全等图形单元测试
八年级数学上册《第十二章 三角形全等的判定》单元测试题及答案(人教版)

八年级数学上册《第十二章三角形全等的判定》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点回顾1.三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、选择题1.如图,已知AB=AD,∠BAD=∠CAE,则添加下列条件之一,仍不一定能判定△ABC≌△ADE的是()A.AC=AE B.∠C=∠E C.BC=DE D.∠B=∠D 2.用三角尺可按下面方法画角的平分线.如图,在∠AOB两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,可得△POM≌△PON则判定三角形全等的依据是()A.SSS B.SAS C.ASA D.HL3.下列命题中,真命题的是()A.有一直角边和一锐角对应相等的两个直角三角形全等B.周长相等的两个三角形全等C.两边及其中一边的对角分别相等的两个三角形全等D.全等三角形的面积相等,面积相等的两个三角形全等4.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OP、PC不一定相等C.∠CPO=∠DPO D.OC=OD5.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=5,BD=1,则CF的长度为()A.2 B.2.5 C.4 D.56.如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的度数和为()A.60°B.75°C.90°D.120°7.如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有( )对.A.2 B.3 C.4 D.18.如图,在△ABC中∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE的度数为()A.75°B.70°C.65°D.60°二、填空题9.如图,已知BF=CE,AC=DF请添加一个条件,使得△ABC≌△DEF则添加的条件可以是:.(不添加其他字母及辅助线)10.已知,如图AD=AE,BD=CE那么图中△ADC≌.11.如图,在△ABC中AD⊥BC,CE⊥AB垂足分别是D,E.AD,CE交点H,已知EH=EB=3,AE=5则CH的长是.12.如图,△ABC的面积为6cm2,AP垂直∠ABC的平分线BP于点P,则△PBC的面积是cm2.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.三、解答题14.如图,已知点C,F在直线AD上,且有BC= EF,AB=DE,CD=AF。
全等三角形》单元测试题(含答案)

全等三角形》单元测试题(含答案)全等三角形》单元测试题姓名。
班级:得分:一、填空题(4×10=40分)1、在△ABC中,AC>BC>AB,且△ABC≌△DEF,则在△DEF中,DE>EF>DF。
2、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=70°,A′B′=15cm。
3、如图1,△ABD≌△BAC,若AD=BC,则∠BAD的对应角是∠XXX。
4、如图2,在△ABC和△FED,AD=FC,AB=FE,当添加条件BD=CE时,就可得到△ABC≌△FED。
5、如图3,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形4对。
6、如图4,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是BD=EC。
7、如图5,△ABC中,∠C=90°,CD⊥XXX于点D,AE是∠BAC的平分线,点E到AB的距离等于3cm,则CF=6cm。
8、如图6,在△ABC中,AD=DE,AB=BE,∠A=80°,则∠CED=50°。
9、P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于C、D,则CD=PD,P点到∠AOB两边距离之和等于AO或BO。
10、AD是△ABC的边BC上的中线,AB=12,AC=8,则中线AD的取值范围是6≤AD≤8.二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等。
其中真命题的个数有2个。
12、如图7,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有△ABD≌△AFDB、△AFE≌△ADC。
13、下列条件中,不能判定△ABC≌△A′B′C′的是∠B=∠B′。
八(上)数学 图形的全等 单元测试

图形的全等 单元测试班级 姓名 学号 得分 一、选择题:(24分)1.全等图形是指两个图形( )A 、大小相同B 、形状相同C 、能够重合D 、相等 2.下面不是全等图形的性质特征的是( )A 、大小相同B 、形状相同C 、颜色相同D 、周长相同3.根据下列各组的条件,能判定△ABC ≅△A ,B ,C ,的是( )A 、AB =A ′B ′,AC =A ′C ′,∠C =∠C ′;B 、AB =A ′B ′,AC =A ′C ′,∠B =∠B ′ C 、AB =A ′B ′,AC =A ′C ′,∠A =∠A ′;D 、∠A =∠A ′,∠B =∠B ′,∠C =∠C ′ 4.如图1,已知AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,图中全等三角形的组数是( ) A 、5 B 、4 C 、3 D 、2(1) (2) (3) 5.如图2,已知AB =AC ,EB =EC ,AE 的延长线交BC 于D ,则图中的全等三角形共有( ) A 、0对 B 、1对 C 、2对 D 、3对6.如图3,在△ABC 和△DEF 中,AB =DE ,∠B =∠E ,补充条件后,能直接应用“SAS ”判定△ABC 是△DEF 的是( )A 、∠A =∠DB 、∠ACB =∠DEFC 、AC =DFD 、BF =EC7.要测量池塘的宽度AB ,画出如图所示的两个三角形,下面测出的哪组条件不能使CD =AB ( ) A 、OA =OD ,OB =OC B 、∠B =∠C ,OB =OC C 、∠B =∠C ,OA =OD D 、∠C =∠B ,∠A =∠D 8.小李有两根长度分别为5㎝和8㎝的木棒,他想钉一个三角形的木框,现在有5根木棒供他选择,其长度分别为3㎝、5㎝、10㎝、13㎝、14㎝,小李可选择的木棒有( )A 、1种B 、2种C 、3种D 、4种二、填空题(18分)1、如图,观察下面两组图形,它们是不是全等图形:(1) (2) (注、只需答“是”或“不是”)O E D CBAED C BAF E D C B A O D C BA21EDCBA E DC BAFE DCBA (1)(2)2、在下列推理中,填写需要补充的条件,使结论成立,如图4,AO =DO ,只要补充 = ,或∠ =∠ ,就可以证明△AOB ≌△DOC 。
1.1全等图形(分层练习)原卷版-2023-2024学年八年级数学上册(苏科版)

1.1 全等图形分层练习1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 下列叙述中错误..的是()A. 能够完全重合的图形称为全等图形B. 全等图形的形状和大小都相同C. 两个周长相等的等腰三角形一定是全等图形D. 形状和大小都相同的两个图形是全等图形3. 下图所示的图形分割成两个全等的图形,正确的是( )A. B. C. D.4. 找出图中的全等图形(用序号表示).5. 有下列四个几何体:圆柱、三棱柱、圆锥、球.其中,主视图、左视图与俯视图是全等图形的几何体为.6. 如图,图中由实线围成的图形与①是全等形的有.(填番号)7. 如图,找出下列图形中的全等图形,并写出它们是通过怎样的变换得到的.8. 如图,在方格纸中,图形 ②可以看作是由图形 ①经过若干次图形变换(平移、轴对称、旋转)得到的,写出一种由图形 ①得到图形 ②的变换过程:.9. 如图,将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.10. 如图,某校有一块长、宽分别为4m和3m的长方形花坛,现要将它分成4块全等的部分,分别种植四种不同品种的花卉,请你给出四种不同的设计方案.1. 下列四个图形中,属于全等图形的是( )A. ①②③B. ②③④C. ①③④D. ①②④2. 在由边长为1cm的小正方形组成的网格中,画如图所示的燕尾图形,现要求在已有图形的右侧再画出9个与它全等的燕尾图形,则这个网格的长至少为.(接缝不计)3. 将图中的每一个图形沿网格线分成两个全等图形.1. 我们知道,两个能够互相重合的图形叫做全等图形.(1)如图,请你用四种方法把长和宽分别为5和3的长方形分成四个均不全等的小长方形或正方形,且小长方形或正方形的各边长均为整数;(2)能否将上述3×5的长方形分成五个均不全等的,且各边长均为整数的小长方形或正方形?若能,请在图中画出.2. 如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)

八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。
八年级数学上册《全等三角形》单元测试题(含答案解析)

八年级数学上册《全等三角形》单元测试题(含答案解析)一、选择题(每题4分,共40分)1. 在三角形ABC中,AB=AC,点D是边BC上的一个点,且BD=DC。
以下结论正确的是()A. AD平分∠BACB. AD垂直平分BCC. AD平分∠BD. AD平分∠C【答案】B【解析】因为AB=AC,所以三角形ABC是等腰三角形,∠B=∠C。
又因为BD=DC,所以AD垂直平分BC。
2. 如果两个三角形的两边和它们夹角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】B【解析】根据SAS全等定理,如果两个三角形的两边和它们夹角分别相等,那么这两个三角形全等。
3. 在全等三角形ABC和DEF中,如果∠A=40°,∠B=50°,那么∠E的度数是()A. 40°B. 50°C. 60°D. 90°【答案】C【解析】因为三角形ABC和DEF全等,所以∠A=∠D,∠B=∠E。
所以∠E=∠B=50°。
又因为三角形内角和为180°,所以∠E=180°-∠A-∠D=60°。
4. 如果两个三角形的两边及其中一边的对角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】这种情况不能确定两个三角形全等,因为可能存在两种情况:一种是两个三角形全等,另一种是两个三角形不全等但相似。
5. 在全等三角形ABC和DEF中,如果AB=5cm,BC=8cm,AC=10cm,那么DE的长度是()A. 5cmB. 8cmC. 10cmD. 13cm【答案】C【解析】因为三角形ABC和DEF全等,所以对应边相等,即AB=DE,所以DE=5cm。
6. 如果两个三角形的三个角分别相等,那么这两个三角形()A. 相似B. 全等C. 不一定全等D. 以上都对【答案】C【解析】如果两个三角形的三个角分别相等,那么这两个三角形不一定全等,但一定相似。
2024-2025学年人教新版八年级上册数学 第12章 全等三角形 单元测试卷(有答案)
2024-2025学年人教新版八年级上册数学《第12章全等三角形》单元测试卷一.选择题(共8小题,满分24分)1.根据下列条件,能画出唯一确定的三角形的是( )A.AB=2,BC=5,AC=2B.AB=6,∠B=30°,AC=4C.AB=4,∠B=60°,∠C=75°D.BC=8,∠C=90°2.下列各组图形、是全等图形的是( )A.B.C.D.3.在△ABC中,∠A=50°,∠B=60°,若△ABC≌△DEF,则∠E与∠F的关系为( )A.∠E<∠F B.∠E=∠F C.∠E>∠F D.无法确定4.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是( )A.1B.2C.3D.45.如图,已知点A、D、C、F在同一条直线上,∠B=90°,AB=DE,AD=CF,BC=EF,则∠E=( )A.90°B.45°C.50°D.40°6.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM 是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是( )A.ASA B.AAS C.SSS D.HL7.下列作图属于尺规作图的是( )A.用量角器画出∠AOB,使∠AOB=60°B.借助没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠αC.用三角尺画MN=1.5cmD.用三角尺过点P作AB的垂线8.两把相同的长方形直尺按如图所示方式摆放,记两把直尺的接触点为P,其中一把直尺边缘和射线OA 重合,另把直尺的下边缘与射线OB重合,连,接OP并延长.若∠BOP=25°,则∠AOP的度数为( )A.12.5°B.25°C.37.5°D.50°二.填空题(共8小题,满分24分)9.长方体的直观图有很多种画法,通常我们采用 画法.10.如图,AB=AC,点D,E分别在AB与AC上,CD与BE相交于点F.只填一个条件使得△ABE≌△ACD,添加的条件是: .11.如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=9,DE=4,则S△ACD= .12.某中学计划在一块长16m,宽6m的矩形空地上修建三块全等的矩形草坪,如图所示,余下空地修建成同样宽为a的小路.(1)若a=1.5m,则草坪总面积为 平方米.(2)若草坪总面积恰好等于小路总面积,那么,此时的路宽a是 米.13.如图所示,点A、B、C、D均在正方形网格格点上,则∠ABC+∠ADC= .14.如图,小红要测量池塘A、B两端的距离,他设计了一个测量方案,先在平地上取可以直接到达A点和B点的C,D两点,AC与BD相交于点O,且测得AC=BD=55m,OA=OD=17m,△COD的周长为103m,则A,B两端的距离为 m.15.如图,点E,C在BF上,BE=CF,∠A=∠D=90°,请添加一个条件 ,使Rt △ABC≌Rt△DFE.16.我们把一条对角线是另一条对角线2倍的四边形叫“奇异四边形”.现有两个全等的直角三角形,一条直角边长是1,如果它们可以拼成对角线互相垂直的“奇异四边形”,那么直角三角形另一条直角边长是 .三.解答题(共6小题,满分52分)17.如图,AD与BC相交于点O,连接AC、BD,AC=BD,∠C=∠D,求证:△OAC≌△OBD.18.如图,在△ABC中,点E是BC边上的一点.连接AE,BD垂直平分AE,垂足为F,交AC于点D.连接DE.(1)若△ABC的周长为19,AB为6,求△DEC的周长;(2)若∠ABC=35°,∠C=50°,求∠CDE的度数.19.在下列3个6×6的网格中,画有正方形ABCD,沿网格线把正方形分ABCD分割成两个全等图形,请用三种不同的方法分割,画出分割线.20.如图,△ABC≌△DEF,点B,F,C,E在同一条直线上,BC=5,FC=4.(1)猜想AB与DE之间的位置关系,并说明理由.(2)求BE的长.21.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点.(1)连接BO,求证:BO平分∠ABC;(不能利用“三角形三条角平分线相交于一点”直接来证明)(2)若BC=4cm,AC=5cm,求点O到边AB的距离.22.如图,若两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.试说明两个滑梯的倾斜角∠ABC和∠DFE互余.参考答案与试题解析一.选择题(共8小题,满分24分)1.C2.D3.A4.C5.A6.C7.B8.B二.填空题(共8小题,满分24分)9.斜二侧.10.∠B=∠C(答案不唯一).11.18.12.(1)30;(2)1.13.45°.14.48.15.DE=AC(答案不唯一).16.2+或2﹣.三.解答题(共6小题,满分52分)17.证明见解析.18.(1)7.(2)45°.19.20.(1)AB∥DE(2)6.21.(1)证明见解析;(2)1.(1)证明:过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,∵点O是∠CAB、∠ACB平分线的交点,∴OD=OF,OE=OF,∴OE=OD,∵OD⊥BC,OE⊥AB,∴BO平分∠ABC;(2)解:∵BC=4cm,AC=5cm,∠ABC=90°,∴AB==3,∵△ABC的面积=△OBC的面积+△AOB的面积+△AOC的面积,∴BC•AB=BC•OD+AB•OE+AC•OF,∴3×4=(3+4+5)×OE,∴OE=1,∴点O到边AB的距离是1.22.见解析.解:∵两个滑梯长度相同,∴BC=EF,∵AC=DF,∠CAB=∠FDE=90°,在Rt△CAB和Rt△FDE中,,∴Rt△CAB≌Rt△FDE(HL),∴∠ABC=∠DEF,∵∠DFE+∠DEF=90°,∴∠DFE+∠ABC=90°,即:两个滑梯的倾斜角∠ABC和∠DFE互余.。
第12章 全等三角形(单元测试基础卷)(学生版)2024-2025学年八年级数学上册基础知识专项突破
第12章全等三角形(单元测试·基础卷)一、单选题(本大题共10小题,每小题3分,共30分)1.如图,已知ABC A BC ''≌ ,A C BC '' ,20C ∠=︒,则ABA '∠的度数是()A .15︒B .20︒C .25︒D .30︒2.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A .SASB .ASAC .HLD .SSS3.如图,点P 是BAC ∠平分线AD 上的一点,7AC =,3AB =,2PB =,则PC 的长不可能是()A .6B .5C .4D .34.如图,CD AB ⊥于点D ,EF AB ⊥于点F ,AC BE =.证明Rt Rt ACD BEF ≌ 不是利用“HL ”的条件是()A .AD BF =B .AC BE ∥C .CD EF =D .AF BD=5.如图,已知AB CD =.若添加一个条件后,可得ABC CDA △△≌,则在下列条件中,可以添加的是()A .B D∠=∠B .AD BC ∥C .AB CD D .AC 平分BCD∠6.如图所示,在ABC 中,AC BC =,AE CD =,AE CE ⊥于点E ,BD CD ⊥于点D ,7AE =,2BD =,则DE 的长是()A .7B .5C .3D .27.如图,在Rt ABC △中,90C = ∠,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若1CD =,4AB =,则ABD △的面积是()A .2B .32C .3D .728.如图,由9个完全相同的小正方形拼接而成的33⨯网格,图形ABCD 中各个顶点均为格点,设ABC α∠=,BCD β∠=,BAD γ∠=,则αβγ--的值为()A .30︒B .45︒C .60︒D .75︒9.如图,在平面直角坐标系中,点()0,2A 处有一激光发射器,激光照射到点()1,0B 处倾斜的平面镜上发生反射,使得反射光线照射到点C 处的接收器上,若入射角45α=︒,AB BC =,则点C 处的接收器到y 轴的距离为()A .1B .2C .3D .410.如图,已知AC 平分DAB ∠,CE AB ⊥于E ,2AB AD BE =+,则下列结论①()12E A A A B D =+;②180DAB DCB ∠+∠=︒;③CD CB =;④ACE BCE ACD S S S -= .其中,正确结论的个数()A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题4分,共32分)11.如图,点A 、B 、C 、D 在同一条直线上,AB =CD ,AE =DF ,CE =BF .若∠A =55°,∠E =84°,则∠DBF 的大小为12.如图,D ,E 是ABC 外两点,连接AD AE ,,有AB AD AC AE ==,,40BAD CAE ∠=∠=︒.连接CD,BE 交于点F ,则DFE ∠的度数为.13.如图,AB CF ,E 为DF 的中点,若7cm AB =,5cm CF =,则BD =cm .14.如图,在ABC 中,CP 平分ACB ∠,AP CP ⊥于点P ,已知ABC 的面积为2,则阴影部分的面积为.15.如图,()()4,0,0,6A B ,以B 点为直角顶点在第一象限作等腰直角ABC ∆,则C 点的坐标为16.如图,在ABC ∆中,AB AC =.点D 为ABC ∆外一点,AE BD ⊥于E .BDC BAC ∠=∠,3DE =,2CD =,则BE 的长为.17.如图,在四边形ABCD 中,E 是边BC 的中点,AE 平分BAD ∠,且90AED ∠︒=,若2CD AB =,四边形ABCD 的周长为18,5BC =,则AB 的值为.18.如图,操场上有两根旗杆相距12m ,小强同学从B 点沿BA 走向A ,一定时间后他到达M 点,此时他测得CM 和DM 的夹角为90︒,且CM DM =,已知旗杆AC 的高为3m ,小强同学行走的速度为0.5m/s .(1)另一旗杆BD 的高度为m ;(2)小强从M 点到达A 点还需要的时间是s .三、解答题(本大题共6小题,共58分)19.(8分)如图,在ABC 中,90C ∠=︒,AD AC =,DE CE =,试猜想ED 与AB 的位置关系,并说明理由.20.(8分)如图,在ABC 中,AC BC =,直线l 经过顶点C ,过A ,B 两点分别作l 的垂线AE BF ,,E ,F 为垂足,且AE CF =;求证:(1)EAC FCB∠=∠(2)AC BC ⊥.21.(10分)如图,在ABC 中,90C ∠=︒,AD 是CAB ∠的角平分线,DE AB ⊥于E ,点F 在边AC 上,连接DF .且DF DB =.(1)求证:CFD EBD ≌△△;(2)若40BAC ∠︒=,求AFD ∠的度数;22.(10分)如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,BE 平分ABC ∠交AC 于点E ,交CD 于点F ,过点E 作EG CD ∥,交AB 于点G ,连接CG .(1)求证:90A AEG ∠+∠=︒;(2)求证:EC EG =;23.(10分)(1)【模型建立】如图1,在Rt ABC △与Rt ADE △中,AB AC =,AD AE =,90BAC DAE ︒∠=∠=,求证:AEC ADB △≌△;(2)【模型应用】如图2,在ABC 与ADE V 中,AB AC =,AD AE =,90BAC DAE ︒∠=∠=,B D E 、、三点在一条直线上,AC 与BE 交于点F ,若点F 为AC 中点,①求BEC ∠的度数;②3CE =,求AEF △的面积;24.(12分)【阅读理解】定义:在同一平面内,点A ,B 分别在射线PM ,PN 上,过点A 垂直PM 的直线与过点B 垂直PN 的直线交于点Q ,则我们把AQB ∠称为APB ∠的“边垂角”.【迁移运用】(1)如图1,CD ,BE 分别是ABC 的两条高,两条高交于点F ,根据定义,我们知道DBE ∠是DCE ∠的“边垂角”或DCE ∠是DBE ∠的“边垂角”,DAE ∠的“边垂角”是______;(2)若AQB ∠是APB ∠的“边垂角”,则AQB ∠与APB ∠的数量关系是______;(3)若ACD ∠是ABD ∠的“边垂角”,且AB AC =.如图2,BD 交AC 于点E ,点C 关于直线BD 对称点为点F ,连接AF ,EF ,且45CAF ∠=︒,求证:BE CF CE =+.。
全等三角形 单元测试卷 (含答案)
第十二章全等三角形单元测试一.选择题(共12小题).1.如图(1),已知△ABC的六个元素,则图(2)、图(3)、图(4)中的三角形和△ABC 全等的有()A.图(2)和图(3)B.图(3)和图(4)C.只有图(3)D.只有图(4)2.下列各组图形中,一定全等的是()A.两个等边三角形B.腰长相等的两个等腰三角形C.两边和一角对应相等的两个三角形D.两边对应相等的两个直角三角形3.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB=15,则CD 4.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD 的长为()A.3 B.4 C.5 D.65.如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是()A.20°B.24°C.30°D.36°6.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°7.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC 8.如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC9.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,下列结论中正确的是()A.AB﹣AD>CB﹣CDB.AB﹣AD=CB﹣CDC.AB﹣AD<CB﹣CDD.AB﹣AD与CB﹣CD的大小关系不确定10.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A.SAS B.SSS C.ASA D.AAS11.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ 的最小值为()A.1 B.2 C.3 D.412.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D,若CD=3,则点D到AB的距离是()A.5 B.4 C.3 D.2二.填空题13.已知图中的两个三角形全等,则∠α的度数是.14.如图,△ABC中,点D、E在BC边上,∠BAD=∠CAE请你添加一对相等的线段或一对相等的角的条件,使△ABD≌△ACE.你所添加的条件是.15.已知△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为.16.如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为.三.解答题17.如图,在△ABC中,AB=AC=8,BC=12,点D从B出发以每秒2个单位的速度在线段BC上从点B向点C运动,点E同时从C出发以每秒2个单位的速度在线段CA上向点A 运动,连接AD、DE,设D、E两点运动时间为t秒(0<t<4)(1)运动秒时,AE=DC;(2)运动多少秒时,△ABD≌△DCE能成立,并说明理由;(3)若△ABD≌△DCE,∠BAC=α,则∠ADE=(用含α的式子表示).18.如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.(1)求证:∠AOC=90°+∠ABC;(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.19.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.20.如图,在平面直角坐标系中,A、B坐标为(6,0)、(0,6),P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM=ON,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD⊥OP,交OP、OA分别于F、D两点,E为OA上一点,且∠PEA=∠BDO,试判断线段OD与AE的数量关系,并说明理由.参考答案一.选择题1.解:如图(1)、(2)根据一边、一角不能判定量三角形全等,故图(2)中的三角形和△ABC不全等;如图(1)、(3)两角为58°、50°,对应相等,但是对应边不相等,不能判定它们全等,故图(3)中的三角形和△ABC不全等;如图(1)、(4)根据全等三角形的判定定理ASA可以证得它们全等,故图(4)中的三角形和△ABC全等.综上所述,只有图(4)中的三角形和△ABC全等.故选:D.2.解:各组图形中,一定全等的是两边对应相等的两个直角三角形,故选:D.3.解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选:B.4.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.5.解:如图,在DC上取DE=DB,连接AE.在Rt△ABD和Rt△AED中,,∴Rt△ABD≌Rt△AED(HL).∴AB=AE,∠B=∠AED.又∵AB+BD=DC,∴EC=DC﹣DE=DC﹣BD=(AB+BD)﹣BD=AB=AE,即EC=AE,∴∠C=∠CAE,∴∠B=∠AED=2∠C,又∵∠B+∠C=180°﹣∠BAC=72°,∴3∠C=72°,∴∠C=24°,故选:B.6.解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.7.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选:B.8.解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.故选:C.9.解:如图,在AB上截取AE=AD,连接CE.∵AC平分∠BAD,∴∠BAC=∠DAC,又AC是公共边,∴△AEC≌△ADC(SAS),∴AE=AD,CE=CD,∴AB﹣AD=AB﹣AE=BE,BC﹣CD=BC﹣CE,∵在△BCE中,BE>BC﹣CE,∴AB﹣AD>CB﹣CD.故选:A.10.解:在△D′O′C′和△DOC中,,∴△D′O′C′≌△DOC(SSS),∴∠D′O′C′=∠DOC.则全等的依据为SSS.故选:B.11.解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,PA⊥ON,∴PQ=PA=2,故选:B.12.解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=3,即点D到直线AB的距离是3.故选:C.二.填空题(共4小题)13.解:∵两个三角形全等,∴α=50°.故答案为:50°.14.解:添加AB=AC,∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,∴△ABD≌△ACE(ASA),故答案为:AB=AC.15.解:∵△ABC三边长分别为3,5,7,△DEF三边长分别为3,3x﹣2,2x﹣1,这两个三角形全等,∴3+5+7=3+3x﹣2+2x﹣1,解得:x=3.故答案为:3.16.解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5.∴S△BCE故答案为:5.三.解答题(共4小题)17.解:(1)由题可得,BD=CE=2t,∴CD=12﹣2t,AE=8﹣2t,∴当AE=DC,时,8﹣2t=(12﹣2t),解得t=3,故答案为:3;(2)当△ABD≌△DCE成立时,AB=CD=8,∴12﹣2t=8,解得t=2,∴运动2秒时,△ABD≌△DCE能成立;(3)当△ABD≌△DCE时,∠CDE=∠BAD,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∠B=∠180°﹣∠BAD﹣∠ADB,∴∠ADE=∠B,又∵∠BAC=α,AB=AC,∴∠ADE=∠B=(180°﹣α)=90°﹣α.故答案为:90°﹣α.18.(1)证明:∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC+∠BCA=180°﹣∠ABC,∵∠BAC的平分线AD与∠BCA的平分线CE交于点O.∴∠OAC=∠BAC,∠OCA=∠BCA,∴∠OAC+∠OCA=(∠BAC+∠BCA)=(180°﹣∠ABC)=90°﹣∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=180°﹣(90°﹣∠ABC),即∠AOC=90°+∠ABC.(2)AE+CD=AC,证明:∵∠AOC=90°+∠ABC=135°,∴∠EOA=45°,在AC上分别截取AM、CN,使AM=AE,CN=CD,连接OM,ON,则在△AEO和△AMO中∴△AEO≌△AMO,同理△DCO≌△NCO,∴∠EOA=∠MOA,∠CON=∠COD,OD=ON,∴∠EOA=∠MOA=∠CON=∠COD=45°,∴∠MON=∠MOA=45°,过M作MK⊥AD于K,ML⊥ON于L,∴MK=ML,S△AOM =AO×MK,S△MON=ON×ML,∴=,∵=,∴=,∵AO=3OD,∴=,∴==,∴AN=AM=AE,∵AN+NC=AC,∴AE+CD=AC.19.证明:(1)∵∠1=∠2,∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)∵△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.20.解:(1)结论:PM=PN,PM⊥PN.理由如下:如图2中,连接OP.∵A、B坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P为AB的中点,∴OP=AB=PB=PA,OP⊥AB,∠PON=∠PAM=45°,∴∠OPA=90°,在△PON和△PAM中,,∴△PON≌△PAM(SAS),∴PN=PM,∠OPN=∠APM,∴∠NPM=∠OPA=90°,∴PM⊥PN,PM=PN.(2)结论:OD=AE.理由如下:如图3中,作AG⊥x轴交OP的延长线于G.∵BD⊥OP,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO,∵OB=OA,∴△DBO≌△GOA,∴OD=AG,∠BDO=∠G,∵∠BDO=∠PEA,∴∠G=∠AEP,在△PAE和△PAG中,,∴△PAE≌△PAG(AAS),∴AE=AG,∴OD=AE.。
2024-2025学年八年级数学上册 第十二章 全等三角形 单元测试题(含答案)
第十二章全等三角形考试范围:全章的内容;考试时间:120分钟;总分:120分一、选择题(本大题共10小题,每小题3分,共30分)1.下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D.A.1个B.2个C.3个D.4个2.下列各组图形中,是全等形的是()A.B.C.D.3.如图,点B在线段AD上,△ABC≌△EBD,AB=2cm,BD=5cm,则CE的长度为()A.2cm B.2.5cm C.3cm D.5cm4.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,CD⊥BC,BO=OC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,可作为证明△ABO≌△DCO的依据的是( )A.SSS B.ASA C.SAS D.HL5.如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是()A.BC=DE B.AE=DB C.∠A=∠DEF D.∠ABC=∠D6.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中全等三角形有()A.1对B.2对C.3对D.4对7.现要在一块三角形形状的草坪上安装一个洒水龙头,要使洒水龙头到草坪三条边的距离相等,洒水龙头的位置应选在()处A.三角形三边的垂直平分线的交点B.三角形的三条角平分线的交点C.三角形的三条高所在直线的交点D.三角形的三条中线的交点8.如图,在△ABC中,CD平分∠ACB,DE⊥BC于点E,S△ABC=30,DE=4,BC=10,则AC 的长是( )A.5B.6C.7D.89.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列五个结论:①DE=DF;②BC=2DB;③AD⊥BC;④AB=3BF;⑤S△ADB=2S△BDF;其中正确的结论共有()A.4个B.3个C.2个D.1个10.新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为“格线三角形”.如图,a∥b∥c,相邻两条平行线间的距离为m,等腰Rt△ABC为“格线三角形”,且∠BAC=90°,则△ABC的面积为()m2B.2m2C.5m2D.4m2A.52二、填空题(本大题共6小题,每小题3分,共18分)11.如图,AD=AB,∠C=∠E,∠CDE=50°,则∠ABE=.12.如图,四边形ABCD≌四边形A′B′C′D′.若∠B=90°,∠C=60°,∠D′=105°,则∠A的大小为度.13.如图,D,E是边BC上的两点,BD=CE,∠ADB=∠AEC,现要直接用“AAS”定理来证明△ABD≌△ACE,请你再添加一个条件:.14.已知△ABC面积为24,将△ABC沿BC的方向平移到△A′B′C′的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为.15.如图,△ABC中∠A=66°,点M、N是∠ABC与∠ACB三等分线的交点,则∠BMN的度数是.16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=15cm,AC=6cm.动点E从A点出发以3cm/s的速度沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.若点E的运动时间为t秒(t>0),则当t=秒时,△DEB与△BCA全等.三、(本大题共4小题,每小题6分,共24分)17.已知:如图,AB=AE,∠1=∠2,∠C=∠D.求证:BC=ED.18.如图,已知AB∥CD,AB=CD.(1)求证:△ABC≌△CDA;(2)判断BC与AD的位置关系,并说明理由.19.如图,已知AB=CD,AD=BC,O为AC的中点,过O作一条直线分别与AB,CD交于点M,N,点E,F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.20.如图,B、C、E三点在同一条直线上,AC∥DE,AC=CE,∠ACD=∠B(1)求证:△ABC≌△CDE(2)若∠A=55°,求∠BCD的度数.四、(本大题共3小题,每小题8分,共24分)21.如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.22.问题提出:如图1,在四边形ABCD中,∠BAD与∠BCD互补,∠B与∠D互补,AB=AD,∠BAD=x°(0<x<180),∠ACB=y°,数学兴趣小组在探究y与x的数量关系时,经历了如下过程:实验操作:(1)数学兴趣小组通过电脑软件“几何画板”进行探究,测量出部分结果如下表所示:x…304050607080β130y757065α555040θ这里α= ,β= ,θ= .猜想证明:(2)根据表格,猜想:y与x之间的关系式为;数学兴趣小组发现证明此猜想的一种方法:如图2,延长CB到E,使BE=DC,连接AE,…,请你根据其思路将证明过程补充完整,并验证(1)中结论的正确性.应用拓广:(3)如图3,若x+y=135,AC=10,求四边形ABCD的面积.23.(1)【问题解决】如图①,∠AOB=∠DFE=90°,OC平分∠AOB,点F在OC上,∠DFE的两边分别与OA,OB交于点D,E.当FE⊥OB,FD⊥OA时,则FD与FE的数量关系为;(2)【问题探究】如图②,在(1)的条件下,过点F作两条相互垂直的射线FM,FN,分别交OA,OB于点M,N,判断FM与FN的数量关系,说明理由;(3)【迁移应用】某学校有一块四边形的空地ABCD,如图③所示,∠DAB=∠DCB=90°,AC是∠DAB的平分线,AB=50m,AD=30m,直接写出该空地的面积.五、(本大题共2小题,每小题12分,共24分)24.综合探究:如题图1是一种用刻度尺画角平分线的方法,在OA、OB上分别取点C、E、D、F,使得OC=OD,OE=OF,连接CF、DE,交点为P,则射线OP为∠AOB的角平分线.【验证】(1)试说明OP平分∠AOB,且PE=PF;【应用】(2)如题图2,若C、E、D、F分别为OA、OB上的点,且OC=OD,CF⊥OA,DE⊥OB,试用(1)中的原理说明OP平分∠AOB;【猜想】(3)如题图3,P是∠AOB角平分线上一点,C、D分别为OA、OB上的点,且PC=PD,请补全图形,并直接写出∠PCO与∠PDO的数量关系.25.【模型呈现】(1)如图1,∠BAD=90°,AB=AD,BC⊥CA于点C,DE⊥AE于点E.求证:BC=AE.【模型应用】(2)如图2,EA ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形ABCDE 的面积.【深入探究】(3)如图3,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC 、DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .①求证DG =GE ;②若BC =21,AF =12,求△ADG 的面积.参考答案:1.B2.B3.C4.B5.B6.C7.B8.A9.A10.A11.130°12.10513.∠BAD=∠CAE14.1215.52°16.3或7或1017.证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠EAD=∠BAC,在△EAD和△BAC中,{∠C=∠D∠BAC=∠EAD,AB=AE∴△ABC≌△AED(AAS),∴BC=ED.18.(1)证明:∵AB∥CD,∴∠BAC=∠ACD,在△ABC与△CDA中,{AB=CD∠BAC=∠ACD,AC=CA∴△ABC≌△CDA(SAS);(2)解:BC∥AD,理由如下:∵△ABC≌△CDA,∴∠BCA=∠CAD,∴BC∥AD.19.(1)解:有4对全等三角形,分别为:△ABC≌△CDA,△AMO≌△CNO,△OAE≌△OCF,△AME≌△CNF,(2)证明:∵AB=CD,BC=AD=DA,AC=CA,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,即∠MAO=∠NCO,∵O为AC的中点,∴OA=OC,又∵∠AOM=∠CON,∴△AMO≌△CNO(ASA),∴AM=CN,OM=ON,∵OA=OC,∠AOE=∠COF,OE=OF,∴△OAE≌△OCF(SAS),∴AE=CF,∵OE=OF,OM=ON,∴OE−OM=OF−ON,即ME=NF,又∵AM=CN,∴△AME≌△CNF(SSS),∴∠MAE=∠NCF.20.(1)证明∶∵AC∥DE,∴∠ACD=∠CDE,∠ACB=∠CED,∵∠ACD=∠B,∴∠B=∠CDE,∵AC=CE,∴△ABC≌△CDE (AAS).(2)解:∵ ∠A =55°,∵△ABC≌△CDE ,∴∠A =∠ECD =55°,∴ ∠BCD =180°−∠ECD =180°−55°=125°.21.(1)解:∵∠ACB =106°,∴∠ACD =180°−106°=74°,∵EH ⊥BD ,∴∠CHE =90°,∵∠CEH =53°,∴∠ECH =90°−53°=37°,∴∠ACE =∠ACD−∠ECH =74°−37°=37°.(2)证明:如图:过E 点分别作EM ⊥BF 于M ,EN ⊥AC 与N ,∵BE 平分∠ABC ,∴EM =EH ,∵∠ACE =∠ECH =37°,∴CE 平分∠ACD ,∴EN =EH ,∴EM =EN ,∴AE 平分∠CAF .(3)解:∵AC +CD =16,S △ACD =24,EM =EN =EH ,∴ S △ACD =S △ACE +S △CED =12AC ⋅EN +12CD ⋅EH =12(AC +CD)⋅EM =24,即12×16⋅EM =24,解得EM =3,∵AB =10,∴ S △ABE =12AB ⋅EM =15.22.(1)观察表格发现:x每增加10,y减小5,∴α=65−5=60,β=80+2×10=100,θ=40−3×5=15.故答案为:60,100,15,x.(2)根据表格猜想:y=90−12证明:如图2,延长CB到E,使BE=DC,连接AE,则∠ABC+∠ABE=180°,又∵∠ABC+∠D=180°,∴∠ABE=∠D,又∵AB=AD,∴△ABE≌△ADE(SAS),∴AE=AC,∠EAB=∠CAD,∴∠E=∠ACB=y°,∠EAC=∠EAB+∠BAC=∠CAD+∠BAC=∠BAD=x°.在△AEC中,∠EAC+∠E+∠ACE=180°,∴x°+2y°=180°,x.y=90−12(3)如图,延长CB到E,使BE=DC,连接AE.由(2)得△ABE≌△ADE,∴S△ABE=S△ADE,∴S四边形ABCD=S△ACD+S△ABC=S△ABE+S△ABC=S△AEC,x,∵x+y=135,y=90−12∴x +90−12x =135,解得x =90,y =45,∴∠EAC =90°,∠AEC =∠ACE =45°,∴AE =AC =10,∴S △AEC =12×10×10=50,∴S 四边形ABCD =50.23.(1)解:∵OC 平分∠AOB , 点 F 在OC 上,且FE ⊥OB , FD ⊥OA ,∴FD =FE .(2)解:FD =FE ,理由如下:∵FD ⊥OA ,FE ⊥OB ,∴∠FDO =∠FEO =∠FEN =90°,∵四边形DOEF 中,∠FDO =∠FEO =∠AOB =90°,∴∠DFE =360°−∠FDO−∠FEO−∠AOB =90°,∴∠DMF +∠MFE =90°,又∵FM ⊥FN ,∴∠FMN =90°,∴∠DFM =∠EFN ,在△DFM 和△EFN 中,{∠FDM =∠FEN FD =FE ∠DFM =∠EFN,∴△DFM≌△EFN(ASA),∴FM =FN .(3)解:如图,过C 点作CE ⊥AB 于E 点,CF ⊥AD 的延长线于F 点,由(2)得△CFD≌△CEB ,∴FD =EB ,S △CFD =S △CEB ,∴S 四边形ABCD =S 四边形AECF,∵AC是∠DAB的平分线,∴∠DAC=∠CAB,又∵∠CFB=∠CEA=90°,AC=AC,∴△ACF≌△ACE(AAS),∴AF=AE,又∵AE=AB−BE,AF=AD+DF,∴AB−BE=AD+DF,∴50−BE=30+BE,解得BE=10,∴AF=AE=40,∴S四边形AECF=40×40=1600m2,∴S四边形ABCD=1600m2,答:该空地的面积为1600m2.24.解:(1)∵OC=OD,∠DOE=∠COF,OE=OF,∴CE=DF,△DOE≌△COF(SAS),∴∠PEC=∠PFD,∵∠CPE=∠DPF,CE=DF,∴△CPE≌△DPF(AAS),∴PE=PF,∵OE=OF,PE=PF,OP=OP,∴△OPE≌△OPF(SSS),∴∠POE=∠POF,即∠POA=∠POB,∴射线OP平分∠AOB;(2)∵CF⊥OA,DE⊥OB,∴∠OCF=∠ODE=90°,∴∠COF=∠DOE,OC=OD,∴△OCF≌△ODE(ASA),∴OF=OE,由(1)可得OP平分∠AOB;(3)补全图形如下,过点P 分别作PM ⊥OA 于M ,PN ⊥OB 于N ,∵OP 是∠AOB 的平分线,∴PM =PN ,∠PMC =∠PND =90°,当PC =PD 1时,在Rt △PMC 和Rt △PND 1中,{PC =PD 1PM =PN ,∴Rt △PMC≌Rt △PND 1(HL),∴∠PCO =∠PD 1O ;当PC =PD 2时,同理得Rt △PMC≌Rt △PND 2(HL),∴∠PCM =∠PD 2N ;∵∠PD 2N +∠PD 2O =180°,∴∠PCO +∠PD 2O =180°,综上所述,∠PCO 与∠PDO 的数量关系为∠PCO =∠PDO 或∠PCO +∠PDO =180°;25.解:(1)证明:∵∠BAD =90°,∴∠BAC +∠DAE =90°,∵BC ⊥CA ,DE ⊥AE ,∴∠ACB =∠DEA =90°,∴∠BAC +∠ABC =90°,∴∠ABC =∠DAE ,在△ABC 和△DAE 中,{∠ACB =∠DEA ∠ABC =∠DAE BA =AD∴△ABC≌△DAE (AAS),∴BC =AE .(2)由模型呈现可知,△AEP≌△BAG ,△CBG≌△DCH ,∴AP =BG =3,AG =EP =6,CG =DH =4,CH =BG =3,则S 实线围成的图形=12×(4+6)×(3+6+4+3)−12×3×6−12×3×6−12×3×4−12×3×4=50.(3)①过点D 作DP ⊥AG 于P ,过点E 作EQ ⊥AG 交AG 的延长线于Q .图3由【模型呈现】可知,△AFB≌△DPA ,△AFC≌△EQA ,∴DP =AF ,EQ =AF∴DP =EQ ,∵DP ⊥AG ,EQ ⊥AG∴∠DPG =∠EQG =90°,在△DPG 和△EQG 中,{∠DPG =∠EQG ∠DGP =∠EGQ DP =EQ∴△DPG≌△EQG (AAS),∴DG =GE .②由①可知,BF =AP ,FC =AQ ,∴BC =BF +FC =AP +AQ ,∵BC =21,∴AP +AQ =21,∴AP +AP +PG +GQ =21,由①△DPG≌△EQG 得∴PG =GQ ,∴AP +AP +PG +PG =21,∴AP+PG=10.5,∴AG=10.5,×10.5×12=63.∴S△ADG=12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图9
A
图11
九年级全等三角形单元测试(20111212)
姓名 得分
一 填空:(42分)
1.已知△ABC ≌△DEF ,且△ABC 的周长为12,AB= 5,BC=4,则DF= 2.如图1,AD 与BC 交于O 点,若AO=DO ,BO=CO ,则△AOB ≌△ 3.如图2,已知△ABC ≌△ADE ,∠BAC=130°,∠C=25°,∠D= ° 4.把两根钢条AA ´、BB ´的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳), 如图3, 若测得AB=5厘米,则槽宽为 厘米.
5.如图4,△ABC ≌△ADE ,则AB= ,∠E=∠ .若∠BAE=120°,∠BAD=40°,则∠BAC= °.
6.如图5,在△ABC 和△ABD 中,∠C=∠D=90°,若要利用“AAS ”证明△ABC ≌△ABD ,则需要加条件 或 ; 若要利用“HL ”证明△ABC ≌△ABD ,则需要加条件 ,或 . 7.如图6,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上 ,就可证明ΔABC ≌ΔDEF 。
8.如图7,∠A=∠D ,AB=CD ,则△ ≌△ ,根据是 . 9.如图8,∠E =∠F =90°,∠B =∠C ,AE =AF 则下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN 中正确的结论是 (把你认为正确..的结论的序号都.填上)。
9、如图9,AB=DE ,AC ∥DF ,BC ∥EF ,△ABC 与△DEF 全等吗?
解:∵AC ∥DF
∴∠ =∠ ∵BC ∥EF
∴∠ =∠ 在△ABC 与△DEF 中
∠ =∠ (⎧⎪
= (⎨⎪∠ =∠ (⎩
已证)
已知)
已证) ∴△ABC ≌△DEF ( )
二 选择题(24分)
1.下列说法正确的是( )
(A )所有正方形都是全等图形. (B )面积相等的两个三角形是全等图形. (C )所有半径相等的圆都是全等图形. (D )所有长方形都是全等图形. 2.△ABC ≌△A ’B ’C ’,其中∠A ’=35°,∠B ’=70°,则∠C 的度数为( ) (A )55° (B )60° (C )70° (D )75°
3.如图10,AB ⊥BF ,ED ⊥BF ,CD=CB ,判定△EDC ≌△ABC 的理由是( ) (A )A .S .A (B )S .A .S (C )S .S .S (D )H .L
4.如图11,△ABC ≌△CDA ,AB=5,BC=6,AC=7,则AD 的边长是( ) (A )5 (B )6 (C )7 (D )不能确定 5.如图12,已知∠A=∠D ,∠1=∠2,要得到△ABC ≌△DEF ,应添加( ) (A )∠B=
∠E (
B )BC=ED (
C )AB=EF (
D )CD= AF 6.如图
13,△AOC ≌△BOD ,C 与D 是对应顶点,下列结论中错误的是( ) (A )∠A=∠B (B )∠AOC=∠BOD (C )AC=BD
(D )AO=DO
图8
图5
D
B
B
A
E
F D
C
图6
图7
E
图2
图3
图1
A
D
B
C
O
A
B
C
E
D
图4
7.△ABC和△DEF中在不能判定两个三角形全等的是:
(A)AB=DE,AC=DF,∠A=∠D;(B)AB=DE,BC=EF,∠A=∠D;
(C)∠B=∠E, AB=DE,∠A=∠D;(D)∠B=∠E,∠A=∠D ,AC=DF;
8.如图14,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D、E,连结AF。
则图中共有几对全等的三角形: ( )
(A)1 (B)2
(C)3 (D)4
四证明题(34分)
1.如图,已知OA=OB,∠A=∠B,试说明△AOC≌△BOD。
(6分)
O
D C
B
A
2.如图,AD 平分∠BAC,AB=AC,试说明△ABD≌△ACD (6分)
3.如图,BC⊥AC,DA⊥AC,垂足分别为C、A,AB=CD,试说明△ACD≌△CAB(6分) 5.已知:如图,点E、F在BC上,AB=DC,AF=CD ,BE=CF。
求证:∠B=∠C。
(6分)
4.如图,在△ABC中,∠C=90°,AC=12cm,AB=25cm,点D在BC上,DE⊥AB,垂
足为E,且DE=DC,求BE的长。
(5分)
6、如图,已知AD是△ABC的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足为E、
F。
试说明△BDE≌△CDF。
(5分)
C
A
D
C
B
A
B C
E F
D A
C
D
B
A
D C
E
B
A
B
D
C
E F。