开关电源设计中的参数计算
buck电路参数计算公式

buck电路参数计算公式
Buck电路参数计算公式
Buck电路,也称为升压型开关电源,是一种电源管理技术,可以将输入电压转换为较低的输出电压,以满足特定应用的电源要求。
它主要由转换器模块,滤波模块,电源模块和控制模块组成。
当设计Buck电路时,需要知道设计参数,以便获得最佳的系统性能。
计算Buck电路参数的基本公式如下:
1、输出电压:Vout=Vin*D,其中D为降压系数,即输出电压与输入电压之比;
2、转换器电阻:Rcon=Vin/Iout,其中Iout为转换器输出电流;
3、滤波电容:Cf=Iout/ (Vin * f * 2 * pi),其中f为转换器频率;
4、输出电流:Iout=Vin/Rcon;
5、电压调节率:VAR=(Vin-Vout)/Vout;
6、输入电流:Iin=Iout/D;
7、输入功率:Pin=Vin*Iin;
8、输出功率:Pout=Vout*Iout。
以上是计算Buck电路参数的基本公式,但实际情况比较复杂,应根据实际应用情况进行完善。
在设计Buck电路时,需要根据实际应用环境,以及系统要求,确定输入电压,输出电压,电流,功率等参数,并结合上述公式,按照正确的设计流程,进行系统的设计,以最大程度满足应用的要求。
开关电源原理与设计 连载15 正激式变压器开关电源电路参数的计算

开关电源原理与设计连载15 正激式变压器开关电源电路参数的计算
1-6-3.正激式变压器开关电源电路参数的计算
正激式变压器开关电源电路参数计算主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。
正激式变压器开关电源储能滤波电感和储能滤波电容参数的计算
图1-17中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法基本相同,因此,我们可以直接引用(1-14)式和(1-18)式,即:
式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T 正好等于2倍控制开关的接通时间Ton ;ΔUP-P为输出电压的波纹电压,波纹电压ΔUP-P一般取峰-峰值,所以波纹电压等于电容器充电或放电时的电压增量,即:ΔUP-P = 2ΔUc 。
同理,(1-90)式和(1-91)式的计算结果,只给出了计算正激式变压器开关电源储能滤波电感L和滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。
关于电压平均值输出滤波电路的详细工作原理与参数计算,请参看
“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容,这里不再赘述。
开关电源rc吸收电路参数计算

开关电源rc吸收电路参数计算
开关电源RC吸收电路参数计算
开关电源RC吸收电路是一种电路,用于在开关电源输出时缓冲过电流和减小反射电压,其充当“滤波功能”的作用。
当开关电源导通时,由于开关电源输出电压瞬间改变,输出电流发生剧烈变化,而RC吸收电路可以将输出电流缓慢改变以减小过电流和反射电压,达到减小射频干扰的作用。
RC吸收电路参数计算的方法有很多种,其中最基本的方法是用公式法,即根据所选电路结构计算出R,C等参数。
经过简单的计算可以得到:
(1)RC吸收电路的上升时间:
上升时间tR=CR
(2)RC吸收电路的下降时间:
下降时间tD=CR
(3)RC吸收电路的输出延时时间:
输出延时时间tL=CR
(4)RC吸收电路的输出频率:
输出频率F=1/CR
(5)RC吸收电路的滤波电容:
滤波电容C=CR
(6)RC吸收电路的滤波电阻:
滤波电阻R=1/CR
以上就是关于RC吸收电路参数计算的介绍,希望对您有帮助。
开关电源rc吸收电路参数计算

开关电源rc吸收电路参数计算开关电源是一种高效、可靠、稳定的电源,被广泛应用于电子设备、通讯设备、医疗设备、工业自动化等领域。
在开关电源的设计中,RC吸收电路是常用的一种技术,参数的计算对于设计和优化电路至关重要。
1. RC吸收电路的作用在开关电源的设计中,RC吸收电路主要用来保护开关管(MOS管或IGBT)和二极管,减小开关管和二极管反向电压的峰值,降低开关管和二极管的电压应力,延长它们的寿命。
另外,它还能够抑制高频噪声和EMI干扰,在一定程度上提高系统的稳定性和可靠性。
2. RC吸收电路的参数计算在RC吸收电路的设计中,参数的选择与计算直接影响吸收电路的效果和性能。
以下是RC吸收电路的主要参数和计算方法:(1)电容C的计算:根据开关管的额定电压和额定电流以及开关频率,选择合适的电容C。
一般来说,C=I/(2πfΔV),其中I为负载电流,f为开关频率,ΔV为开关管的额定电压。
(2)电阻R的计算:根据电容C、开关频率和电阻R的值,确定阻尼系数,选择合适的电阻R。
一般来说,R=2πfC/4ξΔV,其中ξ为阻尼系数,取值范围在0.4~1之间。
(3)二极管的额定反向电压:根据开关变化时反向电压的最大值和超过额定反向电压的时间,选择合适的二极管。
3. RC吸收电路的优化在RC吸收电路的设计中,不仅要选择合适的参数,还要注意优化电路的性能和效果。
以下是RC吸收电路的优化方法:(1)调整电阻R的值:根据实际情况调整电阻R的值,使开关管和二极管的反向电压峰值和时间达到合适的范围。
(2)选择合适的二极管:根据反向电压峰值和时间,选择合适的二极管,减小开关管和二极管的反向电压应力。
(3)增加电容C的值:增加电容C的值,可以降低开关管和二极管的反向电压峰值,提高系统的稳定性和可靠性。
(4)优化开关频率:适当调整开关频率,可以提高系统的效率和性能,降低电磁干扰和噪声。
4. 总结RC吸收电路是开关电源设计中常用的一种技术,对于保护开关管和二极管,提高系统的稳定性和可靠性具有重要作用。
半桥式开关电源变压器参数计算方法

半桥式开关电源变压器参数计算方法1. 输入电压(Vin):即待转换的电源电压,常用交流电压,如220V交流电。
2. 输出电压(Vout):即转换后的电源电压,可以是交流电也可以是直流电。
3. 输出电流(Iout):即变压器输出的电流大小。
4.开关频率(f):开关频率是指开关器件开关的次数,通常以kHz 为单位。
5.变压器功率(P):变压器的功率是变压器所能处理的电能大小,即输入电压乘以输出电流。
下面以一个实际计算的案例来详细介绍半桥式开关电源变压器的参数计算方法:假设我们需要设计一个输入电压为220V,输出电压为12V,输出电流为5A的半桥式开关电源变压器。
第一步是计算变压器的功率。
根据上述参数,变压器的功率P=Vout×Iout=12V×5A=60W。
第二步是选择开关频率。
开关频率的选择取决于应用的特定需求,一般在几十kHz到几百kHz之间。
假设我们选择开关频率为50kHz。
第三步是计算变压器的绕组比。
绕组比定义了变压器输入与输出端的电压比。
在半桥式开关电源中,绕组比通常为1:1、所以输入电压与输出电压相等,即Vin=Vout。
第四步是计算变压器的变比。
变比(N)定义了输入和输出的绕组匝数之比,从而决定了电压的变化。
根据绕组比为1:1,我们有N=Vin/Vout=220V/12V=18.33第五步是计算变压器的一次侧电感。
一次侧电感(Lp)决定了变压器的电流特性。
一般来说,如果开关频率较高,则需要较小的电感值。
根据经验公式,计算一次侧电感为Lp=10×(Vin/Vout)²/f=10×(220V/12V)²/50kHz=0.029H。
第六步是计算变压器的二次侧电感。
二次侧电感(Ls)是指变压器绕组与输出端的电感。
一般来说,为了防止输出电压的波动,二次侧电感应比一次侧电感大。
根据经验公式,计算二次侧电感为Ls=10×(Vin/Vout)²/f=10×(220V/12V)²/50kHz=0.029H。
反激开关电源参数计算(EI28)

RCD 吸收电路参数设计
① 选择钳位电容最小值������������������������������ ,当漏感能量完全释放后,钳位电容电压达到最 大值������������������������������ ,随后二极管关断,电容向电阻放电,当下一周期开关管导通时, 电容电压达到最小值������������������������������ ,������������������������������ 一般取0.85~0.95������������������������������ 。 ② 由开关管的耐压值������������������ 以及最大输入电压������������������������������������������������ 来确定钳位电容的最大电 压������������������������������ ,并确保������������������������������ > 1.5������ ������������ (保证电容电压在关断期间不小于映射电压)。 ������������������������������ = ������������������ − ������������������������������������������������ − 50 (留 50V 的电压余量)
������
������������������������������������������
= 0.2������
������������������������������ 电感电流峰值������������������������ = (1−0.5∗������ )∗������ ������������
反激变压器参数设计
半桥式开关电源变压器参数计算方法
半桥式开关电源变压器参数计算方法半桥式开关电源是一种广泛应用的开关电源拓扑结构,在工业、通信、医疗等领域得到了广泛的应用。
半桥式开关电源变压器的参数计算是设计一个可靠、高效的电源的重要步骤。
以下是半桥式开关电源变压器参数计算方法的详细说明。
第一步:确定输入电压和输出电压在设计半桥式开关电源变压器之前,首先需要确定输入电压和输出电压的数值。
输入电压通常是直流电压,输出电压可以是直流或交流电压,具体根据应用场景来确定。
第二步:计算输出功率根据应用需要以及输出电压和电流确定输出功率。
输出功率是决定变压器参数的重要因素之一第三步:选择变压器的工作频率第四步:计算变压器的变比根据输入电压和输出电压,通过变比的计算来确定变压器的变比。
变比是输入和输出电压之间的比值,可以根据功率和电流的关系得出。
第五步:计算变压器的感应电感感应电感是变压器的一个重要参数,可以通过输出功率的计算得出。
感应电感决定了变压器输出电流的波形。
第六步:计算变压器的铜损和铁损铜损是由变压器的导线电阻引起的损耗,可以通过输入电压和变压器中电流的平方来计算。
铁损是由于铁芯材料磁化和磁交变损耗引起的,可以通过变压器的额定工作频率和铁芯材料的损耗特性来计算。
第七步:选择适当的变压器规格根据前面的参数计算结果,选择合适的变压器规格。
包括输出功率、变压器的尺寸和重量等。
最后,需要进行变压器的热设计,确保变压器在工作过程中能够正常散热,不会因过热而损坏。
综上所述,半桥式开关电源变压器参数的计算包括确定输入和输出电压、计算输出功率、选择工作频率、计算变比、计算感应电感、计算铜损和铁损、选择合适的变压器规格以及进行热设计等步骤。
这些参数计算的准确与否直接影响着半桥式开关电源的性能和稳定性,因此需要仔细考虑每个参数的计算过程。
开关电源环路设计与计算
开关电源环路设计与计算开关电源是一种将输入的直流电转换为所需要的输出电压的电源。
其主要由开关元件、功率变压器、整流电路和滤波电路组成。
在进行开关电源的设计与计算时,需要考虑到输入电压范围、输出电压稳定性、功率转换效率、电磁干扰等因素。
首先,设计开关电源需要确定所需的输入电压范围和输出电压稳定性。
根据实际需求选择开关电源的输入电压范围,一般常见的输入电压为220V交流电。
对于输出电压稳定性的要求,需要根据实际应用来确定。
例如,对于电子设备来说,输出电压稳定性要求较高。
其次,需要选择开关元件和功率变压器。
开关元件一般选择功率MOSFET或IGBT,这两种开关元件都具有较高的开关速度和效率。
功率变压器则需要根据输出电压和输出功率来选择合适的型号。
然后,设计整流电路。
整流电路一般采用整流桥进行整流。
通过改变整流桥的二极管的导通方式,可以实现不同的输出电压。
最后,设计滤波电路。
滤波电路可以通过电感和电容的组合来实现对电源纹波的滤除。
通过计算电感和电容的取值,可以达到所需的滤波效果。
在进行开关电源的计算时,需要进行一系列的参数计算。
首先,需要计算开关元件的导通和关断损耗。
根据开关元件的参数,可以计算其导通状态下的功耗和关断状态下的功耗。
然后,需要进行功率变压器的设计和计算。
根据输入电压和输出电压的比值,可以计算变压器的变比。
同时,根据输出功率的大小,可以计算变压器的功率。
接下来,需要计算整流电路的输出电压和输出电流。
根据变压器的变比和整流电路的设计,可以计算输出电压和输出电流的大小。
最后,需要计算滤波电路的电感和电容的取值。
可以根据输出电压纹波的要求,选择合适的电感和电容。
除了上述的设计和计算,还需要考虑到开关电源的保护和安全性。
例如,需要添加过压保护、过流保护和短路保护等电路来保护开关电源和输出负载的安全。
总之,开关电源的设计与计算是一个复杂的过程,需要考虑到多个因素。
通过正确的设计和计算,可以实现稳定、高效、安全的开关电源。
开关电源变压器的计算
开关电源变压器的计算一、开关电源变压器设计的基本原理1.输出功率的计算输出功率是决定变压器尺寸和设计的重要参数。
通常,输出功率可以通过以下公式计算:Pout = Vout * Iout其中,Pout为输出功率,Vout为输出电压,Iout为输出电流。
根据实际应用需求,可以确定输出功率。
2.输入电压范围的确定输入电压范围是指变压器能够工作的最小和最大输入电压。
根据实际应用需求和电网电压标准,可以确定输入电压范围。
3.输出电压的计算根据实际应用需求,可以确定输出电压。
输出电压主要由两个因素决定:输入电压和变压器变比。
可以根据以下公式计算输出电压:Vout = Vin * N2 / N1其中,Vout为输出电压,Vin为输入电压,N2为输出绕组匝数,N1为输入绕组匝数。
4.变压器的体积和重量的计算根据输入电压、输出功率和输出电压,可以计算变压器的体积和重量。
变压器的体积和重量主要由以下因素决定:输出功率、变压器结构和材料等。
二、开关电源变压器设计的步骤1.确定输出功率和输出电压。
2.计算输入电压范围。
3.根据输出电压计算变压器变比。
4.根据输入和输出电压、输出功率计算变压器的体积和重量。
5.根据实际应用需求选取合适的变压器结构和材料。
6.进行变压器的电磁设计和热设计。
7.进行变压器的样品制作和测试。
三、开关电源变压器设计中需要注意的问题在开关电源变压器设计中,需要注意以下问题:1.尽可能提高变压器的效率。
通过选择合适的材料、合理设计变压器结构和优化磁路设计,可以提高变压器的效率。
2.确保变压器的温升不超过允许的范围。
通过合理选择材料和冷却措施,可以有效控制变压器的温升。
3.考虑变压器的损耗。
变压器的损耗主要包括铜损耗和铁损耗。
合理选择导线截面积和变压器材料,可以降低损耗。
4.考虑变压器的磁导弹性。
变压器的磁导弹性是指在变压器工作时,磁导率随磁场强度的变化情况。
选择合适的铁芯材料和设计合理的磁路,可以降低磁导弹性对变压器性能的影响。
开关电源中变压器副边电压计算方法
开关电源中变压器副边电压计算方法
开关电源中,变压器作为一个重要的元件,扮演着将输入电压转换为需要的输出电压的关键角色。
变压器副边电压的计算方法对于电源设计来说尤为重要。
在开关电源中,变压器的副边电压取决于主边电压、变比和负载情况。
以下是计算变压器副边电压的方法:
1. 确定主边电压:主边电压是指将电源连接到变压器主边的电压值。
可以通过测量电源输出电压或根据设计需求来确定。
2. 确定变比:变比是指变压器主边和副边之间的电压比值。
可以通过变压器的规格参数来获取,通常以数字形式表示为"N:1"或"1:N"。
3. 计算副边电压:根据变比和主边电压,可以使用下列公式计算副边电压:
副边电压 = 主边电压 / 变比
例如,如果主边电压为12V,变比为2:1,那么副边电压为12V / 2 = 6V。
4. 考虑负载:在计算副边电压时,还需要考虑负载情况。
负载是指连接到变压器副边的电路或设备。
根据负载的电流要求,可以计算出变压器副边电压的最终数值。
需要注意的是,这只是一个基本的计算方法,并且在实际设计中可能还需要考虑其他因素,如电源效率、电压波动等。
因此,在实际应用中,建议与相关专业人士一起进行电源设计,以确保得到准确和可靠的结果。
总结起来,计算开关电源中变压器副边电压的方法包括确定主边电压,确定变比,并使用副边电压计算公式计算。
在计算过程中,要考虑负载情况,并根据设计需求和专业指导进行调整。
这样可以确保电源设计的效果和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串联式开关电源 摘要:开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。本文以串联式开关电源为例,介绍了开关电源设计中的某些主要参数计算问题。
关键词:串联式 开关电源 电容 电感 滤波 储能
1. 引言 可以说,有电器的地方就有电源。所有的电子设备都离不开可靠的电源为其供电。现代电子设备中的电路使用了大量的半导体器件,这些半导体需要几伏到几十伏的直流供电,以便得到正常工作所必需的能源。这些直流电源有的属于化学电源,如采用干电池和蓄电池,但这些不能持久性的供电。大多数电子设备的直流供电方法都是将交流电源经过变压、整流、滤波、稳压等变换为所需的直流 电压。完成这种变换任务的电源成为直流稳压电源。现代电子设备中使用的直流稳压电源有两大类:线性稳压电源和开关性稳压电源。所谓线性稳压电源就是其调整管工作在线性放大区,这种稳压电源的最主要的缺点是变换效率低,一般只有35%~60%左右。开关稳压电源的开关管工作在开关状态,其主要的优越性就是变换效率高,可高达70%~95%。目前,计算机、通信设备、雷达、电视及家用电器等现代电子设备中的稳压电源已基本采用了开关稳压电源。
根据开关器件在电路中连接的方式,目前比较广泛使用的开关电源大体上可分为:串联式开关电源、并联式开关电源、变压器式开关电源等三大类。这里我们对串联式开关电源工作原理进行简单介绍。
2. 串联式开关电源 1) 下图是串联式开光电源的原理图: 左图是串联式开关电源的最简单工作原理图,其中Ui是开关电源的工作电压,即:直流输入电压;K是控制开关,R是负载。当控制开关K接通的时候,开关电源就向负载R输出一个脉冲宽度为Ton,幅度为Ui的脉冲电压Up;当控制开关K关断的时候,又相当于开关电源向负载R输出一个脉冲宽度为Toff,幅度为0的脉冲电压。这样,控制开关K不停地“接通”和“关断”,在负载两端就可以得到一个脉冲调制的输出电压uo 。右图是串联式开关电源输出电压的波形,由图中看出,控制开关K输出电压uo是一个脉冲调制方波,脉冲幅度Up等于输入电压Ui,脉冲宽度等于控制开关K的接通时间Ton。 串联式开关电源属于降压型开关电源,有人称它为斩波器,由于它工作原理简单,工作效率很高,因此其在输出功率控制方面应用很广。例如,电动摩托车速度控制器以及灯光亮度控制器等,都是属于串联式开关电源的应用。如果串联式开关电源只单纯用于功率输出控制,电压输出可以不用接整流滤波电路,而直接给负载提供功率输出;但如果用于稳压输出,则必须要经过整流滤波。
2) 串联式开关电源输出电压滤波电路 大多数开关电源输出都是直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。下图是带有整流滤波功能的串联式开关电源工作原理图。
图1-2是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关K关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。 图1-3、图1-4、图1-5分别是控制开关K的占空比D等于0.5、< 0.5、> 0.5时,图1-2电路中几个关键点的电压和电流波形。图1-3-a)、图1-4-a)、图1-5-a)分别为控制开关K输出电压uo的波形;图1-3-b)、图1-4-b)、图1-5-b)分别为储能滤波电容两端电压uc的波形;图1-3-c)、图1-4-c)、图1-5-c)分别为流过储能电感L电流iL的波形。 在Ton期间,控制开关K接通,输入电压Ui通过控制开关K输出电压uo,然后加到储能滤波电感L和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL为:
式中:Ui输入电压,Uo为直流输出电压,即:电容两端的电压uc的平均值。 对(1-4)式进行积分得:
式中i(0)为控制开关K转换瞬间(t = 0时刻),即:控制开关K刚接通瞬间流过电感L的电流,或称流过电感L的初始电流。当控制开关K由接通期间Ton突然转换到关断期间Toff的瞬间,流过电感L的电流iL达到最大值:
在Toff期间,控制开关K关断,储能电感L把磁能转化成电流iL,通过整流二极管D继续向负载R提供能量,在此期间储能滤波电感L两端的电压eL为:
式中–Uo前的负号,表示K关断期间电感产生电动势的方向与K接通期间电感产生电动势的方向正好相反。对(1-7)式进行积分得: 式中i(Ton+)为控制开关K从Ton转换到Toff的瞬间之前流过电感的电流,i(Ton+)也可以写为i(Toff-),即:控制开关K关断或接通瞬间,之前和之后流过电感L的电流相等。实际上(1-8)式中的i(Ton+)就是(1-6)式中的iLm,即:
因此,(1-9)式可以改写为:
当t = Toff时iL达到最小值。其最小值为: 上面计算都是假设输出电压Uo基本不变的情况得到的结果,在实际应用电路中也正好是这样,输出电压Uo的电压纹波非常小,只有输出电压的百分之几,工程计算中完全可以忽略不计。 从(1-4)式到(1-11)和图1-3、图1-4、图1-5中可以看出:当开关电源工作于临界连续电流或连续电流状态时,在K接通和关断的整个周期内,储能电感L都有电流流出,但在K接通期间与K关断期间,流过储能电感L的电流的上升率(绝对值)一般是不一样的。在K接通期间,流过储能电感L的电流上升率为(Ui-U0)/L ;在K关断期间,流过储能电感L的电流上升率为:-Uo/L 。因此: (1)当Ui = 2Uo时,即滤波输出电压Uo等于电源输入电压Ui的一半时,或控制开关K的占空比D为二分之一时,流过储能电感L的电流上升率,在K接通期间与K关断期间绝对值完全相等,即电感存储能量的速度与释放能量的速度完全相等。此时,(1-5)式中i(0)和(1-11)式中iLX均等于0。在这种情况下,流过储能电感L的电流iL为临界连续电流,且滤波输出电压Uo等于滤波输入电压uo的平均值Ua。参看图1-3。 (2)当Ui > 2Uo时,即:滤波输出电压Uo小于电源输入电压Ui的一半时,或控制开关K的占空比小于二分之一时:虽然在K接通期间,流过储能电感L的电流上升率(绝对值),大于,在K关断期间,流过储能电感L的电流上升率(绝对值);但由于(1-5)式中i(0)等于0,以及Ton小于Toff,此时,(1-11)式中的iLX会出现负值,即输出电压反过来要对电感充电,但由于整流二极管D的存在,这是不可能的,这表示流过储能电感L的电流提前过0,即有断流。在这种情况下,流过储能电感L的电流iL不是连续电流,开关电源工作于电流不连续状态,因此,输出电压Uo的纹波比较大,且滤波输出电压Uo小于滤波输入电压uo的平均值Ua。参看图1-4。 (3)当Ui < 2Uo时,即:滤波输出电压Uo大于电源输入电压Ui的一半时,或控制开关K的占空比大于二分之一时:在K接通期间,虽然流过储能电感L的电流上升率(绝对值),小于,在K关断期间,流过储能电感L的电流上升率(绝对值)。但由于Ton大于Toff,(1-5)式中i(0)和(1-11)式中iLX均大于0,即:电感存储能量每次均释放不完。在这种情况下,流过储能电感L的电流iL是连续电流,开关电源工作于连续电流状态,输出电压Uo的纹波比较小,且滤波输出电压Uo大于滤波输入电压uo的平均值Ua。参看图1-5。
3) 串联式开关电源储能滤波电感的计算 从前文的分析可知,串联式开关电源输出电压Uo与控制开关的占空比D有关,还与储能电感L的大小有关,因为储能电感L决定电流的上升率(di/dt),即输出电流的大小。因此,正确选择储能电感的参数相当重要。 串联式开关电源最好工作于临界连续电流状态,或连续电流状态。串联式开关电源工作于临界连续电流状态时,滤波输出电压Uo正好是滤波输入电压uo的平均值Ua,此时,开关电源输出电压的调整率为最好,且输出电压Uo的纹波也不大。因此,我们可以从临界连续电流状态着手进行分析。我们先看(1-6)式:
当串联式开关电源工作于临界连续电流状态时,即D = 0.5时,i(0) = 0,iLm = 2Io,因此,(1-6)式可以改写为:
式中Io为流过负载的电流(平均电流),当D = 0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍Ton。由此求得:
或: (1-13)和(1-14)式,就是计算串联式开关电源储能滤波电感L的公式(D = 0.5时)。(1-13)和(1-14)式的计算结果,只给出了计算串联式开关电源储能滤波电感L的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。 如果增大储能滤波电感L的电感量,滤波输出电压Uo将小于滤波输入电压uo的平均值Ua,因此,在保证滤波输出电压Uo为一定值的情况下,势必要增大控制开关K的占空比D,以保持输出电压Uo的稳定;而控制开关K的占空比D增大,又将会使流过储能滤波电感L的电流iL不连续的时间缩短,或由电流不连续变成电流连续,从而使输出电压Uo的电压纹波ΔUP-P进一步会减小,输出电压更稳定。 如果储能滤波电感L的值小于(1-13)式的值,串联式开关电源滤波输出的电压Uo将大于滤波输入电压uo的平均值Ua,在保证滤波输出电压Uo为一定值的情况下,势必要减小控制开关K的占空比D,以保持输出电压Uo的值不变;控制开关K的占空比D减小,将会使流过滤波电感L的电流iL出现不连续,从