固体紫外激光器简介
固体激光器原理及应用

固体激光器原理及应用固体激光器是一种使用固态材料作为工作介质,利用吸收外部能量激发材料内部电子跃迁产生激光的器件。
其原理基于材料内部的电子能级结构,通过能量输入使电子能级发生跃迁,产生一束高强度、窄谱线、准单色的激光束。
固体激光器具有激光输出稳定、寿命长、重复频率高、输出功率大等优点,因此在许多领域有着广泛的应用。
固体激光器的工作原理可以分为三个基本步骤:激发、放大和输出。
首先,通过能量输入使材料内部的电子从基态跃迁至激发态,形成一个激发态的粒子团。
其次,通过适当的增益介质,激发态粒子发生受激辐射过程,产生激光并且放大。
最后,通过激光输出装置将激光束从增益介质中输出。
固体激光器的工作介质一般是由具有合适外加激励源的能级结构的晶体或玻璃组成。
常用的材料有Nd:YAG(氧化钇铝铈钕)、Nd:YLF(钇铝石榴石)、Nd:YVO(钇钕钒酸盐)和Ti:sapphire(蓝宝石)等。
这些材料具有良好的耐热性、光学性能和谐振特性。
固体激光器的应用相当广泛。
在科学研究领域,固体激光器常用于物理、化学、生物学等学科中的实验室研究。
其高可靠性和稳定性使其成为激光生物学、光谱学和光物理学等领域的基础工具。
此外,固体激光器在通信领域也有着重要的地位。
特别在光纤通信系统中,固体激光器可以作为光源产生高质量的激光信号,用于传输和接收数据。
固体激光器还在制造业中得到广泛应用。
例如,固体激光器在激光切割、焊接和打标等加工过程中发挥着重要角色。
其高功率和高能量脉冲使其成为材料切割和焊接的理想工具。
此外,固体激光器还可以应用于材料精细处理、纳米加工和激光显微技术等领域,为制造业提供了更加高效和精确的加工手段。
此外,固体激光器还用于医疗领域。
例如,激光手术中使用的激光刀就是一种固体激光器。
固体激光器可以提供高能量和高精确性的激光束,用于切割、热凝固和热疗等医疗操作。
它在眼科手术、皮肤整形和癌症治疗等领域中有着广泛应用。
总之,固体激光器以其稳定的输出功率、高效的能量转化和丰富的应用领域而受到广泛关注和应用。
固体激光器原理

固体激光器原理引言固体激光器是一种基于固体材料的激光器,它利用固体材料中的激发态粒子在受激辐射的作用下发射出一束相干的激光。
固体激光器具有高效率、高能量、高稳定性等优点,广泛应用于材料加工、医学领域、科学研究等方面。
本文将介绍固体激光器的原理以及其工作过程。
原理固体激光器的工作原理基于受激辐射的过程。
当固体材料被外部能量激发时,其原子或分子的能级结构发生改变,使得一些电子被激发到高能级,形成激发态。
这些激发态的电子在适当的条件下会发生跃迁回到基态,并释放出激光光子。
这个过程称为受激辐射。
固体激光器的关键部分是激光介质。
激光介质通常由具有激发态和基态之间能级跃迁的活性离子组成。
这些活性离子可以是稀土离子(如Nd3+、Er3+)或过渡金属离子(如Cr3+、Ti3+)。
在激光介质中,这些离子被激发到激发态,然后通过受激辐射过程发射出激光光子。
为了实现受激辐射和激光放大,固体激光器通常采用光泵浦的方式来向激光介质提供能量。
光泵浦可以通过闪光灯、半导体激光器或其他激光器来实现。
光泵浦的作用是将能量传递给激光介质,从而激发其中的离子跃迁到激发态。
一旦离子处于激发态,它们就会在受激辐射的作用下发射出激光光子。
固体激光器中的激光光子在两个镜子之间被反射,形成一个光学腔。
这个光学腔通过选择性反射,使得激光光子在腔内多次来回反射,逐渐放大。
这个过程被称为光学放大。
最终,激光光子从一个镜子中逃逸,形成一束相干、高强度的激光束。
工作过程固体激光器的工作过程可以概括为以下几个步骤:1.光泵浦:通过光泵浦的方式向激光介质提供能量,将其中的离子激发到激发态。
2.受激辐射:激发态的离子通过受激辐射过程发射出激光光子。
3.光学放大:激光光子在光学腔中多次来回反射,逐渐放大。
4.激光输出:激光光子从一个镜子中逃逸,形成激光束输出。
固体激光器的工作过程需要维持适当的能量供应和光学腔的稳定性。
光泵浦的能量需要满足激发离子到激发态的能量需求,而光学腔的稳定性可以通过优化腔内的补偿装置和调节器件来实现。
创鑫激光 MUN-3 5W-NEFAB1.0 紫外固体激光器(一体机)用户手册说明书

紫外固体激光器(一体机)深圳市创鑫激光股份有限公司引 语欢迎您使用深圳市创鑫激光股份有限公司研发生产的MUN-3/5W-NEFAB1.0 紫外固体激光器产品,为便于更好使用及维护您的激光器设备,我们组织人员编撰了本文档。
由于编者本身水平有限,文档难免存在纰漏,用户在使用过程中如有任何的意见和建议,也请不吝赐教,以帮助我们不断修订完善。
再次感谢您使用创鑫激光的产品!在使用本产品前,请您仔细阅读创鑫激光提供的《MUN-3/5W-NEFAB1.0 紫外激光器使用手册》,以熟悉操作和维护本设备。
我们强烈推荐操作人员在操作设备前,阅读本手册的第2章《安全信息》。
本手册将作为随机附件,为我们现有客户或潜在客户提供重要操作、安全及其他方面的信息。
文档中文字为蓝色文字的部分,请您务必仔细阅读,以防止造成不必要风险。
版权说明此用户手册版权为深圳市创鑫激光股份有限公司(以下简称“创鑫激光” )所有,创鑫激光保留所有权。
除了版权法所允许的情况外,任何第三方单位或个人,未经创鑫激光许可,不得出于任何目的通过任何途径及媒介在可检索的系统上复制、改编、传播或出版此文档,复制件应保留相应版权和原始版本的所有声明。
创鑫激光确信本手册提供的信息是正确可靠的,但不作任何保证、陈述、表达或暗示此文档可用作其他场合的应用参考,且不承担任何因使用此文档侵犯专利或侵犯任何第三方权利所致的法律责任。
因使用文档可能导致的间接或直接损伤相关设备的情况,创鑫激光不负任何责任。
本文档中出现的创鑫激光和创鑫激光标志已被深圳市创鑫激光股份有限公司注册为商标。
此商标无违反任何商标法的规定。
创鑫激光对文档信息中所出现的专利或知识产权不授予任何权利。
对此文档中任何信息的改动和调整,恕不另行通知。
1公司简介深圳市创鑫激光股份有限公司成立于2004年,是国内首批成立的光纤激光器制造商之一,也是国内首批实现在光纤激光器、光学器件两类核心技术上拥有自主知识产权并进行垂直整合的国家高新技术企业之一。
固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作物质的激光器,它通
过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。
固体激光器的工作原理主要包括激发、增益、反射和输出四个过程。
首先,固体激光器的工作原理涉及到激发过程。
在固体激光器中,通常采用激发源(如闪光灯、半导体激光二极管等)照射固体
材料,激发固体材料中的原子或离子,使其跃迁至高能级。
这种激
发过程会导致固体材料中的原子或离子处于一个高能级的激发态。
其次,固体激光器的工作原理还涉及到增益过程。
在激发过程中,固体材料中的原子或离子处于高能级的激发态,这时如果有入
射光子与其相互作用,就会引发受激辐射,从而产生激光。
这种受
激辐射会引起原子或离子从高能级跃迁到低能级,释放出更多的光子,使激光光子数目急剧增加,形成所谓的增益。
然后,固体激光器的工作原理还包括反射过程。
在固体激光器中,通常会设置一个光学反射器,用来反射激光。
这种光学反射器
可以将激光反射回固体材料中,使其在其中来回反射,增强激光的
增益效果。
最后,固体激光器的工作原理还涉及到输出过程。
在固体激光器中,设置一个输出镜,用来从激光腔中输出激光。
这种输出镜通常只透过一部分激光,反射大部分激光,使得激光可以从固体激光器中输出。
总的来说,固体激光器的工作原理是通过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。
固体激光器的工作原理涉及到激发、增益、反射和输出四个过程,这些过程共同作用,使得固体激光器能够产生高能、高亮度的激光,被广泛应用于医疗、通信、材料加工等领域。
固体激光器

固体激光器简介固体激光器是一种基于固体材料的激光发射器件。
与其他类型的激光器相比,固体激光器具有较高的效率、较高的输出功率和较低的噪声。
它们在多个领域中得到广泛应用,包括医学、材料加工、通信和科学研究等。
在固体激光器中,激光通过在固体材料中激发原子或离子引起的电子跃迁来产生。
这些材料通常是晶体或玻璃,并且它们的结构和组成决定了激光器的性能和特性。
原理固体激光器的工作原理基于三个基本过程:吸收、放大和辐射。
首先,固体材料吸收外部激发源(例如光或电能)的能量。
这种能量转移导致材料的原子或离子中的电子被激发到更高的能级。
当电子处于这种高能级时,它们有望通过受激辐射产生辐射能量。
然后,在经历一系列非辐射过程后,高能级的电子通过自发辐射受激发射出激光光子。
这种发射过程又被称为光放大。
这些激光光子在光学谐振腔中来回反射,同时经历光放大过程,最终形成高功率、高能量的激光束。
固体材料固体激光器中常用的材料包括晶体和玻璃。
不同的材料具有不同的性质和应用。
1.晶体材料:晶体激光器最早使用的材料是人工合成的天然晶体,如红宝石 (ruby) 和人工蓝宝石 (sapphire)。
这些材料具有较高的光学透明性和较高的激光输出功率。
晶体激光器通常在固体材料中掺入外来的色心(如Cr3+)来调节激光输出的波长。
其他常见的晶体材料还包括掺铱的钛蓝宝石和掺钬的氧化铽。
2.玻璃材料:相比晶体材料,玻璃激光器具有更大的放大带宽和更高的辐射受激发射截面。
这意味着玻璃激光器可以实现更宽波长范围内的激光输出。
常见的玻璃材料包括钕玻璃、铽玻璃和铒玻璃。
无论是晶体材料还是玻璃材料,固体激光器的性能和特性都取决于材料的结构和化学成分。
应用领域固体激光器在多个领域中应用广泛。
1.医学:固体激光器被广泛用于医学领域,用于激光手术、皮肤美容、眼科手术和牙科治疗等。
例如,钕玻璃激光器被用于激光眼部手术,以纠正近视、远视和散光等眼部问题。
2.材料加工:固体激光器可以用于材料切割、焊接和打孔等加工过程。
固体紫外激光器原理

固体紫外激光器原理固体紫外激光器是一种利用固体物质产生紫外激光的装置。
它具有很高的能量密度、较窄的波长范围和较高的空间相干性,在生物医学、科学研究和工业领域有着广泛的应用。
固体紫外激光器的工作原理基于光的增强效应和能级跃迁原理。
首先,我们需要一个能够发射激光的激光介质。
常见的材料包括Nd:YAG(钇铝石榴石)、Nd:YVO4(钇钒矿石)、Nd:YLF(钇锂钼石)、Ti:Sapphire(蓝宝石)等。
这些固体材料加工成激光棒或薄片状,然后通过外部的光源(如闪光灯或半导体激光器)进行泵浦。
泵浦光通过能级跃迁,将固体材料中的电子激发至高能级。
然后,在光学腔中,高能级的激发态电子会发生自发辐射,从而产生光子,光子穿过输出窗口逃逸出来。
这就是激光的产生过程。
光学腔由两个反射镜构成,一个是高反射镜(HR镜),另一个是输出镜(OC镜)。
HR镜起到反射光子的作用,而OC镜则允许部分光子通过,形成激光输出。
光学腔的设计与用于特定波长范围的激光器密切相关。
要实现紫外激光输出,我们通常使用二次谐波产生方法。
这种方法利用非线性光学效应,在高能量激光束通过非线性晶体时产生频率加倍,从而将激光转换为更短的紫外波长。
常见的非线性晶体材料包括KDP(磷酸二氢钾)和BBO(磷酸钡钙晶体)。
通过调整晶体的温度和角度,可以实现不同波长范围的紫外激光输出。
固体紫外激光器具有广泛的应用前景。
在科学研究领域,它可以用于超快激光光谱学、表面等离子体共振、薄膜沉积等实验。
在生物医学领域,固体紫外激光器被广泛应用于激光手术、皮肤美容和白内障治疗等。
在工业领域,它可以用于精细加工、标记、材料检测等。
此外,固体紫外激光器还能被应用于大气科学、光通信和防务等领域。
不过,固体紫外激光器在使用时需要特别注意安全。
紫外光具有较强的能量和较高的光子能量,如果不正确使用或直接暴露于人体,可能会对眼睛和皮肤造成伤害。
因此,使用固体紫外激光器时需要佩戴适当的防护眼镜和防护服,同时要遵循相关的操作规程。
固体激光器及其应用

固体激光器及其应用
固体激光器是一种使用固体材料作为激光介质的激光器。
它通常由一个激活剂(通常是稀土元素)和一个基质组成。
当激活剂受到外部能量激发时,它会释放出光子并与基质中的原子相互作用,从而产生激光。
固体激光器具有以下一些特点:
1. 高功率输出:固体材料具有较高的能量存储密度,可以实现高功率激光输出。
2. 长寿命:固体材料的寿命通常较长,可以连续工作数千小时。
3. 较低的散射损耗:固体材料通常具有较小的散射损耗,可以实现高效的激光转换。
4. 宽波长范围:固体材料可以实现从紫外到近红外等多个波长范围的激光输出。
固体激光器有广泛的应用领域,包括但不限于以下几个方面:1. 切割和焊接:固体激光器可以产生高功率激光束,用于金属切割和焊接工艺。
2. 材料加工:固体激光器可以用于玻璃、陶瓷、塑料等材料的微加工,如打孔、刻字等。
3. 医学领域:固体激光器可用于激光手术、激光治疗、激光诊断等医学应用。
4. 科研实验:固体激光器可用于物理学、化学等科研领域的实验研究,如光谱分析、原子冷却等。
5. 通信和雷达:固体激光器可以用于光纤通信、激光雷达等领域,实现高速数据传输和距离测量。
总而言之,固体激光器具有高功率、长寿命和宽波长范围等优点,其应用领域十分广泛,包括材料加工、医学、科研等多个领域。
科技成果——全固态纳秒级紫外激光器

科技成果——全固态纳秒级紫外激光器项目成熟阶段成熟期项目来源自筹成果简介紫外激光器在激光加工方面体现其独特的优势:紫外激光器的波长短,聚焦小,能实现精细加工;紫外激光器进行激光加工时直接破坏材料的化学键,是“冷”处理过程,热影响区小:大多数材料能有效地吸收紫外光,可加工许多红外和可见光激光器加工不了的材料。
全固态紫外激光器具有体积小、效率高、重复频率高,无需更换气体、无需掩模、易维护等优点。
因此它在生物工程、材料制备、全光光学器件制作,特别是集成电路板及半导体工业等激光加工领域获得了广泛的应用。
全固态纳秒级紫外激光器目前紫外激光器的发展非常迅速,瓦级功率以上高重频全固态激光器不断应用于加工,国内外研究机构和公司不断向更高功率(数十瓦级)、更高重频(几十甚至几百kHz)方向发展。
目前我们已经研制成功了5W、50kHz的紫外355nm激光器,脉宽25ns。
已经做成样机,性能稳定,用于LED蓝宝石晶圆裂片划线,划线深度达到200μm,线宽小于10μm,划痕光滑均匀,几乎无热影响区。
技术特点通过高效率端面泵浦结构方式得到基模红外1064nm激光,再经过多级放大结构,得到高功率的红外高光束质量基频光,再通过高效率变频技术,最后得到5W、50kHz、25ns脉冲紫外355nm激光。
光束质量因子M2<1.3,功率长期稳定性<±2%。
内部光学结构采用紫外胶光固化粘接,结构小巧牢靠,对环境适应程度高。
通过紫外显微物镜的聚焦,聚焦光斑直径在μm级别,加工尺寸小于10μm。
通过紫外激光器的开发,相应的也取得了更高功率的红外和绿光高光束质量激光技术。
专利情况目前国内外并无相关的专利限制,主要是在工艺实现难度比较高。
目前我们已取得专利8项。
市场分析紫外355nm激光器目前国际市场价格约为2万美元/W,中大功率全固态紫外激光器市场均被国外厂商占据。
据行业协会统计,2010年我国全固态紫外激光器市场销售额达到5亿元人民币,比2009年增长了25%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体紫外激光器简介
随着对小型电子产品和微电子元器件需求的日益增长,聚合物材料的精密处理日渐成为激光在工业应用中发展最快的应用领域之一。
紫外激光是处理广泛应用于微电子元器件工业中的塑料(如聚酰亚胺)和金属(如铜)等材料的理想工具。
固态激光器的最新技术推动了新一代结构紧凑,全固态的紫外激光器的发展,从而使之成为这个领域中更加经济有效的加工手段。
布线,钻孔和裁剪电路在绝缘体和铜材料的层布式电路板的生产过程中,要求对小型功能性部件进行精细加工,例如在柔性电路板上加工微形通孔、槽和通路辅助孔,以及成型电路板的最终裁剪。
在以往的大批量生产中,许多小部件都使用机械硬冲压成型的模具压制成型。
但是,硬冲模法大的损耗和长的交付周期对小部件的加工和成型而言显得不实用且成本高。
类似的加工手段,如,使用程控机械钻孔机进行钻孔和布线,或采用较低成本的钢尺或乔木模冲孔处理等法等,也各有局限性;而在矩形,三角形或D 形孔的钻孔以及复杂曲线的精细加工中,这些传统的方法更显得无能为力;同时,工具的磨损,粘胶的溢出以及钻孔造成的材料破碎等也限制了部件的尺寸,精度和合格率。
用于互连多层的微通道技术对于今天的高密度互连电路(HDI)越来越重要,但是它们对小尺寸的要求格外严格。
通道的直径范围通常为1到10密尔(25-250微米),而传统的机械钻孔和冲孔不适合用于大批量生产直径在6-8密尔(150-250微米)以下的通孔,因为精细钻头和模具的价格非常昂贵,同时寿命却非常短暂。
此外,使用这些方法几乎不可能进行盲通道孔的生产和切开填埋的导电垫片等工作。
激光微处理激光独一无二的特性使得它成为微处理的理想工具. 激光是非接触性零磨损工具,能够通过聚焦将非常大的能量密度传递到精确的加工位置进行钻孔、切割和焊接。
两者间的相互作用的类型取决于待处理的材料的特征和激光的波长和能量。
脉冲式CO2激光器和红外YAG 激光器是在材料处理中较为常用的红外激光光源。
但是,许多塑料和一些大量用在柔性电路板基体材料中的特殊聚合物(如聚酰亚胺)不能通过红外处理或"热"处理过程进行精细加工。
热会使塑料变形,在切割边缘或者钻孔边缘上产生炭化形式的损伤,而这可能会导致电路板结构性的削弱和寄生传导性通路,从而不得不增加后续处理工序以改善加工结果。
因此,红外激光器不适合于某些柔性电路的处理。
除此之外,即使在高能量密度下,CO2 激光器的波长也不能被铜吸收,这更加苛刻地限制了它的使用范围。
相比之下,紫外激光器的输出波长在0.4微米以下,这是适合于处理聚合物材料的主要优点。
与红外加工不同,紫外微处理过程从本质上来说不是"热"处理过程。
大多数材料吸收紫外光比红外光更容易,高能量的紫外光光子直接破坏许多非金属材料表面的分子键,这种"冷"加工出来的部件具有光滑的边缘和最低限度的炭化影响。
由于紫外
光在聚焦上的优点,聚焦点可小到亚微米数量级,从而对金属和聚合物的微处理更具优越性,可以进行小部件的加工;即使在不高的脉冲能量水平下,也能得到较高的能量密度,有效地进行材料加工。
固体器件优越性一直以来,准分子激光器在紫外"冷加工" 应用领域中占有主导地位,但是,准分子技术有许多固有的缺点: 所有的准分子激光器都要使用有毒气体,而特殊气体的更换,存储和调整过程非常麻烦. 同时,它们的体积庞大,价格昂贵,*作和维修费用高;不仅如此,最大的问题在于准分子激光器的输出光束大而方,空间质量较差,这严重地限制了光束的聚焦性,使得在微处理过程中一定要使用掩模板。
准分子激光器对一步钻出相同形状的孔和重复性的工作是不错的(如加工喷墨打印机磁鼓喷嘴上的孔),但总的说来效率并不高,只有1%的脉冲能量作用于加工表面,而其它约99% 的光能量损失于模板。
此外,掩模法的灵活性有限,如果图形变化需要更换掩模板时,整个加工过程必须停止。
固体紫外激光器的应用一直以来受限于输出功率不够大,不能够满足加工需要。
随着更可靠的半导体泵浦固体技术,以及更为可靠的三倍频机理的发展,情况已有所改变。
新的三倍频半导体泵浦固体激光器成为准分子激光器的竞争者,能量密度水平相当,但重复频率更高,光束质量更好。
Coherent 公司生产的AVIA 355-1500 型半导体泵浦固体激光器,输出波长355nm,平均功率1.5W,最高重频可达100kHz,光束质量好,非常适合于微处理应用场合。
好的光束质量,从而优秀的聚焦能力使您可摆脱掩模板进行加工,通过计算机控制的扫描振镜系统将光束传导到工作台上的任何位置),使用CAD/CAM 软件通过直接刻写的方法执行钻孔、刻线或者切割;当图样变化时,无须更换硬件。
钻孔实验表明,比聚焦点大的任意尺寸和形状的钻孔和切割都可以通过反复雕琢的方式进行。
高重复频率是现代DPSS 激光器的又一突出优点。
准分子激光器的重复频率一般在几百赫兹. 而AVIA 的重频可达100kHz。
高的重复频率在低密度孔分布应用中以及布线或切割加工中可大大提高生产量。
例如,在2密尔(50微米)厚的KaptonTM 聚酰亚胺材料上钻30微米直径的孔大约需要200个脉冲,能量密度为0.2J/cm2。
AVIA 工作在50kHz 重频时1秒钟可以打大约250个孔,而工作在200Hz重复频率下的准分子激光器打出一个相同参数的孔需要整整1秒钟。
AVIA 脉冲重复频率从单脉冲到100kHz 可调,使您可以非常快速和灵活地控制脉冲能量和平均功率。
用这些方法,可以在要求高的加工过程中主动改变重要的加工参数,比如选择性地去除聚合物涂层金属,反之亦然。
在很多应用中,例如钻盲通道孔、切开聚合物绝缘材料露出填埋导电垫片、切割电路板等,这种功能是非常有用的。
在加工要求高的大批量生产环境下,不允许过多的维修或停工,紫外半导体泵浦固体激光器在设计和生产技术上的先进性,使之成为系统集成的理想选择. 全固态封离式的设计,结构紧凑,坚固耐用,使得这类激光器非常容易与高效的生产环境相配合;同时,可靠性高,作简便,以及对水电设施要求低等优点,使得它们日渐成为工业生产领域中广为使用的设备。
(end)。