设计是专为配合导熔线设计使用,熔接面有咬花形状可改善整体熔接质量和强度,原因在于粗糙面能增进摩擦与控制熔解(图3.).通常咬花深度0.076至0.152㎜,其变化视导熔线高度而定.往往得到的优点包括强度的增进、溢胶或微粒的减少、熔接时间的减短以及振幅的减低;
图片附件: 3.gif (2007-4-30 14:54, 10.42 K)
4.3.4. 十字交叉熔接面设计 —在塑件的二熔接面上都设计导熔线并且使它们互呈垂直交叉,使初接触面减至最低并使大量的塑料熔接以增加熔接强度(图4).这种导熔线的每一段尺寸可采取标准导熔线尺寸的60%左右. 若欲取得水气密的熔接效果,建议一方的导熔线设计采用如图5.所示之连续钩齿状.同时
建议导熔线的顶角角度为600而非标准型的900,同时还建议把比钩齿状设计之导熔线设置在与焊头接触边的塑件上.应注意的是,此款设计将产生大量的溢胶,因此必须考虑溢胶的问题或采用有溢料槽设计的熔接面如沟槽式的熔接面设计
图片附件: 4.gif (2007-4-30 15:04, 6.42 K)
图片附件: 5.gif (2007-4-30 15:04, 8.72 K) 4.3.5. 垂直于墙壁的导熔线设计 —用于增加抗撕裂与减少溢胶(图6),这种设计仅适用于只需要结构性的熔接而已;
4.3.6. 间断的导熔线设计—
可减少熔接面积因此降低能量或所需的功率层级,这种设计只能用于非水气密的结构性熔接而已(图7);
图片附件: 6.gif (2007-4-30 15:12, 6.7 K)
图片附件: 7.gif (2007-4-30 15:12, 7.22 K) 4.3.7. 凿子型导熔线 —为壁厚不及1.524㎜之工件所采用(图10.)如果在此等薄壁厚之塑件上使用标准导熔线,熔接强度将会减弱.尖刀处可采0.381至0.508㎜之高度并且采用450角.由于熔接强度取决于导熔线之宽度,当采用此款导熔线设计时必须配合使用咬花面;
4.3.8. 凿子型导熔线 —为壁厚不及1.524㎜之工件所采用(图8)如果在此等薄壁厚之塑件上使用标准导熔线,熔接强度将会减弱.尖刀处可采0.381至0.508㎜之高度并且采用450角.由于熔接强度取决于导熔线之宽度,当采用此款导熔线设计时必须配合使用咬花面;
图片附件: 8.gif (2007-4-30 15:16, 11.17 K)
4.3.9. 特殊熔接面设计 —为了使较难熔接的塑料或外型不规则之塑件达到水气密熔接,可能需要使用弹性油封与旋绕道以阻隔熔胶之流动.图9.显示一种配合“O”型环的熔接面设计.有一要点应注意“O”型环在熔接完毕后只压缩10%至15%而已.柱状塑件与插孔(大头柱子熔接)亦可成功的配合“O”型环以达到水气密;
图片附件: 9.gif (2007-4-30 15:22, 4.29 K)
4.4. 剪切的设计注意点: 4.4.1. 剪切式熔接面设计 —在熔接尼龙、乙缩醛、聚乙烯、聚丙烯和热塑性聚酯这类半晶型塑料时,采用导
熔线设计有时是不能达到预期效果的.这是因为这类半晶型塑料在相对很狭窄的温度变化范围内迅速从固态再变回固态.导熔线熔化时还未来得及与对面塑件熔合即开始固化,因此熔接强度只赖由三角形之宽度所提供.因此当熔接以上塑料,如果外型许可的话的建议采用剪切式熔接面设计,可达到理想的熔接效果. 剪切式熔接面的熔接过程是,首先熔化开始接触的小面积材料,然后沿着壁面继续垂直向下而有控制的导引入下工件裹头去(请观看图10).这种熔接方式绝对不会让四周的空气接触到熔解区域,因此可获得高强度的结构性或水气密的熔接.由于上述原因,剪切式熔接设计特别适用于半晶型塑料材料; 熔接强度与熔接面垂直向下的熔接面积有直接关系.强度可由改变熔接深度去达到个别应用的熔接要求.注意:若熔接强要求超过墙壁的接强,建议熔接深度为壁厚之1.25倍; 剪切式熔接需要有坚固的侧边墙壁支撑以避免熔接时变形.下工件的四周墙壁高度必须高至接口位置,内壁必须与工件外部型体完全吻合.上工件的整体结构也应十分坚固以防止内倾变形. 对于熔接部位在墙壁中央位置,可采用图11.所示的变体沟槽设计.这种设计也适用于大型塑件的熔接.建议采用单边干涉如图12.所示
图片附件: 10.gif (2007-4-30 15:35, 9.95 K)
图片附件: 11.gif (2007-4-30 15:35, 3.69 K)
图片附件: 12.gif (2007-4-30 15:35, 5.94 K) 应当注意的是如果工件最大尺吋在89㎜或更大并且复杂或者有直角的转角就不宜采用剪切式熔接设计,因为这会给上下工件之间所必须保持的成型公差带来困扰.也就是难于保持稳定的熔接效果.在这种情况下只能建议采用导熔线设计.当只需要结构性熔接而已.(即不要求强度与水气密),可采用图13.所示的间断性的垂直导熔线设计.如此可减少整个熔接面积,也因此减少所需的能量或功率.伤痕出现的机会亦可大大的减少
图14提供干涉尺吋与工件尺吋公差对应于最大之工件外形尺吋 图片附件: 13.gif (2007-4-30 15:40, 7.3 K)