14 理论力学--达朗伯原理

合集下载

第14章达朗贝尔原理汇总

第14章达朗贝尔原理汇总

FT1=
m2 g
2cos
,
FT1=FT1
cos m1 m2 g m1l 2
质点的惯性力与动静法
例 题2
y 振动筛
y
平衡位置 O
y=a sin t
求:颗粒脱离台面的 最小振动频率
质点的惯性力与动静法 例 题 2
解:通过分析受力、分析运动并施加惯性力,确定 颗粒脱离台面的位置和条件。
y
y
FI FN m
m1g (FT1 FT2 )cos 0
对于重锤 C
FT1=FT3 ,
FT1=
m2 g
2cos
,
FT1=FT1
质点的惯性力与动静法 例 题 1
解:
Fx1 0 Fy1 0
FT1=FT3 ,
m1l 2sin (FT1 FT2 )sin 0
m1g (FT1 FT2 )cos 0
Wsin
W g
l
2
W 4
sin
CR W1
动静法应用于刚体的 动约束力分析
例 题5
半径为R、重量为W1的 大圆轮,由绳索牵引,在
O
重量为W2的重物A的作用 下,在水平地面上作纯滚
动,系统中的小圆轮重量
忽略不计。
A
求:大圆轮与地面之间
的滑动摩擦力
W2
动静法应用于刚体的 动约束力分析
例 题5
CR
W1
F FN
FO
解:1、受力分析
y
考察整个系统,有4个未知
O
FO 约束力。
x
如果直接采用动静法,需
将系统拆开。因为系统为一
个自由度,所以考虑先应用
A
动能定理,求出加速度,再 对大圆轮应用动静法。

理论力学达朗贝尔原理

理论力学达朗贝尔原理

理论力学达朗贝尔原理达朗贝尔原理(d'Alembert's principle)是理论力学中的一个重要原理,它为研究物体在平衡或运动状态下受力情况提供了重要的理论基础。

达朗贝尔原理的提出,极大地推动了理论力学的发展,对于解决复杂的力学问题具有重要意义。

达朗贝尔原理的核心思想是,在运动坐标系中,对于一个质点系的平衡或运动状态,可以把系统的动力学问题转化为静力学问题来处理。

这就是说,对于一个质点系,可以找到一个虚拟的平衡系统,使得外力在这个虚拟系统中所做的功等于零。

通过这个虚拟系统的构建,我们可以简化动力学问题的求解过程,使得复杂的运动问题变得更加清晰和直观。

达朗贝尔原理的应用范围非常广泛,不仅可以用于刚体的运动问题,还可以用于弹性体、流体等物体的运动问题。

在工程实践中,达朗贝尔原理被广泛应用于各种机械系统的设计与分析中,例如汽车、飞机、船舶等。

通过运用达朗贝尔原理,工程师可以更加准确地分析系统的受力情况,从而设计出更加安全可靠的机械系统。

除此之外,达朗贝尔原理还在理论物理学中有着重要的应用。

在量子力学和相对论物理中,达朗贝尔原理也被广泛地运用于分析粒子的运动规律和相互作用。

通过引入虚拟位移和虚拟功的概念,达朗贝尔原理为理论物理学提供了一种全新的研究方法,为科学家们深入探索微观世界提供了重要的理论工具。

总的来说,达朗贝尔原理作为理论力学中的重要原理,为研究物体的运动和受力问题提供了重要的理论基础。

它的提出和应用,极大地推动了理论力学和工程实践的发展,为科学家们和工程师们提供了重要的研究方法和设计工具。

在今后的研究和实践中,我们应该深入理解达朗贝尔原理的原理和应用,不断拓展其在理论力学和工程领域的应用范围,为人类的科学技术进步做出新的贡献。

14.达朗贝尔原理

14.达朗贝尔原理

FIR = − mac
16
17
二、定轴转动刚体 先讨论具有垂直于转轴的质量对称平面 的简单情况。 直线 i : 平动, 过Mi点, FIi = −mi ai 空间惯性力系—>平面惯性力系(质量对称面) O为转轴z与质量对称平面的交点,向O点简化: 主矢: 主矩: O
FIR = −maC
M IO = ∑ mO ( FIi ) + ∑ mO ( FIi )
例3 已知: 飞轮质量为m,半径为R,以匀角速度 已知: 飞轮质量为 半径为 以匀角速度 的影响. 的影响 求:轮缘横截面的张力. 轮缘横截面的张力.
ω 定轴转动,设 定轴转动,
轮辐质量不计,质量均布在较薄的轮缘上 不考虑重力 轮辐质量不计 质量均布在较薄的轮缘上,不考虑重力 质量均布在较薄的轮缘上

ϕ =ωt,得
Fy = (m + m )g + m eω cosωt 1 2 2
2
F = −m2eω2 sinωt x
M = m2gesin ωt +m2eω2hsin ωt
例6 已知:如图所示,电动绞车安装在梁上 梁的两端搁在支座上, 电动绞车安装在梁上,梁的两端搁在支座上 已知:如图所示 电动绞车安装在梁上 梁的两端搁在支座上 绞车与梁共重为P.绞盘半径为 绞盘半径为R,与电机转子固结在一 绞车与梁共重为 绞盘半径为 与电机转子固结在一 转动惯量为J 质心位于O 绞车以加速度a提升质 起,转动惯量为 ,质心位于 处.绞车以加速度 提升质 转动惯量为 质心位于 绞车以加速度 量为m的重物 其它尺寸如图. 的重物,其它尺寸如图 量为 的重物 其它尺寸如图 受到的附加约束力. 求:支座A,B受到的附加约束力 支座 , 受到的附加约束力

知识资料理论力学(十四)(新版)(1)

知识资料理论力学(十四)(新版)(1)

五、达朗伯原理达朗伯原理是一种解决非自由质点系动力知识题的普遍主意。

这种主意将质点系的惯性力虚加在质点系上,使动力知识题可以应用静力学写平衡方程的主意来求解,故称为动静法,动静法在工程技术中得到广泛的应用。

(一)惯性力当质点受到其他物体的作用而改变其本来运动状态时,因为质点的惯性产生对施力物体的反作使劲,称为质点的惯性力。

惯性力的大小等于质点的质量与其加速度的乘积,方向与加速度的方向相反,并作用在施力物体上。

惯性力的表达式为(二)达朗伯原理在非自由质点M运动中的每一瞬时,作用于质点的主动力F、约束反力N和该质点的惯性力FI构成一假想的平衡力系。

这就是质点达朗伯原理,其表达式为在非自由质点系运动中的每一瞬时,作用于质点系内每一质点的主动力Fi、约束反力N,和该质点的惯性力FiI构成一假想的平衡力系。

这就是质点系达朗伯原理。

即(三)刚体运动时惯性力系的简化对刚体动力知识题,可以将刚体上每个质点惯性力组成惯性力系,使劲系简化的主意,得出简化结果。

这些简化结果与刚体的运动形式有关。

详细结果见表4-3-9。

(四)动静法按照达朗伯原理,在质点或质点系所受的主动力、约束反力以外,假想地加上惯性力或惯第1 页/共7 页性力系的简化结果,则可用静力学建立平衡方程的主意求解动力知识题,这种求解动力知识题的主意称为动静法。

必须指出,动静法只是解决动力知识题的一种主意,它并不改变动力知识题的性质,因为惯性力并不作用在质点或质点系上,质点或质点系也不处于平衡状态。

动静法中“平衡”只是形式上的平衡,并没有实际意义。

应用动静法列出的平衡方程,实质上就是运动微分方程。

(五)例题[例4—3—13] 长方形匀质薄板重W,以两根等长的软绳支持如图4—3—37所示。

设薄板在图示位无初速地开始运动,图中α=30°。

求此时绳子中的拉力。

[解](1)对象以平板的为研究对象。

(2)受力分析运动开始时板受重力w、软绳约束反力T1、T2。

14达朗贝尔原理(动静法)

14达朗贝尔原理(动静法)

第14章 达朗贝尔原理(动静法)14-1 图示由相互铰接的水平臂连成的传送带,将圆柱形零件从一高度传送到另一个高度。

设零件与臂之间的摩擦系数f s = 0.2。

求:(1)降落加速度a 为多大时,零件不致在水平臂上滑动;(2)比值h / d 等于多少时,零件在滑动之前先倾倒。

解:取圆柱形零件为研究对象,作受力分析,并虚加上零件的惯性力F I 。

(1)零件不滑动时,受力如图(a ),它满足以下条件:摩擦定律 N s F f F s ≤ (1) 达朗伯原理 0=∑x F030sin I s =︒-F F (2) 0=∑y F030cos I N =-︒+mg F F (3)把F I = ma 代入式(1)、(2)、(3),解得2m/s 92.2≤a2)零件不滑动而倾倒时,约束反力F N 已集中到左侧A 点 如图(b ),零件在惯性力作用下将向左倾倒。

倾倒条件是 0≥∑A M即 0230sin )30cos (2I I ≥︒+︒+-hF F mg d (4) 以F I = ma 代入式(4),解得 aa g d h 32-≥ 此时零件仍满足式(1),(2),(3),将其结果2m/s 92.2≤a 代入上式得 5≥dh加速度为t lr t r xa B x ωωωω2222cos cos --== 取重物为研究对象,并虚加惯性力F I ,受力如图(b )。

)2cos cos (222I t lr t r m ma F x x ωωωω+=-=按达朗伯原理有 0 ,0I T =++-=∑F mg F F x故金属杆受之拉力 )2cos (cos 2T t lrt r m mg F ωωω++=14-3 图示矩形块质量m 1 = 100 kg ,置于平台车上。

车质量为m 2 = 50 kg ,此车沿光滑的水平面运动。

车和矩形块在一起由质量为m 3的物体牵引,使之作加速运动。

设物块与车之间的摩擦力足够阻止相互滑动,求能够使车加速运动而m 1块不倒的质量为m 3的最大值,以及此时车的加速度大小。

理论力学--达朗贝尔原理及其应用 ppt课件

理论力学--达朗贝尔原理及其应用  ppt课件
0tetftehtftegmmii2??????????????????????cossinsincoscos??????????0thftegmmi2????????????????coscos22i?emf?coscoscos22i2hgtemthftegmm??????????????????????31ppt课件?达朗贝尔原理应用示例例例题2长为l重为w的均质杆ab其a端闰接在铅垂轴z上并以匀角速绕此轴转动
FIti miait mi ri
FIni miain mi 2 ri
ppt课件
21
刚体作定轴转动时惯性力系的简化结果 再将平面惯性力系向点
O简化,得一力和一力偶。 因为所有质点的法向惯性力 都通过O点,所以所有质点 法向惯性力对O点之矩的和 等于零:
力偶的力偶矩等于惯性力系对转轴的主矩,其大小
为刚体对转轴的转动惯量与角加速度的乘积,方向与角
加速度的方向相反。
ppt课件
23
刚体作定轴转动时惯性力系的简化结果
讨论:
FIR

ma C

ma
t C

ma
n C
MI O MO ( FIti ) ( miri2 ) JO
电机所受真实力有m1g、 m2g 、 Fx 、Fy、M;惯性力如图所示。
惯性力的大小为 FI m2e 2
方向与质心加速度相反。因转子 匀速转动,只有法向加速度,故 惯性力方向沿O1O2向外。
应用动静法,由平衡方程
MA 0
M m2 g e cos t FI cos t(h e sin t) FI sin t(e cos t) 0
MIC MC (FIti ) ( miri2 ) JC

十四章节达朗贝尔原理


d dt
( 12
Q g
r2
Q g
r2
1 2
Q g
r2
FP g
r
2
)
Qr
sin
FPr
2Q g
FP
r2
(Q sin
FP )r
a g(Q sin FP )
2Q F P
A a
Q
α
B
QC FP
例题4
第14章 达朗贝尔原理
飞球调速器的主轴O1y1以匀角速度转动。 试求调速器两臂的张角。设重锤C的质量为m1 ,飞球A,B的质量各为m2,各杆长均为l,杆重
W2
3 2
W1
A
MC (F) 0, JC FR 0
W2
F
JC
R
JCa R2
W2W1
2(W2
3 2
W1 )
例题
第14章 达朗贝尔原理
起重装置由匀质鼓轮D
( 半 径 为 R , 重 为 W1 ) 及 均 质 梁 AB ( 长 l=4R , 重 W2=W1 ) 组成,鼓轮通过电机C(质量
FI mrc 2
2.转轴通过质心,但刚体作变速转动
a
M IO
O(C)
M IO Jc
3.刚体转轴通过质心并作匀速转动
O(C)
(c)
刚体的惯性力系自行平衡
刚体作平面运动
FI
C
aC M IC
FI mac
M Ic Jc
例题2
第14章 达朗贝尔原理
如图所示,滑轮的半径为r,质量为m均匀分 布在轮缘上,可绕水平轴转动。轮缘上跨过的软 绳的两端各挂质量为m1和m2的重物,且m1 >m2 。 绳的重量不计,绳与滑轮之间无相对滑动,轴承

理论力学经典课件-达朗伯原理


3
弹簧参数选择
使用达朗伯原理可以确定弹簧参数,以满足系统的稳定性和运动要求。
达朗伯原理的基本假设
1 理想约束
系统的约束可以用广义坐标表示,且广义坐标不相互依赖。
2 无耗散
系统的约束不引起能量的损耗。
达朗伯原理的三种形式
虚位移原理
系统的广义坐标在可行的无限小位移中,虚功等于零。
虚功原理
各个力沿任意小位移方向所做的虚功之和等于零。
虚功率原理
各个力的虚功率之和等于广义力的负广义势能的导数。
理论力学经典课件-达朗 伯原理
在力学领域,达朗伯原理是一项重要的基本原理,它提供了分析物体或系统 运动的理论框架。在本课件中,我们将探讨达朗伯原理的定义和应用。
达朗伯原理的定义
1 物理意义
达朗伯原理描述了一个自由度系统在广义坐标下运动的基本性质。
2 公式表达
达朗伯原理可以表示为系统动能与势能函数之间的差分式。
达朗伯原理在力学中的应用
通过应用达朗伯原理,我们可以:
• 分析并预测系统的运动 • 推导出系统的运动方程 • 计算系统的能量变化
达朗伯原理广泛应用于:
• 刚体力学 • 含有约束达朗伯原理中的虚位移是指系统在可能的位移下进行力学分析。通过选择合适的虚位移,我们可以简化问题并 得到更简洁的方程。
达朗伯原理在系统平衡分析中的应用
达朗伯原理可以用于分析系统的平衡条件,从而确定约束力和广义力的关系。这对于研究平衡稳定性和找到系 统的平衡位置非常重要。
达朗伯原理的实际应用举例
1
汽车悬挂系统
通过达朗伯原理,可以分析汽车悬挂系统的运动特性,优化系统设计。
2
自鸣钟
达朗伯原理可以解释自鸣钟的工作原理,为其设计和制造提供指导。

第十四章 达朗贝尔原理


O
O
O
J k
O
2 i
M
IO
F
i

Ii
n Ii
R
O
I
* 结论:
I
R M a
IO O
C
(过O点)
a m F r C a
n i
i C

M J
(与反向)

* 特殊情况分析
a
F
n I
C
M C
O
IO
C
e
a
n C
F

ea
F
O
n I
n C

I

M
IO
O
g mg mg
ml 9 1 3 9 g ml g 2 7l 2 7l 7l
2 mg 7
初始均质圆柱静止于 A处,受微小干扰后纯滚 而下,
求:轮心滚过任一距离 S时,轮心的加速度、 A处反力
X
A
Y
A
A
S


C
M
A
P

a
B
C
v
C
O
N
Ii
F
(e) i
i
即:
F
Ii
[ F F N F ] 0 (e) (i ) M O[ F i F i N i F Ii ] 0
(e) (i ) i i i
内力的主矢、主矩 0
F
a
(i ) i
i
m
i

Y
当圆盘以启动时:
A
M A

达朗伯原理


解:以整个系统为研究对象
FB
作受力图(包括惯性力)
B
FI ma
M IO
J
J
a R
mg FI
FI ma
M IO J
J
a R
α
M IO
O FA
对系统应用动静法
MB 0
mgl2 FIl2 Pl3 MIO FAl1 l2 0
Fy 0
l3
FB FA FB mg P F1 0
偏心状态
r FRA 1
FI1
m
FRB
A r2 m B
FI 2
r1 r2
FI1 FI2
FRA 0 FRB 0
偏角状态
FI1
m
A r1
FRB
r FRA 2
B
r1 r2
FI1 FI2
m FI 2
FRA 0 FRB 0
既偏心又偏角状态
FI1
A r1
m FRB
r FRA 2
m
r1 r2
FIRn
maCn
(3)转轴通过质心,且为
匀速转动 FIR 0
FIRn 0
M IO 0
四、刚体作平面运动
刚体平面运动 = 随质心的平移 + 绕质心的转动
将惯性力系向质心简化:
平移部分的惯性力系
合力
FIR maC
绕质心转动的惯性力系
合力偶 M IC=-JC
结论:
刚 通体 过作 质平 心面的运合动力时F,I R惯性力m系a简C化为,一以个及 一个合力偶: M IC=-JC
主矢和主矩和加速度、角加速度的方向相反
4、列出静平衡方程求解
FIR
在m静a平C 衡方程F中IRn ,惯m性a力Cn不加负号M,I直O=接J代z入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档