数学物理方法-绪论PPT课件

合集下载

浅谈数学物理方法课程的学习PPT课件

浅谈数学物理方法课程的学习PPT课件

得到非平衡态的速度分布函数
量子力学:用薛定谔方程
( 2 2 Zes2 ) E
2
描绘电子在库仑场中的运动
第16页/共53页
二、数学物理方法在物理学中的地位
1.数理方法是物理学科的重要基础课
数理方法是普通物理与四大力学的“粘合剂” 数理方法是学习专业课的奠基石
材料物理: 热处理 热传导方程 光学、电子科技: 电磁波传播 波动方程
第20页/共53页
二、数学物理方法在物理学中的地位
3.数理方法是培养学生逻辑思维能力和 创造思维能力的重要课程
数学物理方法研究物理问题的三个步骤: ➢导(写)出定解问题 (泛定方程、定解条件) ➢求解 ➢对解答进行分析 其间一系列的过程都不可缺少清晰的逻辑推理和 创造性思维,由此学生分析问题和解决问题的能 力也就自然地得到了训练和培养
第25页/共53页
三、如何学好数学物理方法
1.认真学好先行课
普物 重点:力学、电学、热学 高数 重点:微积分、常微分方程解法
求解方程:
行波法:求解常微分方程的先求通 解再用定 解条件定特解的思想
分离变量法、积分变换法: 均用到化偏微分方程为常微分方程的求解
所有求解方程的过程离不开微分、积分手段。
——萧伯纳
第38页/共53页
三、如何学好数学物理方法
6.学会举一反三,懂得由树木见森林。
第28页/共53页
三、如何学好数学物理方法
例:求解三维无界空间的波动问题 z z
M (x, y, z)
utt u |t0
a 2 u x3
y2z
x x at sin cos y y at sin sin
ut |t0 0
z z at cos

最新数学物理方法(MethodofmathematicalPhysics)PPT

最新数学物理方法(MethodofmathematicalPhysics)PPT
-2 -1 0
2021/1/22
数学物理方法
1
(MethodofmathematicalPhysics)
5 4 3 2 1 5
2 1 0 -1
16
2 -2
复变函数
三角函数
20
定义:w = sin(z)
0
分析
-20
-5
u + iv = sin(x+iy) = sin(x)ch(y)
-2.5
+ i cos(x)sh(y)
100
50 0
-50 -100
-10 -5 0
10 5 0 -5
5 -10
10
u = x2 -y2 ,
v = 2xy 200
性质
对称性、无周期性 无界性、单值性
100 0
-100 -200
-10 -5 0
10 5 0 -5
2021/1/22
数学物理方法 (MethodofmathematicalPhysics)
正交性:解析函数的实部与虚部梯度正交,
即 ∇u ∇ v=(uxi+uyj)(vxi+vyj)= uxvx+uyvy = 0 或曲线 u(x,y)=C1, v(x,y)=C2 相互垂直。
2021/1/22
数学物理方法
22
(MethodofmathematicalPhysics)
解析函数
应用
例1:已知平面电场的电势为u=x2-y2,求电力线方程。
vx=-uy=2y, vy=ux =2x dv = vxdx+vxdy=2ydx+2xdy=d(2xy)
v = 2xy 注意:热流线方程的一般形式为 f(2xy)=C

数学物理方法(第四版)(汪德新)PPT模板

数学物理方法(第四版)(汪德新)PPT模板

12.1傅里 叶变换
1
12.2傅里 叶变换法
2
12.3拉普 拉斯变换
3
12.4拉普拉 斯变换法
4
第三篇数学物理方程
第13章格林函数法
03
*13.3格林函数法
在波动问题中的应

02
*13.2格林函数法 在输运问题中的应

01
*13.1格林函数法 在稳定场问题中的
应用
第三篇数学物理方程
第14章保角变换法
02 第17章Z变换
*17.1Z变换的定义及其性质 *17.2用Z变换求解差分方程
03 第18章小波变换
*18.1从傅里叶变换,加博变换到小波 变换 *18.2连续小波变换的性质
第四篇数学物理 方法的若干新兴 分支
06 参考文献
参考文献
07 附录
附录
1. 附录A微分算符▽的若干常用公式 2. 附录B几种常用的常系数常微分方程的解 3. 附录C广义积分与积分主值 4. 附录D二阶线性齐次常微分方程w″(z)+p(z)w′(z)+q(z)w(z)
数学物理方法(第四版)(汪德新)
演讲人
2 0 2 X - 11 - 11
01 前言
前言
02 第一篇复变函数导论
第一篇复变函数导 论
第1章复变函数与解析函数 第2章复变函数的积分 第3章解析函数的级数表示 第4章留数定理及其应用 第5章解析延拓多值函数及其黎曼面
第一篇复变 函数导论
第1章复变函数与解析函 数
6.3勒让德多项式的正交性与完备 性
6.2勒让德多项式的微分与积分表 达式母函数与递推公式
6.4关联勒让德方程与关联勒让德 函数
第二篇特殊函数场论与狄拉克δ函数

《数学物理方法概论》课件

《数学物理方法概论》课件
与工程领域的交叉研究,将为解决实际工程问题提供更加精准和高效的算 法和模型。
与经济、金融等领域的交叉研究,将为各行业的决策和预测提供更加科学 和可靠的支持。
05 案例分析
弦振动方程的求解与分析
弦振动方程的建立
基于物理背景,通过拉格朗日方程和哈密顿 原理推导弦振动方程。
弦振动方程的求解
利用分离变量法、积分变换法等数学技巧求 解弦振动方程。
02 数学物理方程的建立与求 解
微分方程的建立
总结词
描述微分方程的建立过程
详细描述
微分方程是描述物理现象变化规律的重要工具。在建立微分方程时,需要先对物理现象进行观察和抽 象,找出影响现象的关键因素,并建立相应的数学模型。然后通过数学推导,将模型转化为微分方程 的形式。
偏微分方程的建立
总结词
描述偏微分方程的建立过程
投资组合优化
数学物理方法在投资组合优化领域用于确定最 优投资组合。
金融衍生品定价
数学物理方法在金融衍生品定价领域用于确定衍生品价格和制定交易策略。
04 数学物理方法的展望与挑 战
数学物理方法的未来发展方向
数学物理方法将进一步与计算机科学、人工智 能等新兴领域结合,发展出更加智能化的算法 和模型。
、解释和预测自然现象。
抽象性
使用数学语言描述物理现象,需要一定的 抽象思维。
跨学科性
融合数学和物理学知识,提供多角度分析 问题的视角。
应用广泛性
适用于各种物理领域,如力学、电磁学、 热学等。
数学物理方法的重要性
理论意义
促进数学和物理学的发展,加深对自然现象本质的认 识。
实践意义
为解决实际问题提供有效工具,如工程设计、实验数 据分析等。

《数学物理方法》课件

《数学物理方法》课件

弹性力学方程的求解
总结词
弹性力学方程是描述弹性物体变形和应力分布的偏微分方程 ,通过求解该方程可以了解物体的弹性和稳定性。
详细描述
弹性力学方程的一般形式为 $nabla cdot sigma = f$,其中 $sigma$ 是应力张量,$f$ 是体力密度,$nabla cdot$ 是散 度算子。求解该方程可以得到应力分布、应变能和弹性常数 等。
在工程学中的应用
机械工程
数学物理方法在机械工程 中广泛应用于分析力学、 热传导、流体力学等问题 。
电子工程
在电子工程中,数学物理 方法用于描述电磁波的传 播、散射和吸收等。
土木工程
在土木工程中,数学物理 方法用于分析结构力学、 地震工程等问题。
在经济学中的应用
金融建模
数学物理方法在金融领域中用于 建立复杂的金融模型,如期权定
在此添加您的文本16字
数学物理方法将进一步发展,以适应未来科技发展的需求 ,特别是在能源、环境、生物医学等领域。
在此添加您的文本16字
随着人工智能和机器学习的发展,数学物理方法将与这些 技术相结合,以实现更高效、精确的问题解决方案。
06 数学物理方法的实际案例分析
一维波动方程的求解
总结词
一维波动方程是描述一维波动现象的基本方程,通过求解该方程可以了解波的传播规律 。
这些概念在描述物理现象的变化规律 和求解物理问题中发挥着关键作用, 例如在描述速度、加速度、功和能量 等物理量时。
微积分中的基本概念包括极限、连续 性、导数和积分等。
微分方程
微分方程是描述物理现象变化规律的数学工具,它表示一个或多个未知函数的导数 之间的关系。
微分方程的基本类型包括常微分方程、偏微分方程和积分微分方程等。

数学物理方法的ppt

数学物理方法的ppt
n (cos n i sin n ) 故: (cos i sin )n cos n i sin n
方根 n z n e i e 1/ n i / n
e 1/ n i ( 2 k ) / n
( k 0,1,2,3 ) 故k取不同值,n z 取不同值
k 0 k 1 k2
kn
x Re( z) y Im( z)
几何表示:
y
复平面
z x yi
A(x, y)
r
x
z r x 2 y 2 为复数的模
arctg ( y / x) 为复数的辐角 x cos y sin
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
y Argz
r
x
复数的三角表示: z cos i sin
复数的指数表示: z (cos i sin ) ei
e 应用: 2 k i 1 1 e i
i e (2k / 2) i (k 0,1,) i e(2k 3 / 2) i
例:求 z 1 3i 的Argz与argz
arg z arctg[( y1 y2 ) /( x1 x2 )]
有三角
关系: z1 z2 z1 z2
z1 z2 z1 z2
2、复数的乘法
z1 z2 ( x1 y1i)( x2 y2i) ( x1x2 y1 y2 ) i( x1 y2 x2 y1)
z1 z2 1e i1 2e i 2 e i (1 2 )
zE
w称为的z复变函数
z称为w的宗量

数学物理方法第三版.ppt

数学物理方法第三版.ppt
在极坐标下,先令z沿径向逼近零,
即z ei 0
则:lim lim lim ei z0 z 0 z 0
lim
0
u iv
ei
u
i
v
e
i
再令z沿横向逼近于零,
即z ei iei 0
则:lim lim lim ei z0 z 0 z 0
i ei lim u iv
u(x, x
y)
v( x, y
y)
v(x, y) u(x, y)
x
y
以上条件为复数z可导的必要条件,又称 为柯西—黎曼条件(简称C-R条件)。
极坐标系下的C-R条件
u
v
u
v
推导极坐标下的C-R方程
证明:由定义可知
u(x, y) iv(x, y) u(,) iv(,)
习题
例一
求解析函数u(x, y) x2 y2的虚部v(x, y)
解:因为:u 2x,u 2 y
x
y
所以:v 2 y,v 2x
x
y
即dv 2 ydx 2xdy
v 2 ydx 2xdy c
既然积分与路径无关,为方便计 算,取如图所示路径积分可得:
Y
(X,Y)
0
(X,0)
X
v
外点: Zo及其邻域均不属于点集E,则 该点叫作E的外点。
境界线:若Zo及其邻域内既有属于E的点, 也有不属于E的点,则该点为境界 点,境界点的全体称为境界线。
境界线 内点 境界点 外点
区域
区域:(1)点集中的每个点都是内点 (2)点集是连通的,即点集中
的任何两点都可以用一条曲线连接起来 ,且线上的点全属于该点集。
cos z 1 (e2y e2 y ) 2(cos2 x sin2 x) 2

《数学物理方法》第一章.ppt

《数学物理方法》第一章.ppt
一元三次方程 x3 px q 0 (其中 p,q 为实数)的求根公
式,通常也叫做卡丹诺(Cardano)公式:
x 3 q (q)2 ( p)3 3 q (q)2 ( p)3
22 3
22 3
需特别指出:可以证明当有三个不同的实根 时,若要用公式法来求解,则不可能不经过负数 开方(参考:范德瓦尔登著《代数学》,丁石孙译, 科学出版社,1963年)。至此,我们明白了这样 的事实,此方程根的求得必须引入虚数概念。
第一节 复数 第二节 复变函数的基本概念 第三节 复球面与无穷远点
第一节 复数
复数的概念
复数
形如 z=x+i y 的数被称为复数,
其中x , y∈R。x=Rez,y=Imz分别
为z的实部和虚部,i为虚数单位, 其意义为i2=-1
复数相等
复数四则运算?
z1=z2当且仅当 Rez1= Rez2 且 Imz1= Imz2
复平面
(几何表示) 虚轴
复数z=x+iy
z平面
复数与平面向量一一对应
实轴 0的幅角呢?
复数不能 比较大小
模 | z | r x2 y2
主幅角
幅角 2k arg z Argz
复数的表示
代数表示: z=x+iy
三角表示: z=r(cosθ+isinθ)
指数表示: z=reiθ
i
sin


2
n

wn ?
注意 根式函数是多值函数
例如 记
z
r

cos

2k
2
i sin

2k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
2
1.数学物理方程(50学时)
Chap.7 数学物理定解问题 (10) Chap.8 分离变数法(12) Chap.9 二阶常微分方程级数解法(10) Chap.10 球函数(10) Chap.11 柱函数(8)
-
3
2.矢量分析与场论(14学时)
Chap.1矢量分析(6) Chap.2场论(8)
2.熟练掌握不同定解条件(初始和边界) 下三类典型偏微分方程的解法 (分离变 数法) 3.掌握基本特殊函数的主要性质和应用
4.掌握矢性函数的计算和场的描述方法
-
6
教材
1.《数学物理方法》梁昆淼 编 2. 矢量分析与场论 谢树艺 编 参考书 1.《数学物理方法》吴崇试 编著 北大 2.《数学物理方程》谷超豪等 编著 复旦 3.《数学物理方法》邵惠民 编著 南大 3.《数学物理方程》季-孝达等编 中科大 7
数学物理方法(Ⅱ)
——是物理和数学相结合的一 门边缘科学,任务是研究物理 对象在数学中的描述
-
1
绪论
一、内容简介
1.数学物理方程(50学时)
——常微分方程、微分积分方程、 偏微分方程(反映物理量在空间中 的分布和随时间的变化规律)
2.矢量分析与场论(14学时)
——矢性函数的运算、标量场和矢
量场的描述方法
-
4
二、课程特点
1.涉及到的数学知识广泛(高等数学、 常微分方程、复变函数、线性代数)
2.涉及到的物理概念多(力学、热学、 电磁学…)
3.应用广泛(电动力学、量子力学、电磁场 理论)
4.计算较繁、计算量较大(掌握常规的分析步骤)
-
Байду номын сангаас
5
三、学习目标
1.了解数理方程(三类典型偏微分方程) 的建立过程(数学模型+物理定律)
相关文档
最新文档