河北省保定市2018届高三上学期摸底考试数学(理)试题

合集下载

河北省邢台市2018届高三上学期第一次月考数学(理)试题Word版含答案

河北省邢台市2018届高三上学期第一次月考数学(理)试题Word版含答案

2017-2018学年高三(上)第一次月考数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数41iz i -=+的共轭复数的虚部为( ) A . 52i - B .52- C .52i D .522.已知全集{|08}U x Z x =∈<≤,集合{|2}(28)A x Z x m m =∈<<<<,若U C A 的元素的个数为4,则m 的取值范围为( )A .(6,7]B .[6,7)C . [6,7]D .(6,7) 3.已知函数()lg f x x =,则“1a >”是“()1f a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.在等差数列{}n a 中,59a =,且3226a a =+,则1a =( ) A .-3 B .-2 C. 0 D .15.下列函数中,在[1,1]-上与函数cos y x =的单调性和奇偶性都相同的是( ) A .22x x y -=- B .||1y x =+ C.2(2)y x x =+ D .22y x =-+6.若sin cos 4sin 5cos αααα+=-,则cos 2α=( )A .2425-B .725- C. 2425 D .7257.已知变量x y ,满足约束条件2360,25100,60,x y x y x -+≥⎧⎪-+≤⎨⎪-≤⎩,则目标函数z x y =+的最大值为( )A .12B .525 C. 465D .2 8.已知定义在(0,)+∞的函数()f x 的图象如图所示,则函数0.3()log ()g x f x =的单调递减区间为( )A .()a b ,B .(1)(3)a +∞,,, C.(,2)a D .(0,)a ,(,)b +∞ 9.将函数2()2sin (2)6f x x π=+的图象向右平移6π个单位后,得到新函数图象的对称轴方程为( )A .()424k x k Z ππ=+∈ B . ()412k x k Z ππ=-∈ C. ()412k x k Z ππ=+∈ D .()424k x k Z ππ=-∈ 10.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若||10AC =||2BC =,0GA GB GC ++=,则||||AB CG =( )A .3 BC.2 D 11. 已知函数()1ln g x x x =-+,给出下列两个命题:命题:(0,)p x ∃∈+∞,244()x x g x -+=.命题:q 若(2)()a x g x +>对(0,)x ∈+∞恒成立,则0a >. 那么,下列命题为真命题的是( )A.p q ∧B.()p q ⌝∧C.()p q ∧⌝D.()()p q ⌝∧⌝12. 设n S 为正项数列{}n a 的前n 项和,12a =,11(21)n n n S S S ++-+3(1)n n S S =+,记21nn i i T a ==∑则310log (21)T +=( )A .10B .11 C.20 D .21第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.记函数y =2ln(6)y x x =--的定义域分别为A B ,,则A B =∩ . 14.已知向量(,2)m x x =+与向量(1,3)n x =是共线向量,则||n = .15.若sin αα+=(,)36ππα∈-,tan()43πβ+=,则tan()αβ-= .16.在Rt ABC ∆中,AC BC ⊥,3BC =,5AB =,点D E 、分别在AC AB 、边上,且//DE BC ,沿着DE 将ADE ∆折起至'A DE ∆的位置,使得平面'A DE ∆⊥平面BCDE ,其中点'A 为点A 翻折后对应的点,则当四棱锥'A BCDE -的体积取得最大值时,AD 的长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,且2sin b a B =,tan 0A >. (1)求角A 的大小;(2)若1b =,c =ABC ∆的面积为S ,求aS. 18. 在ABC ∆中,角A B C ,,的对边分别是a b c ,,,已知4cos 3(cos cos )a A B b C =+. (1)证明:22232b c a bc +-=; (2)若6AB AC =•,求a 的最小值.19. 已知正项数列1}是公差为2的等差数列,且24是2a 与3a 的等比中项. (1)求数列的通项公式;(2)若(1)1n n b a -=,求数列{}n b 的前n 项和n S . 20. 设函数2()(1)ln x a x x ϕ=--,其中a R ∈. (1)讨论函数()x ϕ的单调性;(2)若关于x 的方程()0x a ϕ+=在[1,]x e ∈上有解,求a 的取值范围.21. 将函数sin y x =的图象的纵坐标不变,横坐标缩短为原来的14,得到函数()y f x =的图象.已知函数2()24g x x =-.(1)若函数()()p x g x kx =+在区间[1,2]上的最大值为5()24f π,求k 的值; (2)设函数()()()h x f x g x =-,证明:对任意(0,)λ∈+∞,都存在(0,)μ∈+∞,使得()0h x >在(,)4πλμ上恒成立.22.已知函数2()(22)xf x x x e =--.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)当0x >时,31()43f x x x a ≥-+恒成立,求a 的最大值;(3)设2()()(2)x F x xf x x x e =+-,若()F x 在5[,]2t t +的值域为18),求t的取值范围. 2.4≈,11.6≈)2017-2018学年高三(上)第一次月考数学试卷参考答案(理科)一、选择题1-5: DABAD 6-10: AABCB 11、12:BC二、填空题13.[3,2)--(或{32})x x -≤<-76-三、解答题17.解:(1)∵2sin b a B =,∴sin 2sin sin B A B =,sin 0B >, ∴1sin 2A =,∵tan 0A >,∴A 为锐角,∴6A π=.(2)∵2222cos a b c bc A =+-1127=+-=,∴a =又1sin 22S bc A ==,∴3a S =. 18. 解:(1)证明:由4cos 3(cos cos )a A c Bb C =+及正弦定理得,4sin cos A A 3(sin cos sin cos )C B B C =+3sin()B C =+=3sin A ,又sin 0A >,∴3cos 4A =,∴222324b c a bc +-=,即22232b c a bc +-=.(2)解:∵cos 6AB AC bc A ==,∴8bc =, 由余弦定理得2222cos a b c bc A =+-322bc bc ≥-142bc ==,∴2a ≥,∴a 的最小值为2.19. 解:(1)∵1}数列是公差为2的等差数列,112(1)n =+-,∴2(22)n a n =,∴22(2a =,23(4a =+.又24是2a 与3a 的等比中项,∴22223(2(424a a ==,∴(224+=2=8=-不合舍去),故数列{}n a 的通项公式为24n a n =.(2)∵(1)1n n b a -=,∴211141n n b a n ==--1(21)(21)n n =-+111()22121n n --+, ∴1111(12335n S =-+-11)2121n n ++--+11(1)22121nn n =-=++. 20. 解:(1)1'()2x ax x ϕ=-221(0)ax x x-=>,当0a ≤时,'()0x ϕ<,函数()x ϕ在(0,)+∞上单调递减. 当0a >时,由'()0x ϕ=,解得x =x =(舍), ∴当x ∈时,'()0x ϕ<,函数()x ϕ单调递减;当)x ∈+∞时,'()0x ϕ>,函数()x ϕ单调递增.综上,当0a ≤时,()x ϕ在(0,)+∞上单调递减;当0a >时,()x ϕ在上单调递减,在)+∞上单调递增. (2)由()0x a ϕ+=得2ln xa x =, 设2ln ()(1)x g x x e x =≤≤,312ln '()xg x x -=,当1x ≤<时,'()0g x >x e ≤时,'()0g x <.∴max 1()2g x g e ==. 又(1)0g =,21()g e e =,∴1()[0,]2g x e ∈,∴a 的取值范围为1[0,]2e.21. 解:(1)由题可得()sin 4f x x =,551()sin2462f ππ==.2()24p x x kx =-+,224()2816k k x =--++,[1,2]x ∈,当128k <<即816k <<时,max ()()28k p x p ==21162k +=,此方程无实数解.当28k ≥即16k ≥时,max 1()(2)2142p x p k ==-=,∴294k =,又16k ≥,则294k =不合题意.当18k ≤即8k ≤时,max 1()(1)22p x p k ==-=,∴52k =. 综上,52k =.(2)∵()y g x =在(0,)4π上递减,()y f x =在(0,)8π上递增,在(,)84ππ上递减, 且(0)(0)f g <,()()44f g ππ>,∴()y f x =与()y g x =的图象只有一个交点.设这个交点的横坐标为0(0,)4x π∈,则由图可知,当0(0,)x x ∈时,()()f x g x <,∴()0h x <;当0(,)4x x π∈时,()()f x g x >,∴()0h x >.故对任意(0,)λ∈+∞,都存在0(0,)x μλ=∈+∞,使得()0h x >在(,)4πλμ上恒成立.22. 解:(1)∵2'()(4)xf x x e =-,∴'(0)4f =-,又(0)2f =-,∴所求切线方程为24y x +=-,即42y x =--. (2)当0x >时,31()43f x x x a ≥-+,即31()43a f x x x ≤-+恒成立, 设31()()4(0)3g x f x x x x =-+>, 22'()(4)4x g x x e x =--+2(4)(1)x x e =--,当02x <<时,'()0g x <,()g x 递减;当2x >时,'()0g x >,()g x 递增. ∴2min 16()(2)23g x g e ==-+, ∴21623a e ≤-+,a 的最大值为21623e -+. (3)32()(3)xF x x x e =-,3'()(6)xF x x x e =-,令'()0F x <得x <或0x << 令'()0F x >得0x <<或x >.∴当x =()f x 取得极小值,当0x =时,()f x 取得极大值.∵(6(3)F e =18)F =∴(0F F <<.令()0F x =得0x =或3x =.∴0.52t t ≤⎧⎪⎨+≥⎪⎩532t t ⎧+=⎪⎨⎪≤⎩,∴51,0]{}22t ∈∪.。

【全国百强校】河北省衡水中学2018届高三上学期九模考试数学(理)试题(解析版)

【全国百强校】河北省衡水中学2018届高三上学期九模考试数学(理)试题(解析版)

2017~2018学年度上学期高三年级九模考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若全集为实数集)C. D.【答案】D【解析】由,∴故选:D点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. )【答案】A【解析】,据此可得,的虚部为.本题选择A选项.3. 命题“)【解析】因为全称命题的否定是特称命题,所以,命题“∀n∈N,f(n)∉N且f(n)≤n”的否定形式是:∃n0∈N,f(n0)∈N或f(n0)>n0,故选C.点睛:(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M中的一个特殊值x0,使p(x0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x=x0,使p(x0)成立即可,否则就是假命题.4. 阅读如图所示的程序框图,若输入的)A. 计算数列10项和B. 计算数列9项和C. 计算数列10项和D. 计算数列9项和【答案】B【解析】框图首先给累加变量S和循环变量i赋值,S=0,i=1;判断i>9不成立,执行S=1+2×0=1,i=1+1=2;判断i>9不成立,执行S=1+2×1=1+2,i=2+1=3;判断i>9不成立,执行S=1+2×(1+2)=1+2+22,i=3+1=4;…判断i>9不成立,执行S=1+2+22+…+28,i=9+1=10;判断i>9成立,输出S=1+2+22+ (28)故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5. 1)A. -2B. -1C. 1D. 2【答案】A中点的横坐标为1则纵坐标为代入直线点睛:本题主要考查了直线与椭圆相交的性质的应用,要注意灵活应用题目中的直线的中点即直线的斜率的条件的表示,本题中设而不求的解法是处理直线与圆锥取消相交中涉及到斜率与中点时常用的方法,比较一般联立方程的方法可以简化基本运算。

【全国百强校】河北省衡水中学2018届高三上学期九模考试数学(理)试题(解析版)

【全国百强校】河北省衡水中学2018届高三上学期九模考试数学(理)试题(解析版)

2017~2018学年度上学期高三年级九模考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ,集合)A. C. D.【答案】D,∴故选:D点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. )C.【答案】A【解析】,据此可得,的虚部为.本题选择A选项.3. )或 B.D.【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“∀n∈N,f(n)∉N且f(n)≤n”的否定形式是:∃n0∈N,f(n0)∈N或f(n0)>n0,故选C.点睛:(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M中的一个特殊值x0,使p(x0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x=x0,使p(x0)成立即可,否则就是假命题.4. )A. 10项和B. 的前9项和C. 10项和D. 计算数列9项和【答案】B【解析】框图首先给累加变量S和循环变量i赋值,S=0,i=1;判断i>9不成立,执行S=1+2×0=1,i=1+1=2;判断i>9不成立,执行S=1+2×1=1+2,i=2+1=3;判断i>9不成立,执行S=1+2×(1+2)=1+2+22,i=3+1=4;…判断i>9不成立,执行S=1+2+22+…+28,i=9+1=10;判断i>9成立,输出S=1+2+22+ (28)算法结束.故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5. 1)A. -2B. -1C. 1D. 2【答案】A中点的横坐标为1代入直线点睛:本题主要考查了直线与椭圆相交的性质的应用,要注意灵活应用题目中的直线的中点即直线的斜率的条件的表示,本题中设而不求的解法是处理直线与圆锥取消相交中涉及到斜率与中点时常用的方法,比较一般联立方程的方法可以简化基本运算。

高三数学上学期摸底考试试题理(2021学年)

高三数学上学期摸底考试试题理(2021学年)

河北省邯郸市2018届高三数学上学期摸底考试试题理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省邯郸市2018届高三数学上学期摸底考试试题理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省邯郸市2018届高三数学上学期摸底考试试题理的全部内容。

2018届河北省邯郸市高三上学期摸底考试 数学(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-->,{|0}B x x =>,则A B =( ) A .(1,2) B.(0,2) C.(2,)+∞ D.(1,)+∞ 2。

若复数z 满足(1)23i z i -=+,则复数z 的实部与虚部之和为( ) A.-2 B.2 C.—4 D .4 3。

在ABC ∆中,若4AB AC AP +=,则PB =( ) A .3144AB AC - B.3144AB AC -+ C.1344AB AC -+ D.1344AB AC -4. 12,F F 分别是双曲线C :22197x y -=的左、右焦点,P 为双曲线C 右支上一点,且1||8PF =,则12PF F ∆的周长为( )A. 15 B .16 C 。

17 D .185.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为( ) A.127 B .23 C . 827 D.496.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A.4,10n V ==B.5,12n V ==C. 4,12n V ==D.5,10n V ==7。

【高三数学试题精选】2018届高三数学上册第一次摸底考试试题030

【高三数学试题精选】2018届高三数学上册第一次摸底考试试题030

2018届高三数学上册第一次摸底考试试题030
5 c 内蒙古元宝区第一中学
1,0,0),P(0,0,2)
…………7分
设平面PBc的法向量为,则
得n=(2,1,1)…………9分
设平面PBD的法向量为=(0,1,0)…………10分
∵二面角D—PB—c为锐二面角,
∴二面角D—PB—c的大小为…………12分
20.解(I)是等差数列,差为1,首项
又…………4分
(II)① …………6分
…………8分
21.解(I)① …………2分
…………4分
(II)时是增函数,…………6分
的第阶阶梯函数图象的最高点为
第+1阶阶梯函数图象的最高点为…………10分
∴过P,P+1这两点的直线斜率为
同是可得过两点的直线斜率也为
的各阶阶梯函数图象的最高点共线。

…………12分22.解(I)设直线的方程为
由…………2分
由题知
且…………3分

…………4分
∴直线的斜率与p之间的关系为…………4分。

精品解析:河北省衡水中学2018届高三上学期九模考试数学(理)试题(解析版)最新修正版

精品解析:河北省衡水中学2018届高三上学期九模考试数学(理)试题(解析版)最新修正版

2017~2018学年度上学期高三年级九模考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若全集为实数集,集合,则()A. B. C. D.【答案】D【解析】由,得,即∴,∴故选:D点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 已知是虚数单位,是的共轭复数,,则的虚部为()A. B. C. D.【答案】A【解析】由题意可得:,则,据此可得,的虚部为.本题选择A选项.3. 命题“且”的否定形式是()A.或 B. 或C. 或D. 且【答案】C【解析】因为全称命题的否定是特称命题,所以,命题“∀n∈N,f(n)∉N且f(n)≤n”的否定形式是:∃n0∈N,f(n0)∈N或f(n0)>n0,故选C.点睛:(1)对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.(2)判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判定一个全称命题是假命题,只要举出集合M中的一个特殊值x0,使p(x0)不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个x=x0,使p(x0)成立即可,否则就是假命题.4. 阅读如图所示的程序框图,若输入的,则该算法的功能是()A. 计算数列的前10项和B. 计算数列的前9项和C. 计算数列的前10项和D. 计算数列的前9项和【答案】B【解析】框图首先给累加变量S和循环变量i赋值,S=0,i=1;判断i>9不成立,执行S=1+2×0=1,i=1+1=2;判断i>9不成立,执行S=1+2×1=1+2,i=2+1=3;判断i>9不成立,执行S=1+2×(1+2)=1+2+22,i=3+1=4;…判断i>9不成立,执行S=1+2+22+…+28,i=9+1=10;判断i>9成立,输出S=1+2+22+ (28)算法结束.故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5. 直线交椭圆于两点,若线段中点的横坐标为1,则()A. -2B. -1C. 1D. 2【答案】A【解析】,设,,两式相减,中点的横坐标为1则纵坐标为将代入直线,解得点睛:本题主要考查了直线与椭圆相交的性质的应用,要注意灵活应用题目中的直线的中点即直线的斜率的条件的表示,本题中设而不求的解法是处理直线与圆锥取消相交中涉及到斜率与中点时常用的方法,比较一般联立方程的方法可以简化基本运算。

最新-解析河北省保定市2018届高三数学上学期期末调研考试 文教师版 精品

保定市2018届高三上学期期末调研考试【试题总体说明】试题总体看来,结构是由易到难,梯度把握比较好,具有一定的区分度, 整体难度适中。

无偏、难、怪题出现,遵循了科学性、公平性、规范性的原则,彰显了时代精神,为新课标的高考进行了良好的铺垫。

作为阶段性考查,本套试题没有涉及到选做题是一个遗憾。

主要通过以下命题特点来看:第一,立足教材,紧扣考纲,突出基础。

如选择2,3等;第二,强化主干知识,知识涵盖广,题目亲切,难度适中。

如选择12.第三,突出思想方法,注重能力考查。

"考查基础知识的同时,注重考查能力"为命题的指导思想,将知识、能力和素质融为一体,全面检测了考生的数学素养,几乎每个试题都凝聚了命题人对数学思维和方法的考查如解答题22.第四,结构合理,注重创新,展露新意。

如填空16题。

第I 卷(选择题共60分)注意事项:1. 答第I 卷前,考生务必将自己的&名、学号、学,校、考试科目用铅笔涂写在答题卡上2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。

3. 考试结束后,监考人员将本试卷和答题卡一并收回一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知复数z 的实部为1,虚部为2-,则()5i z = A 、105i + B 、510i + C 、510i -- D 、2i -+3. 已知向量(cos ,2),(sin ,1)a b αα=-=,且a b ∥,则tan()4πα-等于A 、3B 、13C 、3-D 、13-答案:C解析:1cos 2sin tan ,2a b ααα∴=-∴=-∥112tan()3141()2πα--∴-==-+-.4.已知:"p a ,:"q 直线0x y +=与圆22()1x y a +-=相切",则p 是q 的 A.充分非必要条件 B 必要非充分条件. C 充要条件 D.既非充分也非必要条件 答案:A解析:当:"p a 时,:"q 直线0x y +=与圆22()1x y a +-=相切成立,而当:"q 直线0x y +=与圆22()1x y a +-=相切时,a =:"p a =不一定成立,所以p 是q 的充分不必要条件。

河北省保定市定州中学2018届高三上学期期中数学试卷

2018-2018学年河北省保定市定州中学高三(上)期中数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.是z的共轭复数,若z+=2,(z﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i2.已知向量与的夹角为60°,||=2,||=5,则2﹣在方向上的投影为()A.B.2 C.D.33.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.9日B.8日C.16日D.12日4.已知a>0,b>0,若不等式﹣﹣≤0恒成立,则m的最大值为()A.4 B.16 C.9 D.35.动点P(x,y)满足,点Q为(1,﹣1),O为原点,λ||=,则λ的最大值是()A.﹣1 B.1 C.2 D.6.如图为某几何体的三视图,则该几何体的表面积为()A.10+B.10+C.6+2+D.6++7.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0,),则函数g(x)=cos (2x﹣φ)的图象()A.关于点(,0)对称B.可由函数f(x)的图象向右平移个单位得到C .可由函数f (x )的图象向左平移个单位得到D .可由函数f (x )的图象向左平移个单位得到8.△ABC 中,若sinC=(cosA +sinA )cosB ,则( )A .B=B .2b=a +cC .△ABC 是直角三角形D .a 2=b 2+c 2或2B=A +C9.已知数列{a n }满足a 1=1,a n +1=(n ∈N *),若b n +1=(n ﹣2λ)•(+1)(n ∈N *),b 1=﹣λ,且数列{b n }是单调递增数列,則实数λ的取值范围是( )A .B .C .D .10.如图,正方形ABCD 中,M 是BC 的中点,若=λ+μ,则λ+μ=( )A .B .C .D .211.已知函数f (x )=ax 3+x 2在x=﹣1处取得极大值,记g (x )=.程序框图如图所示,若输出的结果S >,则判断框中可以填入的关于n 的判断条件是( )A .n ≤2018?B .n ≤2018?C .n >2018?D .n >2018?12.已知{a n }满足a 1=1,a n +a n +1=()n (n ∈N *),S n =a 1+4a 2+42a 3+…+4n ﹣1a n ,则5S n ﹣4n a n =( )A .n ﹣1B .nC .2nD .n 2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.数列{a n }满足:a 1=1,且对任意的m ,n ∈N *都有:a n +m =a n +a m +nm ,则a 100= .14.已知在△ABC中,∠A=,AB=2,AC=4,=,=,=,则•的值为.15.在△ABC内角A,B,C的对边分别是a,b,c,cos=,且acosB+bcosA=2,则△ABC的面积的最大值为.16.已知方程ln|x|﹣ax2+=0有4个不同的实数根,則实数a的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C的对边分别是a,b,c,且acosC=(2b﹣c)cosA.(1)求角A的大小;(2)求cos(﹣B)﹣2sin2的取值范围.18.设数列{a n}的前n和为S n,a1=1,S n=na n﹣2n2+2n(n∈N*).(1)求证:数列{a n}为等差数列,并分别写出a n和S n关于n的表达式;(2)是否存在自然数n,使得S1+++…++2n=1124?若存在,求出n的值;若不存在,请说明理由;(3)设c n=(n∈N*),T n=c1+c2+c3+…+c n(n∈N*),若不等式T n>(m∈Z),对n∈N*恒成立,求m的最大值.19.如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B,P在单位圆上,且B(﹣,),∠AOB=α.(1)求的值;(2)若四边形OAQP是平行四边形,(i)当P在单位圆上运动时,求点O的轨迹方程;(ii)设∠POA=θ(0≤θ≤2π),点Q(m,n),且f(θ)=m+n.求关于θ的函数f(θ)的解析式,并求其单调增区间.20.已知函数f(x)=x﹣+alnx(a∈R).(1)若函数f (x )在[1,+∞)上单调递增,求实数a 的取值范围;(2)已知g (x )=x 2+(m ﹣1)x +,m ≤﹣,h (x )=f (x )+g (x ),当时a=1,h(x )有两个极值点x 1,x 2,且x 1<x 2,求h (x 1)﹣h (x 2)的最小值.21.在单调递增数列{a n }中,a 1=2,a 2=4,且a 2n ﹣1,a 2n ,a 2n +1成等差数列,a 2n ,a 2n +1,a 2n +2成等比数列,n=1,2,3,….(Ⅰ)(ⅰ)求证:数列为等差数列;(ⅱ)求数列{a n }的通项公式.(Ⅱ)设数列的前n 项和为S n ,证明:S n >,n ∈N *.四、解答题(共1小题,满分10分)22.在平面直角坐标系中,曲线C 1的参数方程为(a >b >0,φ为参数),以Ο为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,已知曲线C 1上的点M (2,)对应的参数φ=.θ=与曲线C 2交于点D (,).(1)求曲线C 1,C 2的直角坐标方程;(2)A (ρ1,θ),B (ρ2,θ+)是曲线C 1上的两点,求+的值.[选修4-5:不等式选讲]23.已知f (x )=|x ﹣2|+|x +1|+2|x +2|. (1)求证:f (x )≥5;(2)若对任意实数x ,15﹣2f (x )<a 2+都成立,求实数a 的取值范围.2018-2018学年河北省保定市定州中学高三(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.是z的共轭复数,若z+=2,(z﹣)i=2(i为虚数单位),则z=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i【考点】复数代数形式的乘除运算.【分析】由题,先求出z﹣=﹣2i,再与z+=2联立即可解出z得出正确选项.【解答】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①又z+=2 ②由①②解得z=1﹣i故选D.2.已知向量与的夹角为60°,||=2,||=5,则2﹣在方向上的投影为()A.B.2 C.D.3【考点】平面向量数量积的运算.【分析】根据平面向量数量积的定义与投影的定义,进行计算即可.【解答】解:∵向量与的夹角为60°,且||=2,||=5,∴(2﹣)•=2﹣•=2×22﹣5×2×cos60°=3,∴向量2﹣在方向上的投影为=.故选:A.3.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.9日B.8日C.16日D.12日【考点】等比数列的前n项和.【分析】良马每日行的距离成等差数列,记为{a n},其中a1=118,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5.求和即可得到答案.【解答】解:由题意知,良马每日行的距离成等差数列,记为{a n},其中a1=118,d=13;驽马每日行的距离成等差数列,记为{b n},其中b1=97,d=﹣0.5;设第m天相逢,则a1+a2+…+a m+b1+b2+…+b m=118m++97m+=2×1125,解得:m=9.故选:A.4.已知a>0,b>0,若不等式﹣﹣≤0恒成立,则m的最大值为()A.4 B.16 C.9 D.3【考点】基本不等式.【分析】不等式恒成立⇒的最小值,利用不等式的基本性质求出即可.【解答】解:不等式恒成立⇒的最小值,∵a>0,b>0,=10+≥10+=16,当且仅当,即a=b时取等号.∴m≤16,即m的最大值为16.故选B.5.动点P(x,y)满足,点Q为(1,﹣1),O为原点,λ||=,则λ的最大值是()A.﹣1 B.1 C.2 D.【考点】简单线性规划.【分析】根据向量的数量积公式将条件进行化简,利用数形结合即可得到结论.【解答】解::∵λ||==,∴λ=||cos<>,作出不等式组对应的平面区域如图,则OQ,OA的夹角最小,由,解得,即A(3,1),则=(3,1),又,则cos<>===,∴λ的最大值是||cos<>=.故选:D.6.如图为某几何体的三视图,则该几何体的表面积为()A.10+B.10+C.6+2+D.6++【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为一个四棱锥,如图所示,CD⊥底面PAD,BA⊥底面PAD,PA⊥AD,PA=AD=CD=2,AB=1.即可得出.【解答】解:由三视图可知:该几何体为一个四棱锥,如图所示,CD⊥底面PAD,BA⊥底面PAD,PA⊥AD,PA=AD=CD=2,AB=1.PC=2,PB=,BC=.==.∴S△PBC该几何体的表面积S=++++=6+.故选:C.7.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0,),则函数g(x)=cos (2x﹣φ)的图象()A.关于点(,0)对称B.可由函数f(x)的图象向右平移个单位得到C.可由函数f(x)的图象向左平移个单位得到D.可由函数f(x)的图象向左平移个单位得到【考点】余弦函数的对称性.【分析】由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:∵函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0,),∴φ=,∴f(x)=2sinxsin(x+)=sin2x=cos(2x﹣)=cos2(x﹣),则函数g(x)=cos(2x﹣φ)=cos(2x﹣)=cos2(x﹣)的图象可由函数f(x)的图象向左平移个单位得到的,故选:C.8.△ABC中,若sinC=(cosA+sinA)cosB,则()A.B=B.2b=a+cC.△ABC是直角三角形D.a2=b2+c2或2B=A+C【考点】正弦定理;余弦定理.【分析】根据诱导公式和两角和的正弦公式化简已知的方程,由内角的范围和特殊角的余弦值分类两种情况讨论,分别化简后可得答案.【解答】解:△ABC中,∵C=π﹣(A+B),∴sinC=sin(A+B),代入sinC=(cosA+sinA)cosB得,sin(A+B)=(cosA+sinA)cosB,化简可得,cosAsinB=cosAcosB,①∵0<A<π,∴分两种情况讨论,(1)当cosA ≠0时,①化为sinB=cosB ,则tanB=,∵0<B <π,∴B=,则A +C=π﹣B==2B ;(2)当cosA=0时,A=,则a 2=b 2+c 2,综上可得,a 2=b 2+c 2或2B=A +C , 故选:D .9.已知数列{a n }满足a 1=1,a n +1=(n ∈N *),若b n +1=(n ﹣2λ)•(+1)(n ∈N *),b 1=﹣λ,且数列{b n }是单调递增数列,則实数λ的取值范围是( )A .B .C .D .【考点】数列递推式.【分析】由数列递推式得到{+1}是首项为2,公比为2的等比数列,求出其通项公式后代入b n +1=(n ﹣2λ)•2n ,由b 2>b 1求得实数λ的取值范围,验证满足b n +1=(n ﹣2λ)•2n 为增函数得答案.【解答】解:由a n +1=得,则,+1=2(+1)由a 1=1,得+1=2,∴数列{+1}是首项为2,公比为2的等比数列,∴+1=2×2n ﹣1=2n ,由b n +1=(n ﹣2λ)•(+1)=(n ﹣2λ)•2n ,∵b 1=﹣λ,b 2=(1﹣2λ)•2=2﹣4λ,由b 2>b 1,得2﹣4λ>﹣λ,得λ<, 此时b n +1=(n ﹣2λ)•2n 为增函数,满足题意.∴实数λ的取值范围是(﹣∞,).故选:C10.如图,正方形ABCD 中,M 是BC 的中点,若=λ+μ,则λ+μ=( )A.B.C.D.2【考点】向量在几何中的应用.【分析】根据向量加法、减法及数乘的几何意义便可得出,带入并进行向量的数乘运算便可得出,而,这样根据平面向量基本定理即可得出关于λ,μ的方程组,解出λ,μ便可得出λ+μ的值.【解答】解:,,;∴===;∴由平面向量基本定理得:;解得;∴.故选B.11.已知函数f(x)=ax3+x2在x=﹣1处取得极大值,记g(x)=.程序框图如图所示,若输出的结果S>,则判断框中可以填入的关于n的判断条件是()A .n ≤2018?B .n ≤2018?C .n >2018?D .n >2018?【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量S 的值,模拟程序的运行过程,可得答案.【解答】解:函数f (x )=ax 3+x 2,在x=﹣1处取得极大值, 即f ′(x )=3ax 2+x 的零点为﹣1,即 3a ﹣a=0,解得:a=, 故f ′(x )=x 2+x ,故g (x )==﹣,则S=g (1)+g (2)+g (3)+…+g (k )=1﹣=,若输出的结果S >,则k >2018,故进行循环的条件应为n ≤2018?, 故选:B .12.已知{a n }满足a 1=1,a n +a n +1=()n (n ∈N *),S n =a 1+4a 2+42a 3+…+4n ﹣1a n ,则5S n ﹣4n a n =( )A .n ﹣1B .nC .2nD .n 2【考点】数列的求和.【分析】a n +a n +1=()n (n ∈N *),变形为:a n +1﹣=﹣,利用等比数列通项公式即可得出.【解答】解:∵a n +a n +1=()n (n ∈N *),∴a n +1﹣=﹣,∴数列是等比数列,首项为,公比为﹣1.∴a n =+×(﹣1)n ﹣1.4n ﹣1a n =+(﹣1)n ﹣1××4n .4n a n =+(﹣1)n ﹣1×.∴5S n =n ﹣=n +﹣.∴5S n ﹣4n a n =n . 故选:B .二、填空题(每题5分,满分20分,将答案填在答题纸上)13.数列{a n }满足:a 1=1,且对任意的m ,n ∈N *都有:a n +m =a n +a m +nm ,则a 100= 5180 . 【考点】数列递推式.【分析】令m=1,a n +1=a n +1+n ′⇒a n +1﹣a n =1+n 再利用累加法求得a 100. 【解答】解:令m=1,a n +1=a n +1+n ⇒a n +1﹣a n =1+n ,再利用累加法求得:a 100=(a 100﹣a 99)+(a 100﹣a 99)+(a 99﹣a 98)+…+(a 2﹣a 1)+a 1=100+99+98+…+2+1=5180 故答案:5180.14.已知在△ABC 中,∠A=,AB=2,AC=4,=,=,=,则•的值为 ﹣ .【考点】平面向量数量积的运算.【分析】首先建立平面直角坐标系,根据向量间的关系式,求出向量的坐标,最后求出向量的数量积.【解答】解:在△ABC 中,∠A=,建立直角坐标系,AB=2,AC=4, =,=,=,根据题意得到:则:A (0,0),F (0,1),D (1,),E (2,0)所以:,所以:故答案为:﹣15.在△ABC 内角A ,B ,C 的对边分别是a ,b ,c ,cos =,且acosB +bcosA=2,则△ABC 的面积的最大值为 .【考点】正弦定理.【分析】所求的式子cosC 利用二倍角的余弦函数公式化简后,将已知的cos 的值代入即可求出cosC 值,利用余弦定理分别表示出cosB 和cosA ,代入到已知的等式中,化简后即可求出c 的值,然后利用余弦定理表示出c 2=a 2+b 2﹣2abcosC ,把c 及cosC 的值代入后,利用基本不等式即可求出ab的最大值,然后由cosC的值,及C的范围,利用同角三角函数间的基本关系求出sinC的值,利用三角形的面积公式表示出三角形ABC的面积,把ab的最大值及sinC的值代入即可求出面积的最大值.【解答】(本题满分为14分)解:∵cos=,∴cosC=2cos2﹣1=2()2﹣1=;…∵acosB+bcosA=2,∴a×+b×=2,∴c=2,…∴4=a2+b2﹣2ab×≥2ab﹣2ab×=ab,∴ab≤(当且仅当a=b=时等号成立)…由cosC=,得sinC=…∴S△ABC=absinC≤××=,故△ABC的面积最大值为…16.已知方程ln|x|﹣ax2+=0有4个不同的实数根,則实数a的取值范围是.【考点】根的存在性及根的个数判断.【分析】根据函数与方程的关系,利用参数分离式进行转化,构造函数,求出函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.【解答】解:由ln|x|﹣ax2+=0,得ax2=ln|x|+,∵x≠0,∴方程等价为a=,设f(x)=,则函数f(x)是偶函数,当x>0时,f(x)=,则f′(x)==,由f′(x)>0得﹣2x(1+lnx)>0,得1+lnx<0,即lnx<﹣1,得0<x<,此时函数单调递增,由f′(x)<0得﹣2x(1+lnx)<0,得1+lnx>0,即lnx>﹣1,得x>,此时函数单调递减,即当x>0时,x=时,函数f(x)取得极大值f()==(﹣1+)e2=e2,作出函数f(x)的图象如图:要使a=,有4个不同的交点,则满足0<a<,故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,角A,B,C的对边分别是a,b,c,且acosC=(2b﹣c)cosA.(1)求角A的大小;(2)求cos(﹣B)﹣2sin2的取值范围.【考点】正弦定理.【分析】(Ⅰ)由正弦定理化简等式整理可得sinB=2sinBcosA ,又sinB ≠0,可求,结合A 为内角即可求得A 的值.(Ⅱ)由三角函数恒等变换化简已知可得sin (B ﹣)﹣1,由可求B ﹣的范围,从而可求,即可得解.【解答】解:(Ⅰ)由正弦定理可得,,从而可得,,即sinB=2sinBcosA ,又B 为三角形的内角,所以sinB ≠0,于是,又A 亦为三角形内角,因此,.…(Ⅱ)∵,=,=,由可知,,所以,从而,因此,,故的取值范围为.…18.设数列{a n }的前n 和为S n ,a 1=1,S n =na n ﹣2n 2+2n (n ∈N *).(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式; (2)是否存在自然数n ,使得S 1+++…++2n =1124?若存在,求出n 的值; 若不存在,请说明理由; (3)设c n =(n ∈N *),T n =c 1+c 2+c 3+…+c n (n ∈N *),若不等式T n >(m ∈Z ),对n ∈N *恒成立,求m 的最大值.【考点】数列递推式;数列的求和.【分析】(1)由,利用递推关系a n =可得a n ﹣a n ﹣1=4(n ≥2).利用等差数列的通项公式与求和公式即可得出:a n ,S n .(2)由(1)可得:=2n ﹣1.利用等差数列的求和公式即可得出.(3)利用“裂项求和方法”、数列的单调性即可得出.【解答】(1)证明:由,得,相减得a n =na n ﹣(n ﹣1)a n ﹣1﹣4n +4⇒(n ﹣1)a n ﹣(n ﹣1)a n ﹣1=4(n ﹣1)⇒a n ﹣a n ﹣1=4(n ≥2).故数列{a n }是首项为1,公差为4的等差数列.∴a n =1+4(n ﹣1)=4n ﹣3.S n ==2n 2﹣n .(2)解:由(1)可得: =2n ﹣1.∴,由n 2+2n =1124,得n=10,即存在满足条件的自然数n=10. (3)解:=,∵,∴T n <T n +1,即T n 单调递增,故要使恒成立,只需成立,即m <8(m ∈Z ).故符合条件m 的最大值为7.19.如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点B ,P 在单位圆上,且B (﹣,),∠AOB=α.(1)求的值;(2)若四边形OAQP 是平行四边形,(i )当P 在单位圆上运动时,求点O 的轨迹方程;(ii )设∠POA=θ(0≤θ≤2π),点Q (m ,n ),且f (θ)=m +n .求关于θ的函数f (θ)的解析式,并求其单调增区间.【考点】轨迹方程;三角函数的化简求值.【分析】(1)由三角函数定义得tanα=﹣2,再弦化切代入计算,即可求求的值;(2)(i)设PA中点为H,P(x1,y1),Q(x,y),则,,由此可求点O的轨迹方程;(ii)确定,即可求其单调增区间.【解答】解:(1)由三角函数定义得tanα=﹣2,所以原式=.(2)∵四边形OAQP是平行四边形,∴PA与OQ互相平分,(i)设PA中点为H,P(x1,y1),Q(x,y),则,,又,所以,代入上式得点Q的轨迹方程为(x﹣1)2+y2=1.(ii)依题意得,又由(i)知,∴,∴∵,∴或,∴f(θ)的增区间为和.20.已知函数f(x)=x﹣+alnx(a∈R).(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;(2)已知g(x)=x2+(m﹣1)x+,m≤﹣,h(x)=f(x)+g(x),当时a=1,h(x)有两个极值点x1,x2,且x1<x2,求h(x1)﹣h(x2)的最小值.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的极值.【分析】(1)利用函数单调性和导数之间的关系进行求解即可.(2)求出函数h(x)的表达式,求出函数h(x)的导数,利用函数极值,最值和导数之间的关系进行求解.【解答】解:(1)∵f (x )=x ﹣+alnx ,∴f ′(x )=1++,∵f (x )在[1,+∞)上单调递增,∴f ′(x )=1++≥0在[1,+∞)上恒成立,∴a ≥﹣(x +)在[1,+∞)上恒成立, ∵y=﹣x ﹣在[1,+∞)上单调递减, ∴y ≤﹣2, ∴a ≥﹣2;(2)h (x )=f (x )+g (x )=lnx +x 2+mx ,其定义域为(0,+∞),求导得,h ′(x )=,若h ′(x )=0两根分别为x 1,x 2,则有x 1•x 2=1,x 1+x 2=﹣m ,∴x 2=,从而有m=﹣x 1﹣,∵m ≤﹣,x 1<x 2,∴x 1∈[,1]则h (x 1)﹣h (x 2)=h (x 1)﹣h ()=2lnx 1+(﹣)+(﹣x 1﹣)(x 1﹣),令φ(x )=2lnx ﹣(x 2﹣),x ∈[,1].则[h (x 1)﹣h (x 2)]min =φ(x )min ,φ′(x )=﹣,当x ∈(,1]时,φ′(x )<0,∴φ(x )在[,1]上单调递减,φ(x )min =φ(1)=0,∴h (x 1)﹣h (x 2)的最小值为0.21.在单调递增数列{a n }中,a 1=2,a 2=4,且a 2n ﹣1,a 2n ,a 2n +1成等差数列,a 2n ,a 2n +1,a 2n +2成等比数列,n=1,2,3,….(Ⅰ)(ⅰ)求证:数列为等差数列;(ⅱ)求数列{a n }的通项公式.(Ⅱ)设数列的前n 项和为S n ,证明:S n >,n ∈N *.【考点】数列的求和;等差关系的确定;等差数列的性质. 【分析】(Ⅰ)(ⅰ)通过题意可知2a 2n =a 2n ﹣1+a 2n +1、,化简即得结论;(ⅱ)通过计算可知数列的首项及公差,进而可得结论;(2)通过(ii )、放缩、裂项可知>4(﹣),进而并项相加即得结论.【解答】(Ⅰ)(ⅰ)证明:因为数列{a n }为单调递增数列,a 1=2>0, 所以a n >0(n ∈N *).由题意得2a 2n =a 2n ﹣1+a 2n +1,,于是,化简得,所以数列为等差数列.﹣﹣﹣﹣﹣﹣(ⅱ)解:因为a 3=2a 2﹣a 1=6,,所以数列的首项为,公差为,所以,从而.结合,可得a 2n ﹣1=n (n +1).因此,当n 为偶数时a n =,当n 为奇数时a n =.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)证明:通过(ii )可知=.因为a n =,所以,∴+…=,所以,n∈N*.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣四、解答题(共1小题,满分10分)22.在平面直角坐标系中,曲线C1的参数方程为(a>b>0,φ为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M(2,)对应的参数φ=.θ=与曲线C2交于点D(,).(1)求曲线C1,C2的直角坐标方程;(2)A(ρ1,θ),B(ρ2,θ+)是曲线C1上的两点,求+的值.【考点】简单曲线的极坐标方程.【分析】(1)将曲线C1上的点M(2,)对应的参数φ=.代入曲线C1的参数方程为(a>b>0,φ为参数),即可解得:a,b.即可得出普通方程.设圆C2的半径R,则圆C2的方程为:ρ=2Rcosθ,将点D(,)解得R可得圆C2的方程为:ρ=2cosθ,即可化为直角坐标方程.(2)将A(ρ1,θ),Β(ρ2,θ+)代入C1得:,代入+即可得出.【解答】解:(1)将曲线C1上的点M(2,)对应的参数φ=.代入曲线C1的参数方程为(a>b>0,φ为参数),得:解得:,∴曲线C1的方程为:(φ为参数),即:.设圆C2的半径R,则圆C2的方程为:ρ=2Rcosθ,将点D(,)代入得:=2R×,∴R=1∴圆C2的方程为:ρ=2cosθ即:(x﹣1)2+y2=1.(2)将A(ρ1,θ),Β(ρ2,θ+)代入C1得:,∴+=()+()=.[选修4-5:不等式选讲]23.已知f(x)=|x﹣2|+|x+1|+2|x+2|.(1)求证:f(x)≥5;(2)若对任意实数x,15﹣2f(x)<a2+都成立,求实数a的取值范围.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)通过讨论x的范围,得到关于f(x)的分段函数,从而求出f(x)的最小值即可;(Ⅱ)根据基本不等式的性质求出a的范围即可.【解答】(Ⅰ)证明:∵,∴f(x)的最小值为5,∴f(x)≥5.…(Ⅱ)解:由(Ⅰ)知:15﹣2f(x)的最大值等于5.…∵,“=”成立,即,∴当时,取得最小值5.当时,,又∵对任意实数x,都成立,∴.∴a的取值范围为.…2018年1月12日。

河北省邢台市2018届高三上学期第一次月考数学(理)试题 Word版含答案

2017-2018学年高三(上)第一次月考数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数41iz i -=+的共轭复数的虚部为( ) A . 52i - B .52- C .52i D .522.已知全集{|08}U x Z x =∈<≤,集合{|2}(28)A x Z x m m =∈<<<<,若U C A 的元素的个数为4,则m 的取值范围为( )A .(6,7]B .[6,7)C . [6,7]D .(6,7) 3.已知函数()lg f x x =,则“1a >”是“()1f a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.在等差数列{}n a 中,59a =,且3226a a =+,则1a =( ) A .-3 B .-2 C. 0 D .15.下列函数中,在[1,1]-上与函数cos y x =的单调性和奇偶性都相同的是( ) A .22x x y -=- B .||1y x =+ C.2(2)y x x =+ D .22y x =-+6.若sin cos 4sin 5cos αααα+=-,则cos 2α=( )A .2425-B .725- C. 2425 D .7257.已知变量x y ,满足约束条件2360,25100,60,x y x y x -+≥⎧⎪-+≤⎨⎪-≤⎩,则目标函数z x y =+的最大值为( )A .12B .525 C. 465D .2 8.已知定义在(0,)+∞的函数()f x 的图象如图所示,则函数0.3()log ()g x f x =的单调递减区间为( )A .()a b ,B .(1)(3)a +∞,,, C.(,2)a D .(0,)a ,(,)b +∞ 9.将函数2()2sin (2)6f x x π=+的图象向右平移6π个单位后,得到新函数图象的对称轴方程为( )A .()424k x k Z ππ=+∈ B . ()412k x k Z ππ=-∈ C. ()412k x k Z ππ=+∈ D .()424k x k Z ππ=-∈ 10.在ABC ∆中,D 为BC 边上一点,且AD BC ⊥,向量AB AC +与向量AD 共线,若||10AC =,||2BC =,0GA GB GC ++=,则||||AB CG =( ) A .3 B .5 C.2 D .10211. 已知函数()1ln g x x x =-+,给出下列两个命题:命题:(0,)p x ∃∈+∞,244()x x g x -+=.命题:q 若(2)()a x g x +>对(0,)x ∈+∞恒成立,则0a >. 那么,下列命题为真命题的是( )A.p q ∧B.()p q ⌝∧C.()p q ∧⌝D.()()p q ⌝∧⌝12. 设n S 为正项数列{}n a 的前n 项和,12a =,11(21)n n n S S S ++-+3(1)n n S S =+,记21nn i i T a ==∑则310log (21)T +=( )A .10B .11 C.20 D .21第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.记函数29y x =-,2ln(6)y x x =--的定义域分别为A B ,,则A B =∩ . 14.已知向量(,2)m x x =+与向量(1,3)n x =是共线向量,则||n = .15.若25sin 3cos 5αα+=,(,)36ππα∈-,tan()43πβ+=,则tan()αβ-= .16.在Rt ABC ∆中,AC BC ⊥,3BC =,5AB =,点D E 、分别在AC AB 、边上,且//DE BC ,沿着DE 将ADE ∆折起至'A DE ∆的位置,使得平面'A DE ∆⊥平面BCDE ,其中点'A 为点A 翻折后对应的点,则当四棱锥'A BCDE -的体积取得最大值时,AD 的长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,且2sin b a B =,tan 0A >. (1)求角A 的大小;(2)若1b =,23c =,ABC ∆的面积为S ,求aS. 18. 在ABC ∆中,角A B C ,,的对边分别是a b c ,,,已知4cos 3(cos cos )a A B b C =+. (1)证明:22232b c a bc +-=; (2)若6AB AC =•,求a 的最小值.19. 已知正项数列{1}n a -是公差为2的等差数列,且24是2a 与3a 的等比中项. (1)求数列的通项公式;(2)若(1)1n n b a -=,求数列{}n b 的前n 项和n S . 20. 设函数2()(1)ln x a x x ϕ=--,其中a R ∈. (1)讨论函数()x ϕ的单调性;(2)若关于x 的方程()0x a ϕ+=在[1,]x e ∈上有解,求a 的取值范围.21. 将函数sin y x =的图象的纵坐标不变,横坐标缩短为原来的14,得到函数()y f x =的图象.已知函数2()24g x x =-.(1)若函数()()p x g x kx =+在区间[1,2]上的最大值为5()24f π,求k 的值; (2)设函数()()()h x f x g x =-,证明:对任意(0,)λ∈+∞,都存在(0,)μ∈+∞,使得()0h x >在(,)4πλμ上恒成立.22.已知函数2()(22)xf x x x e =--.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)当0x >时,31()43f x x x a ≥-+恒成立,求a 的最大值; (3)设2()()(2)x F x xf x x x e =+-,若()F x 在5[,]2t t +的值域为6[(6618),0]e -,求t 的取值范围.(提示:6 2.4≈,611.6e ≈)2017-2018学年高三(上)第一次月考数学试卷参考答案(理科)一、选择题1-5: DABAD 6-10: AABCB 11、12:BC二、填空题13.[3,2)--(或{32})x x -≤<- 14.5或10 15.76-16.433三、解答题17.解:(1)∵2sin b a B =,∴sin 2sin sin B A B =,sin 0B >, ∴1sin 2A =,∵tan 0A >,∴A 为锐角,∴6A π=. (2)∵2222cos a b c bc A =+-31124372=+-⨯=,∴7a =. 又13sin 22S bc A ==,∴2213a S =. 18. 解:(1)证明:由4cos 3(cos cos )a A c Bb C =+及正弦定理得,4sin cos A A 3(sin cos sin cos )C B B C =+3sin()B C =+=3sin A ,又sin 0A >,∴3cos 4A =,∴222324b c a bc +-=,即22232b c a bc +-=.(2)解:∵cos 6AB AC bc A ==,∴8bc =, 由余弦定理得2222cos a b c bc A =+-322bc bc ≥-142bc ==,∴2a ≥,∴a 的最小值为2.19. 解:(1)∵{1}n a -数列是公差为2的等差数列, ∴1n a -112(1)a n =-+-,∴21(22)n a n a =+-,∴221(2)a a =+,231(4)a a =+.又24是2a 与3a 的等比中项,∴2222311(2)(4)24a a a a =++=,∴11(2)(4)24a a ++=解得12a =(18a =-不合舍去),故数列{}n a 的通项公式为24n a n =.(2)∵(1)1n n b a -=,∴211141n n b a n ==--1(21)(21)n n =-+111()22121n n --+, ∴1111(12335n S =-+-11)2121n n ++--+11(1)22121nn n =-=++. 20. 解:(1)1'()2x ax x ϕ=-221(0)ax x x-=>,当0a ≤时,'()0x ϕ<,函数()x ϕ在(0,)+∞上单调递减. 当0a >时,由'()0x ϕ=,解得12x a =或12x a=-(舍), ∴当1(0,)2x a ∈时,'()0x ϕ<,函数()x ϕ单调递减;当1(,)2x a∈+∞时,'()0x ϕ>,函数()x ϕ单调递增.综上,当0a ≤时,()x ϕ在(0,)+∞上单调递减;当0a >时,()x ϕ在1(0,)2a上单调递减,在1(,)2a+∞上单调递增. (2)由()0x a ϕ+=得2ln xa x =, 设2ln ()(1)x g x x e x =≤≤,312ln '()xg x x -=, 当1x e ≤<时,'()0g x >;当e x e <≤时,'()0g x <.∴max 1()()2g x g e e ==. 又(1)0g =,21()g e e =,∴1()[0,]2g x e ∈,∴a 的取值范围为1[0,]2e.21. 解:(1)由题可得()sin 4f x x =,551()sin2462f ππ==.2()24p x x kx =-+,224()2816k k x =--++,[1,2]x ∈,当128k <<即816k <<时,max ()()28k p x p ==21162k +=,此方程无实数解.当28k ≥即16k ≥时,max 1()(2)2142p x p k ==-=,∴294k =,又16k ≥,则294k =不合题意.当18k ≤即8k ≤时,max 1()(1)22p x p k ==-=,∴52k =. 综上,52k =.(2)∵()y g x =在(0,)4π上递减,()y f x =在(0,)8π上递增,在(,)84ππ上递减, 且(0)(0)f g <,()()44f g ππ>,∴()y f x =与()y g x =的图象只有一个交点.设这个交点的横坐标为0(0,)4x π∈,则由图可知,当0(0,)x x ∈时,()()f x g x <,∴()0h x <;当0(,)4x x π∈时,()()f x g x >,∴()0h x >.故对任意(0,)λ∈+∞,都存在0(0,)x μλ=∈+∞,使得()0h x >在(,)4πλμ上恒成立.22. 解:(1)∵2'()(4)xf x x e =-,∴'(0)4f =-,又(0)2f =-,∴所求切线方程为24y x +=-,即42y x =--. (2)当0x >时,31()43f x x x a ≥-+,即31()43a f x x x ≤-+恒成立, 设31()()4(0)3g x f x x x x =-+>, 22'()(4)4x g x x e x =--+2(4)(1)x x e =--,当02x <<时,'()0g x <,()g x 递减;当2x >时,'()0g x >,()g x 递增. ∴2min 16()(2)23g x g e ==-+, ∴21623a e ≤-+,a 的最大值为21623e -+. (3)32()(3)xF x x x e =-,3'()(6)xF x x x e =-,令'()0F x <得6x <-或06x <<;令'()0F x >得60x -<<或6x >.∴当6x =±时,()f x 取得极小值,当0x =时,()f x 取得极大值. ∵6(6)6(63)F e --=--,6(6)(6618)F e=-,∴(6)(6)0F F <-<.令()0F x =得0x =或3x =.∴0.562t t ≤⎧⎪⎨+≥⎪⎩或5326t t ⎧+=⎪⎨⎪≤⎩,∴51[6,0]{}22t ∈-∪.。

2018年高三上学期期中考试数学(理)试题

高三年级上期期中考试
数学(理科)
2017.11
本试卷共 4 页,150 分。考试时长 120 分钟。考生务必将答案答在答题纸上,在试卷 上作答无效。考试结束后,将答题纸交回。
第一部分(选择题,共 40 分)
一、选择题共 8 小题,每小题 5 分,共 40 分。在每小题列出的四个选项中,选 出符合题目要求的一项。
(B) 为 f x的一个周期 (D) f x在区间 (0, ) 上单调递减
2
(ⅰ) A B 1, 2,3, 4,5, 6, A B ;
(ⅱ) A 的元素个数不是 A 中的元素, B 的元素个数不是 B 中的元素,
则有序集合对 A, B的个数为


(A)10
(B) 12
(C)14
(D)16
(17)(本小题 13 分)
已知函数 f (x) x (a 1) ln x a ,其中 a 0 . x
(Ⅰ)当 a 2 时,求曲线 y f (x) 在点 (1, f (1)) 处的切线方程;
(Ⅱ)求 f (x) 在区间[1, e] 上的最小值.(其中 e 是自然对数的底数)
(18)(本小题 13 分)
(20)(本小题 14 分)
若数列 A : a1 , a2 ,…, an ( n 3 )中 ai N* (1 i n )且对任意的 2 k n 1 ak1 ak1 2ak 恒成立,则称数列 A 为“U 数列”. (Ⅰ)若数列1, x , y , 7 为“U 数列”,写出所有可能的 x , y ; (Ⅱ)若“U 数列” A : a1 , a2 ,…, an 中, a1 1, an 2017 ,求 n 的最大值; (Ⅲ)设 n0 为给定的偶数,对所有可能的“U 数列” A : a1 , a2 ,…, an0 , 记 M max{a1, a2 ,..., an0 } ,其中 max{x1, x2 ,..., xs}表示 x1 , x2 ,…, xs 这 s 个数中最大 的数,求 M 的最小值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前河北省保定市2018届高三上学期摸底考试数学(理)试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知命题 p :∀x ∈R ,cosx≤1,则( ) A .¬p :∃x 0∈R ,cosx 0≥1 B .¬p :∀x ∈R ,cosx≥1 C .¬p :∀x ∈R ,cosx >1 D .¬p :∃x 0∈R ,cosx 0>12.在复平面内,52ii+对应的点的坐标为( ). A .(1,2)iB .(1,2)C .(2,1)D .(1,2)-3.已知集合{||1|2}M x Z x =∈-≤,{}2|log 2N x Z x =∈<,则M N ⋂的真子集的个数为( ). A .7B .8C .6D .94.若定义域为R 的函数()f x 不是奇函数,则下列命题中一定为真命题的是( ). A .x R ∀∈,()()f x f x -≠- B .x R ∀∈,()()f x f x -= C .0x R ∃∈,()()00f x f x -=D .0x R ∃∈,()()00f x f x -≠-5.数列{}n a 中,若11a =,()*123n n a a n N +=-∈,则1210a a a +++=L L ( ).A .2018B .2017C .2016D .20156.已知1OA =u u u r ,OB =u u u r ,56AOB π∠=,若OB OC ⊥u u u r u u u r 且OC mOA nOB =+u u u r u u u r u u u r ,则mn( ). A .5B .4C .2D .1○………订…………○……线※※内※※答※※题※※○………订…………○……7.设等差数列{}n a 的前n 项和为n S ,若281130a a a ++=,则13S 的值是( ). A .130B .65C .70D .758.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A .2+B 1C .2D 19.已知对数函数()log a f x x =是增函数,则函数()1fx +的图象大致是( ).A .B .C .D .10.已知2tan()5αβ+=,1tan 3β=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为( ).A .12 BC .98D .7911.设ABC V a b c ,,分别是内角A B C ,,的对边,若A B C ,,依次成等差数列,则a c +的最大值是( ).A .6B .8C .9D .1112.本学期开学前后,国务院下发了《新一代人工智能发展规划》,要求从小学教育,中学教育,到大学院校,逐步新增人工智能课程,建设全国人才梯队,凸显了我国抢占人工智能新高地的决心和信心.如图,三台机器人1M 、2M 、3M 和检测台J (位置待定)(J 与1M 、2M 、3M 共线但互不重合),三台机器人需把各自生产的零件送交J 处进行检测,送检程序如下:当1M 把零件送达J 处时,2M 即刻自动出发送检;当2M 把零件送达J 处时,3M 即刻自动出发送检.设2M 、3M 的送检速度的大小为2,1M 的送检速度大小为1.则三台机器人1M 、2M 、3M 送检时间之和的最小值为( ).A .8B .6C .5D .4第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题13.曲线y =x 3-2x +1在点(1,0)处的切线方程为________________.14.长江两岸之间没有大桥的地方,常常通过轮渡进行运输.假设一艘船从长江南岸A 点出发,以5/km h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2/km h .若这一段江面的宽度为25km ,则该船航行到对岸实际航行的距离为____________.15.设x 、y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,,,则x yx +的取值范围是____________.16.若定义()f n 为21n +的各位数字之和(*n N ∈),如2131170+=,则()013178f =++=,则20181((((9))))i i ff f f f ==∑个L L 14243____________. 三、解答题17.已知等差数列{}n a 的前n 项和为n S ,且12a =,312S =.(1)若数列{}n a 中存在连续三项的和为54,求这三项的中间项对应的项数; (2)若3a ,1k a +,k S 成等比数列,求该数列的公比q .18.已知12a ⎫=⎪⎪⎝⎭r ,,(sin cos )b x x ππ=,r ,()f x a b =⋅r r . (1)求函数()f x 的周期,并说明其图象可由sin y x =的图象经过怎样的变换而得到;(2)设函数()f x 在[11]-,上的图象与x 轴的交点分别为M 、N ,图象的最高点为P ,求PM PN ⋅u u u u r u u u r的值.19.已知数列{}n a 中,11a =,0n a ≠,数列{}n a 的前n 项和为n S ,且()*12nn nS a n N a +=∈.…………装…………○………○…………※请※※不※※要※※在※※装※答※※题※※…………装…………○………○…………(1)求数列{}n a 的通项公式; (2)试求12n n na a a ++的最小值及其对应的n 的值. 20.如图,ABC V 中,已知点D 在BC 边上,且0AD AC ⋅=u u u r u u u r,AD AC ==30BAD ∠=︒.(1)求AB 的长;(2)设过点D 的直线交AB 延长线于E ,交AC 于F ,求112AE AF+的值. 21.某市欲在滨海公路l 的右侧修建一个休闲广场,如图所示.圆形广场的圆心为O ,半径80m ,并与公路l 相切于点M ,设A 为圆上一个动点,过A 做l 的垂线,垂足为B ,设ABM V 的面积为S .(1)在图中,选取一个合适的角θ,并将S 表示为θ的函数; (2)求S 的最大值.22.已知函数()ln f x x =,()322x x xg a-=. (1)求函数()()2F x f x x =-+在[4)x ∈+∞,上的最大值; (2)若函数()()()2ln H x f x g x =-⎡⎤⎣⎦在区间112⎡⎤⎢⎥⎣⎦,上有零点,求a 的取值范围; (3)求证:()()()()2017*14034ln 222114035k f k f k f k k N =<+-+-<∈⎡⎤⎣⎦∑.参考答案1.D【解析】【分析】对于全称命题的否命题,首先要将全称量词“∀”改为特称量词“∃”,然后否定原命题的结论,据此可得答案.【详解】解:因为全称命题的否定是特称命题,所以命题p:∀x∈R,cosx≤1,¬p:∃x0∈R,cosx0>1.故选D.【点睛】本题考查了命题中全称量词和存在量词,解题的关键是要知晓全称命题的否定形式是特称命题.2.B【解析】【分析】由复数的乘除运算化简52ii+,再由复数的几何性质得到其点的坐标即可.【详解】由题意,()()()52551012 2225i ii iii i i-+===+++-,所以52ii+对应的点的坐标为()1,2.故选:B【点睛】本题主要考查复数的乘除运算和复数的几何性质,属于基础题.3.A【解析】【分析】根据题意先求解出集合M和集合N的元素,再求出M N⋂,利用求集合真子集个数的公式求解即可.对集合M ,由|1|2x -≤,解得,13x -≤≤, 又x ∈Z ,所以集合{}1,0,1,2,3M =-, 对集合N ,由2log 2x <,解得,04x <<, 又x ∈Z ,所以集合{}1,2,3N =,所以{}1,2,3M N ⋂=,M N ⋂有3个元素, 所以M N ⋂真子集的个数为3217-= 故选:A 【点睛】本题主要考查绝对值不等式的计算、对数不等式的计算、交集的计算和真子集的求法,属于基础题. 4.D 【解析】 【分析】对选项逐一分析,能举出反例即可. 【详解】对选项A ,可能存在()()f x f x -=-,例如1,0()1,0x f x x ≥⎧=⎨-<⎩, 对于任意0x ≠,都有()()f x f x -=-,故错误; 对选项B ,()f x 不是奇函数,也不一定是偶函数,故错误; 对选项C ,()1f x x =+,不存在()()00f x f x -=,故错误;对选项D ,因为()f x 不是奇函数,必然存在0x R ∈,()()00f x f x -≠-,故正确. 故选:D 【点睛】本题主要考查判断命题的真假和函数奇偶性的应用,考查学生理解分析能力,属于基础题. 5.C 【解析】由递推关系,构造等比数列{}3n a -,求得3n a -的表达式,即可求出n a ,利用分组求和的方法求出10S ,最后求得1210a a a +++L L ,即10S 的值即可. 【详解】由题,11a =,123n n a a +=-,可得()1233n n a a +=--,所以数列{}3n a -是以2-为首项,2为公比的等比数列,所以13222n nn a --=-⨯=-,23n n a =-+,所以数列{}n a 的前n 项和()212312n nS n -⨯-=+-,当10n =时,()1010212310201612S -⨯-=+⨯=--,所以1210102016a a a S +++==L L . 故选:C 【点睛】本题主要考查利用构造法求数列的通项公式,等比数列的前n 项和公式以及分组求和的应用,属于中档题,常见求数列通项公式的方法:公式法,累加法,累乘法,构造法,取倒数法等. 6.C 【解析】 【分析】由a b ⊥r r ,0a b ⋅=r r ,将OC u u u r 由mOA nOB +u u u r u u u r 表示,利用0OB OC ⋅=u u u r u u u r,找出m 和n 的关系即可. 【详解】由OB OC ⊥u u u r u u u r 和OC mOA nOB =+u u u r u u u r u u u r,()2OB OC OB mOA nOB mOB OA nOB ⋅=⋅+=⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r25cos 1cos 36m OB OA AOB n OB m n π=∠+=⨯+⨯u u u r u u u r u u u r3302m n =-+=,所以332m n =,2m n= 故选:C 【点睛】本题主要考查向量垂直的应用和向量的数量积公式,属于基础题. 7.A 【解析】 【分析】由等差数列的通项公式化简281130a a a ++=,得到710a =,再由前n 项和公式表示出13S ,利用下标性质得到13713S a =,得到最后答案. 【详解】由题意,2811111171031830a a a a d a d a d a d ++=+++++=+=, 即17610a d a +==,由等差数列前n 项和公式和等差数列的下标性质,()1137137132********2a a a S a+⨯⨯====故选:A 【点睛】本题主要考查等差数列通项公式和前n 项和公式,等差数列下标性质的应用,还考查学生的转化能力,属于基础题. 8.B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式. 9.B【分析】利用代特殊点和对数函数的图像性质排除选项即可. 【详解】 由题意,1a >,()()1log 1afx x +=+,()()11f x f x -+=+,所以函数()1f x +是偶函数,当0x =时,()()01log 010a f +=+=,故排除选项C 、D ,当0x >时,由对数函数的单调性,对数函数增长越来越慢,可排除选项A. 故选:B 【点睛】本题主要考查函数图像的识别和判断,利用函数的奇偶性和带入特殊值排除法是解题的关键,属于基础题. 10.C 【解析】 【分析】由两角差的正切公式先求出tan α,再由两角和的正切公式求出tan 4πα⎛⎫+ ⎪⎝⎭即可. 【详解】由题意,()()()21tan tan 153tan tan 211tan tan 17153αββααββαββ-+-=+-===⎡⎤⎣⎦+++⨯, 11tan tan9174tan 1481tan tan 11417παπαπα++⎛⎫+=== ⎪⎝⎭--⨯. 故选:C 【点睛】本题主要考查两角和差的正切公式,考查学生的计算能力,属于基础题. 11.A 【解析】由A ,B ,C 依次成等差数列求得3B π=,再根据ABC V 的外接圆半径和正弦定理分别表示出a 和c ,利用辅助角公式表示出a c +,求出最大值即可. 【详解】由A ,B ,C 依次成等差数列得2B A C =+, 所以3A B C B π++==,即3B π=,由正弦定理得,2sin a R A A ==,2sin c R C C ==, 又3B π=,所以222sin cos cos sin 3cos 333C A A A A A πππ⎛⎫⎫=-=-= ⎪⎪⎝⎭⎭,所以3cos 3cos 6sin 6a c A A A A A A π⎛⎫+=++=+=+⎪⎝⎭, 因为20,3A π⎛⎫∈ ⎪⎝⎭,所以当3A π=时,6sin 6A π⎛⎫+ ⎪⎝⎭取得最大值6,即a c +的最大值是6 故选:A 【点睛】本题主要考查正弦定理的应用、两角差的正弦公式、辅助角公式和三角函数的最值问题,考查学生的分析转化能力和计算能力,属于中档题. 12.D 【解析】 【分析】设J 所在位置为x ,分别表示出1M 、2M 、3M 的送检时间,再利用绝对值的三角不等式求解即可. 【详解】由题意,设J 所在位置为x ,1M 的送检时间1121M Jt x ==+,2M 的送检时间221112222M J x t x -===-, 3M 的送检时间333312222M J x t x -===-, 所以送检时间之和123113122222t t t t x x x =++=++-+-, 由绝对值的三角不等式,1131113122422222222x x x x x x ++-+-≥++-+-=, 当且仅当()1131202222x x x ⎛⎫⎛⎫+--≥ ⎪⎪⎝⎭⎝⎭,即[][]2,13,x ∈-⋃+∞时,等号成立. 故选:D 【点睛】本题主要考查绝对值三角不等式的应用,考查学生的分析转化能力,属于中档题. 13.y =x -1 【解析】由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.14. 【解析】 【分析】根据江面宽和船垂直对岸方向的速度求出船航行时间,再求出船实际航行的速度,即可求解. 【详解】由题意,船垂直于对岸方向的速度为5/km h ,江面宽25km , 则船航行所需时间2555t h ==,又江水的速度为2/km h /h =,所以轮渡实际航行的距离为.故答案为: 【点睛】本题主要考查向量在物理中的应用和向量的加法法则,属于基础题. 15.14,75⎡⎤⎢⎥⎣⎦【解析】 【分析】将问题转化为在约束条件下目标函数的取值范围,作出可行域由斜率公式数形结合可得. 【详解】作出x 、y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩的可行域如图阴影部分所示,其中目标函数1x y y x x +=+,yx表示区域内的点与原点连线的斜率, 联立方程组2070x y x y -+=⎧⎨+-=⎩,解得点59,22A ⎛⎫⎪⎝⎭,联立方程组170x x y =⎧⎨+-=⎩,解得点()1,6B ,当直线经过点A 时,yx取得最小值:992552=,x y x +的最小值为145,当直线经过点B 时,yx 取得最大值:661=,x y x +的最大值为7,所以x y x +的取值范围:14,75⎡⎤⎢⎥⎣⎦.故答案为:14,75⎡⎤⎢⎥⎣⎦【点睛】本题考查了斜率型线性规划问题,解释目标函数的几何意义是解题的关键,考查了学生数形结合的思想,属于基础题. 16.16140 【解析】 【分析】根据题意依次计算20181((((9))))i i ff f f f =∑个L L 14243中的项,找到规律,然后求解即可. 【详解】由题意,29182+=,所以(9)2810f =+=,2101101+=,所以(10)1012f =++=,2215+=,所以(2)5f =,25126+=,所以(5)268f =+=,28165+=,所以(8)6511f =+=,2111122+=,所以(11)1225f =++=,所以20181((((9))))i i ff f f f =∑个L L 14243从第四项开始,以周期为3开始重复, 2018367123-=⋅⋅⋅,所以一共包含671个周期以及(5)f 和(8)f , (5)(8)(11)811524f f f ++=++=,所以20181((((9))))10252467181116140i i ff f f f ==+++⨯++=∑个L L 14243. 故答案为:16140 【点睛】本题主要考查函数求值以及归纳推理,考查学生理解分析能力和计算能力,属于中档题. 17.(1)9 (2)1q = 【解析】 【分析】(1)由12a =和312S =求出等差数列的通项公式,再利用等差中项的性质即可得到答案; (2)由等差数列的通项公式和前n 项和公式分别表示出3a 、1k a +和k S ,再由等比中项的性质求出参数k ,再求出公比即可. 【详解】(1)设数列{}n a 的公差为d ,由题意知2310a a +=,即12310a d +=, 由12a =,解得2d =. 所以22(1)2na n n =+-=,即2n a n =,*n N ∈.设满足条件的连续三项的中间项为m a ,由等差中项的性质,得354m a =,所以18m a =,9m =, 故所求的中间项对应的项数为9. (2)由(1)可得2(22)2n n nS n n +==+, 所以2k S k k =+.又3236a =⨯=,12(1)k a k +=+,由已知可得213k k a a S +=,即()()22226k k k +=+,整理得220--=k k ,*k N ∈. 解得1k =-(舍去)或2k =.此时3a ,1k a +,k S 分别为为6,6,6,故公比1q =. 【点睛】本题主要考查求等差数列通项公式、等差数列前n 项和公式、等差中项等比中项的应用,属于基础题.18.(1)2,说明见解析 (2)34【解析】 【分析】(1)由向量积的坐标公式和辅助角公式化简得到()sin 6x x f ππ⎛⎫+ ⎝=⎪⎭,利用2T πω=求出周期,再由先伸缩后平移说明即可;(2)由()0f x =求出点M 和点N 的坐标,再由()1f x =求出点P 的坐标,用坐标分别表示出向量PM u u u u r 和PN uuur ,再计算PM PN ⋅u u u u r u u u r 即可.【详解】解:(1)1,22a ⎛⎫= ⎪ ⎪⎝⎭r Q ,(sin ,cos )b x x ππ=r ,()f x a b =⋅r r()1sin cos sin 226x f x x x ππππ⎛⎫=+=+ ⎪⎝⎭∴, 所以其周期为22ππ=,sin y x =图象上纵坐标不变,横坐标缩小为原来的1π倍得到sin y x =π的图象, 再把sin y x =π的图象向左平移16个单位得到sin 6y x ππ⎛⎫=+ ⎪⎝⎭的图象.(2)令()sin 06f x x ππ⎛⎫=+= ⎪⎝⎭,得6x k πππ+=,k Z ∈. [1,1]x ∈-Q ,16x ∴=-或56x =,记1,06M ⎛⎫- ⎪⎝⎭,5,06N ⎛⎫⎪⎝⎭. 由sin 16x ππ⎛⎫+= ⎪⎝⎭,262x k ππππ+=+,k Z ∈, 又[1,1]x ∈-,∴13x =,1,13P ⎛⎫∴ ⎪⎝⎭, 1,12PM ⎛⎫∴=-- ⎪⎝⎭u u u u r ,1,12PN ⎛⎫=- ⎪⎝⎭u u u r ,所以13144PM PN ⋅=-+=u u u u r u u u r .【点睛】本题主要考查向量数量积的坐标表示、辅助角公式的应用、正弦函数图像的性质和三角函数的平移变换,属于基础题.19.(1)n a n = (2)1,2n =时,12n n na a a ++的最小值为6 【解析】 【分析】(1)由题意,当1n =时,求出22a =,2n ≥时,由n S 和n a 的关系得到112n n a a +--=,分别表示出21n a -和2n a ,从而得到数列{}n a 的通项公式;(2)由数列{}n a 的通项公式表示出12n n n a a a ++并化简得到23n n ++,利用基本不等式和*n N ∈求出12n n na a a ++的最小值及对应的项即可. 【详解】(1)由已知得112n n n S a a +=,于是由1n =得,11212a a a =,22a ∴=. 2n ≥时,1111122n n n n n n S S a a a a -+--=-,()1112n n n n a a a a +-∴=-,0n a ≠Q ,112(2)n n a a n +-∴-=≥.又211(1)2n a a n -=+-⨯=1(1)221n n +-⨯=-22(1)2n a a n =+-⨯2(1)22n n =+-⨯=即n a n =(2)212(1)(2)32n n n a a n n n n a n n ++++++==Q233n n=++>+1,2n ∴=,236n n++= 3n ≥时,236n n ++>1,2n ∴=时,12n n na a a ++的最小值为6.本题主要考查由n S 和n a 的关系求通项公式和基本不等式的应用,属于基础题.20.(1)3AB =+ (2)12【解析】 【分析】(1)利用角的关系,求出135ADB ∠=︒和15ABD ∠=︒,在ABD △中由正弦定理求出AB ; (2)由题可得AED ADF AEF S S S +=△△△,再利用三角形面积公式,可求得112AE AF+的值. 【详解】(1)0AD AC ⋅=u u u r u u u rQ ,AD AC ∴⊥AD AC =Q ,45ADC ∴∠=︒,135ADB ∠=︒又30BAD ∠=︒,所以15ABD ∠=︒,在ABD △中,由正弦定理,()sin135sin15sin 4530AB AD AD==︒︒︒-︒解得3AB =+(2)AED ADF AEF S S S +=△△△Q所以111sin 30sin120222AE AD AD AF AE AF ⋅+⋅=⋅︒︒ 等式两边同时除以AE AD AF ⋅⋅,得sin 301sin120AF AE AD+=︒︒, 所以11sin120122AE AF AD ︒+==. 【点睛】本题主要考查正弦定理和三角形面积公式的应用,考查学生的分析转化能力和计算能力,属于基础题.21.(1)3200sin (1cos )S θθ=+,(0,)θπ∈ (2)2max S = 【解析】(1)可设AON θ∠=,由圆的半径和θ的正弦值和余弦值分别表示出BM 和AB ,即可将S 表示为θ的函数;(2)对S 求导,判断S 的单调性即可求出S 的最大值. 【详解】(1)如图,设AON θ∠=,则sin 80sin BM AO θθ==,cos 8080cos AB MO AO θθ=+=+,(0,)θπ∈.则12S MB AB =⋅=180sin (8080cos )2θθ⨯⨯+ 3200sin (1cos )θθ=+,(0,)θπ∈.(2)由(1)知,3200sin (1cos )S θθ=+,(0,)θπ∈, 所以()232002cos cos 1S θθ'=+-3200(2cos 1)(cos 1)θθ=-+.令0S '=,得1cos 2θ=或cos 1θ=-(舍去), 此时3πθ=.当θ变化时,,S S '的变化情况如下表:所以,当3πθ=时,S 取得极大值,即最大值,2max 3200sin(1cos )33S ππ+==. 【点睛】本题主要考查三角函数的应用和利用导数求函数的最值问题,考查学生的分析转化能力,属于基础题.22.(1)()max 2ln 22F x =- (2)1,22a ⎡∈⎢⎣⎦(3)证明见解析【解析】 【分析】(1)对()F x 求导得()11F x x'=-,判断()F x '在[4,)+∞上的单调性即可求得()F x 在[4,)+∞上的最大值;(2)将()()()2ln H x f x g x =-⎡⎤⎣⎦在区间112⎡⎤⎢⎥⎣⎦,上有零点转化为()()2ln f x g x =⎡⎤⎣⎦有解,分离参数后构造新的函数()332x h x x =-,利用导数求得()h x 的范围,再结合()0g x >,确定a 的范围;(3)由(1)知,ln 2x x <-,利用对数的运算性质将()()()2211f k f k f k +-+-化成2441()ln (1)k k p k k k ⎡⎤++=⎢⎥+⎣⎦,而24414(1)k k k k ++>+,原不等式右侧可利用放缩和裂项相消求得,又2441()ln ln 4(1)k k p k k k ⎡⎤++=>⎢⎥+⎣⎦,原不等式左侧也可得证,从而证明不等式成立. 【详解】(1)()ln 2F x x x =-+(4)x ≥,()11F x x '=-, ()F x '在[4,)+∞上单调递减,()1310444F =-=-<',当4x ≥时,()110F x x-'=<,()F x ∴在[4,)+∞上单调递减,()()max 4ln 422ln 22F x F ==-=-.(2)函数()()()2ln H x f x g x =-⎡⎤⎣⎦在1,12⎡⎤⎢⎥⎣⎦上有零点()()2ln f x g x ⇔=⎡⎤⎣⎦有解332a x x ⇔=-在1,12x ⎡⎤∈⎢⎥⎣⎦上有解且()0g x >.令()332x h x x =-,1,12x ⎡⎤∈⎢⎥⎣⎦,因为()22313322h x x x ⎛⎫'=-=- ⎪⎝⎭,令()0h x '>,解得122x <<,()h x ∴在12x ⎡∈⎢⎣⎦上单调递增,x ⎤∈⎥⎣⎦上单调递减,又()1151228h h ⎛⎫=<= ⎪⎝⎭,()()12h h x h ⎛∴≤≤ ⎝⎭,即()12h x ≤≤1,22a ⎡∈⎢⎣⎦.又()3202x a g x x-=>,得34a <,综上可得,1,22a ⎡∈⎢⎣⎦. (3)证明:由(1)知,()max ln 422(ln 21)0F x =-=-<, 所以4x ≥时,ln 2x x <-.设()2(21)p k f k =+(1)()f k f k -+-,则2441()ln (1)k k p k k k ⎡⎤++=⎢⎥+⎣⎦,2441144(1)(1)k k k k k k ++=+>++Q ,本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

相关文档
最新文档