几何图形单元测试卷(含答案)
人教版数学七年级上册《几何图形初步》单元综合检测卷(带答案)

人教版数学七年级上学期第四章单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·四川初一期中)有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是( )A .4B .3C .2D .12.(2019·西安交通大学附属中学初一月考)用如图所示的图形,旋转一周所形成的几何体是( )A .B .C .D .3.(2019·河北初二期中)一副三角板按如图方式摆放,已知∠1=5∠2,则∠1的度数是( )A .15°B .18°C .72°D .75°4.(2019·山西初三)如图,点O 是直线AB 上的一点,AOC 40∠=,OM 平分BOC ∠,则BOM ∠等于( )A .60B .65C .70D .755.(2019·贵州省织金县第六中学初一期中)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市6.(2019·福建聚龙外国语学校初二月考)下列说法正确的是( )A.延长线段AB和延长线段BA的含义相同B.射线AB的长度为12cmC.经过两点可以画一条直线,并且只能画一条直线D.延长直线AB7.(2019·济宁高新区第五中学初一期末)下面说法错误的是( )A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等8.(2019·广东正德中学初一月考)下列说法正确的有()①长方体、正方体都是棱柱;②圆锥和圆柱的底面都是圆;③若直棱柱的底面边长相等,则它的各个侧面的面积相等;④棱锥底面的边数与侧棱数相等;⑤直棱柱的上、下底面是形状、大小相同的多边形,侧面都是长方形.A.2个B.3个C.4个D.5个9.(2018·河北省保定市第十七中学初一期末)已知线段AB=6cm,线段BC=8cm,则线段AC 的长度为( ) A.14cm B.2cm C.14cm或2cm D.不能确定10.(2019·山东初一期中)如图,在正方形网格中,∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°二、填空题(每小题4分,共24分)11.(2019·河北初一期中)如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.12.(2019·重庆市第一一0中学校初一期中)三条直线两两相交,它们的交点个数是________个。
数学七年级上册《几何图形初步》单元测试题(含答案)

11.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CEB′=50°,∠DAB′的度数是( )
A.40°B.60°C.75°D.80°
12.如图是一个长方体之和表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为( )
A.6B.8C.10D.15
二.填空题(每小题3分,共24分)
4.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )
A. 两点确定一条直线B. 垂线段最短
C. 两点之间,线段最短D. 两点之间,直线最短
【答案】C
【解析】
分析:由题意从A地到B地有多条道路,肯定要尽量选择两地之间最短的路程,就用到两点间线段最短定理.
6.已知∠A=55°,则它的余角是( )
A.25°B.35°C.45°D.55°
【答案】B
【解析】
【分析】根据余角的定义进行解答即可得.
【详解】∵∠A=55°,
∴它 余角是90°﹣∠A=90°﹣55°=35°,
故选B.
【点睛】本题考查了余角与补角,熟知互余两角的和为90度是解本题的关键.
7.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为( )
2.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这样做蕴含的数学原理是( )
A.过一点有无数条直线Bቤተ መጻሕፍቲ ባይዱ两点确定一条直线
C.两点之间线段最短D.线段是直线的一部分
【答案】B
【解析】
【分析】
由直线公理可直接得出答案.
【详解】建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,
人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.参考答案一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.【答案】B【解析】【分析】根据五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱的面数进行判断.【详解】依题意得,有六个面的立体图形为:①正方体,③四棱柱,④长方体,共有3个.故答案选:B.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握立体图形概念.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.【答案】C【解析】【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∵三角板的度数为30°,60°,90°;45°,45°,90°∴可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定【答案】C【解析】本题考查了角的大小比较根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对【答案】A【解析】【分析】根据补角定义,两个不相等的角的和为180°,则这两个角是一个锐角,一个钝角,由此选择答案即可.【详解】∵两个不相等的角的和为180°,∴这两个角是一个锐角(小于直角),一个钝角(大于直角).故答案选:A.【点睛】本题考察的知识点是余角和补角,解题的关键是熟练的掌握余角和补角的定义与计算.5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°【答案】C【解析】【分析】根据余角和补角的概念列式计算即可.【详解】解:∵∠α=35°,∴∠α的余角为:90°-35°=55°,∴∠α的余角的补角为:180°-55°=125°,故选:C.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,”们”与”中”是相对面,”我”与”梦”是相对面,”的”与”国”是相对面.故选D.考点:正方体相对两个面上的文字.【此处有视频,请去附件查看】7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选C.点睛:此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等,等角的余角相等.二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.【答案】或【解析】【分析】根据题意画出图形,根据点C在线段AB上和在线段AB外两种情况进行解答即可.【详解】解:当如图1所示点C在线段AB的外时,∵AB=6cm,BC=8cm,∴AC=6+8=14(cm);当如图2所示点C在线段AB上时,∵AB=6cm,BC=8cm,∴AC=8-6=2(cm).故答案为:14cm或2cm.【点睛】本题考查的是两点间的距离,解答此题时要注意进行分类讨论,不要漏解.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..【答案】40或80【解析】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴BP=30cm,AP=10cm.∴绳子的原长=2AB=80cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴2BP=30cm,∴BP=15cm,AP=5cm.∴绳子的原长=2AB=40cm.11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.【答案】两点之间线段最短【解析】试题分析:根据线段的性质:两点之间线段最短填空即可.解:从A到B有多条道路,人们会走中间的直路,而不会走其他曲折的路,这是因为两点之间,线段最短.故答案为:两点之间,线段最短.考点:线段的性质——两点之间,线段最短12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______【答案】南偏西60°【解析】【分析】根据方向角的定义即可解答.【详解】由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故答案为:南偏西60°.【点睛】本题考查了方向角的概念,熟知方向角的概念是解答本题的关键.13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.【答案】120°【解析】【分析】根据周角的定义及已知条件可得∠AOC+∠BOD=180°,再由∠AOC︰∠BOD=1︰2即可求得∠BOD的度数.【详解】∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=360°-(∠AOB+∠COD)=180°,∵∠AOC︰∠BOD=1︰2,∴∠BOD=2∠AOC,∴∠AOC+2∠AOC=180°,即∠AOC=60°,∴∠BOD=2∠AOC=120°.故答案为:120°.【点睛】本题考查了角的计算,根据平角的定义求得∠AOC+∠BOD=180°是解决问题的关键.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.【答案】7 cm.【解析】【分析】由线段中点的定义知AM=MB=AB=4cm,BN=NC=BC=3cm.然后结合图示中的”MN=MB+BN”来求线段MN的长度.【详解】解:∵M是线段AB的中点,AB=8cm,∴MB=AB=4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC=BC=3cm;∴MN=MB+BN=4+3=7cm.故答案为7.【点睛】本题考查了两点间的距离和线段中点的性质.注意”数形结合”的数学思想在本题中的应用.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】小马不会得满分的.见解析.【解析】试题分析:在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB 的外部.试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.考点:角的计算.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′;(2)131°14′30″.【解析】试题分析:(1)根据余角的定义即可求解;(2)根据题意列出式子求解即可.试题解析:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(2)∵∠α=76°,∠β=41°31′,∴2∠α-∠β=2×76°-×41°31′=152°-20°45′30″=131°14′30″.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【答案】(1)线段AB的长为11cm;(2)2b﹣a.【解析】【分析】(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.【解析】【分析】(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,由于n°+25°=90°,所以n=65°,(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°. 【详解】(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,n°+25°=90°,∴n=65°,(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点睛】本题主要考查角平分线的定义和角的和差关系,解决本题的关键是要熟练掌握角平分线的定义,并能结合图形分析角的和差关系.。
数学七年级上册《几何图形初步》单元综合检测题(含答案)

24.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.
(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后OM恰好平分∠BOC,则t=(直接写结果)
(1)若以点C为原点,则点A对应的数是;点B对应的数是.
(2)A,B两点间的距离是;B,C两点间的距离是;A,C之间的距离是.
(3)当原点在处时,三个点到原点的距离之和最小,最小距离是.
20.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,请求x﹣2y﹣3z的值.
21.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.
故选B.
【点睛】本题考查了余角和补角,正确表示出这个角的补角与余角是解题的关键.
3.在平面内,有两个角∠AOB=60°,∠AOC=30°,OA为两角的公共边,则∠BOC为( )
A.30°B.90°C.30°或90°D.无法确定
【答案】C
【解析】
【分析】
本题是角的计算的多解问题,求解时要注意分情况讨论.
A. 30°B. 90°C. 30°或90°D.无法确定
4.货轮A在航行的过程中发现:客轮B在它的南偏东80°的方向上,同时,在它的北偏东20°的方向上又发现了客轮C,则∠BAC的度数是( )
A.60°B.120°C.100°D.80°
5.如图,是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条”捷径”,”捷径”的数学道理是( )
故选C.
【点睛】本题考查了直线、射线、线段的相关知识,熟练掌握各相关概念是解题的关键.
七年级数学上册《第四章 几何图形初步》单元测试卷及答案(人教版)

七年级数学上册《第四章几何图形初步》单元测试卷及答案(人教版) 一、单选题1.已知∠α=76°22′,则∠α的补角是().A.103°38′B.103°78′C.13°38′D.13°78′2.下列图形沿着某一直线旋转180°后,一定能形成圆锥的是()A.直角三角形B.等腰三角形C.矩形D.扇形3.已知α是某直角三角形内角中较大的锐角,β是某五边形的外角中的最大角,甲、乙、丙、丁计算1(α6+β)的结果依次为10°、15°、30°、35°,其中有正确的结果,则计算正确的是()A.甲B.乙C.丙D.丁4.图中所示的网格是正方形网格,则下列关系正确的是()A.∠1>∠2B.∠1<∠2C.∠1+∠2=90°D.∠1+∠2=180°5.如图,C为线段AB上一点,D为线段BC的中点,已知AB=10,AD=7,则AC的长为()A.5 B.4 C.3 D.26.如图,直线AB,CD相交于点O,OF平分∠AOC,若∠AOD=50°,则∠COF=()A.60°B.50°C.45°D.65°7.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°8.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )A.A B.B C.C D.D二、填空题9.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的六个点最多可确定条直线.10.在数轴上表示﹣10的点与表示﹣4的点的距离是.11.如图,在2×3的方格图案中,正方形和长方形的个数分别为.12.如图,将一副三角板的直角顶点重合,摆放在桌面上.若∠AOD=150°,则∠BOC= °.13.如图,∠AOB与∠COD都是直角,∠AOD= 140°21′,则∠COB= °.三、作图题14.如图,已知四点A、B、C、D(1)画直线AB;(2)画射线AC;(3)连接BC;(4)画点P,使PA+PB+PC+PD的值最小四、解答题15.写出如图的符合下列条件的角.(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角.16.如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点,若AB=15,CE=4.5求出线段AD的长度.17.已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.18.如图,已知线段AB 和CD 的公共部分为BD ,且BD = 14 AB = 16 CD ,线段AB ,CD 的中点E ,F 之间的距离是30,求线段AB ,CD 的长.19.如图,O 为直线AB 上的一点,∠AOC =50°,OD 平分AOC ,∠DOE =90°①求∠BOD 的度数;②OE 是∠BOC 的平分线吗?为什么?20.如图所示的长方体的容器,AB=BC ,BB ’=3AB 且这个容器的容积为192立方分米.(1)求这个长方体容器底面边长AB 的长为多少分米?(2)若这个长方体的两个底面和侧面都是用铁皮制作的,则制作这个长方体容器需要多少平方分米铁皮?(不计损耗)参考答案1.A2.B3.C4.B5.B6.D7.C8.B9.1510.611.8,10 12.30 13.39°39′14.(1)解:如图(2)解:如图(3)解:如图(4)解:如图,连接AC 、BD ,两线交点为P点P 就是所求作的点.15.解:(1)能用一个大写字母表示的角有∠C ,∠B(2)以点A 为顶点的角有∠CAB ,∠CAD 和∠DAB16.解:∵点C 为线段AB 的中点, AB =15∴BC =12AB =12×15=7.5∴BE =BC −CE =7.5−4.5=3∴AE =AB −BE =15−3=12∵点D 为线段AE 的中点∴AD =12AE =12×12=617.解:根据题意∵E 面和F 面的数互为相反数∴3a+4+2﹣a=0∴a=﹣3把a=﹣3代入C=﹣a 2﹣2a+1解得:C=﹣2∵A 面与C 面表示的数互为相反数∴A 面表示的数值是2.18.解:设BD =x ,则AB =4x ,CD =6x.∵点E 、点F 分别为AB 、CD 的中点∴AE = 12 AB =2x ,CF = 12 CD =3xAC=AB+CD﹣BD=4x+6x﹣x=9x.∴EF=AC﹣AE﹣CF=9x﹣2x﹣3x=4x.∵EF=20∴4x=20解得:x=5.∴AB=4x=20,CD=6x=30.19.解:①∵∠AOC=50°,OD平分AOC∴∠1=∠2= 1∠AOC=25°2∴∠BOD的度数为:180°﹣25°=155°;②∵∠AOC=50°∴∠COB=130°∵∠DOE=90°,∠DOC=25°∴∠COE=65°∴∠BOE=65°∴OE是∠BOC的平分线.20.(1)解:设AB=x∵ AB=BC,BB’=3AB∴BC=x BB′=3x 由这个容器的容积为192立方分米∴x•x•3x=192∴x3=64∴x=4∴AB=4(分米).(2)解:∵AB=BC=4 BB′=12∴长方体的表面积为:2×4×4+4×4×12=32+192=224(平方分米)∴制作这个长方体容器需要224平方分米的铁皮。
七年级上册数学《几何图形初步》单元综合测试(附答案)

A.一个B.两个C.三个D.四个
[答案]C
[解析]
[分析]
(1)根据线段的性质即可求解;
(2)根据直线的性质即可求解;
(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90°;
(4)根据两点间的距离的定义即可求解.
[详解](1)两点之间线段最短是正确的;
(2)两点确定一条直线是正确的;
(3)同一个锐角的补角一定比它的余角大90°是正确的;
故选D.
[点睛]本题考查的是角平分线的定义、角的计算,掌握角平分线的定义、结合图形正确进行角的计算是解题的关键.
6.如图,已知 , ,则 的度数为( )
A. B. C. D.
[答案]B
[解析]
分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.
详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,
A. B. C. D.
7.如图是某个几何体的展开图,该几何体是( )
A.三棱柱B.三棱锥C.圆柱D.圆锥
8.下列说法:
(1)两点之间线段最短;
(2)两点确定一条直线;
(3)同一个锐角的补角一定比它的余角大90°;
(4)A、B两点间 距离是指A、B两点间的线段;其中正确的有( )
A一个B. 两个C. 三个D. 四个
(2)如图②,将三板DOE绕O逆时针转动到某个位置时,若恰好满足5∠COD=∠AOE,且∠BOC=60°,求∠BOD 度数;
人教版七年级上册数学《几何图形初步》单元检测卷含答案

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一.选择题(共10小题,满分40分,每小题4分)1.下列几何体中,是圆柱的为A. B. C. D.2.下列各组图形中都是平面图形的是()A. 三角形、圆、球、圆锥B. 点、线段、棱锥、棱柱C. 角、三角形、正方形、圆D. 点、角、线段、长方体3.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A. B. C. D.4.在同一条直线上依次有A,B,C,D四个点,若CD﹣BC=AB,则下列结论正确的是()A. B是线段AC的中点B. B是线段AD的中点C. C是线段BD的中点D. C是线段AD的中点5.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是()A. 过一点有且只有一条直线B. 两点之间,线段最短C. 连接两点之间的线段叫两点间的距离D. 两点确定一条直线6.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A. 2cmB. 3cmC. 6cmD. 7cm7.如图所示,比较线段a和线段b的长度,结果正确的是()A. a>bB. a<bC. a=bD. 无法确定8.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A. 北偏东30°B. 北偏东80°C. 北偏西30°D. 北偏西50°9.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A. 100°B. 110°C. 130°D. 140°10.如图,O为直线AB上一点,∠AOC=α,∠BOC=β,则β的余角可表示为()A. (α+β)B. αC. (α﹣β)D. β二.填空题(共4小题,满分20分,每小题5分)11.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是_____.12.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).13.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG上,折痕分别是DE,DF,则∠EDF的度数为_____.14.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为_____.三.解答题(共9小题,满分90分)15.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和右面的数字和.16. 如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.17.如图,已知A、B、C、D四点,根据下列语句画图(1)画直线AB(2)连接AC、BD,相交于点O(3)画射线AD、BC,交于点P.18.如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=2AB,取AC中点D;(2)在(1)的条件下,如果AB=4,求线段BD的长度.19.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.20.如图,△ABC中,BC>AC,∠C=50°.(Ⅰ)作图:在CB上截取CD=CA,连接AD,过点D作DE⊥AC,垂足为E;(要求:尺规作图,保留作图痕迹,不写作法)(Ⅱ)求∠ADE的度数.21.如图,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°,求∠DOE的度数;(2)若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)在(1)的条件下,∠BOC的内部有一射线OG,射线OG将∠BOC分为1:4两部分,求∠DOG的度数.22.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.23.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=__________°,∠NOB=__________°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.参考答案一.选择题(共10小题,满分40分,每小题4分)1.下列几何体中,是圆柱的为A. B. C. D.【答案】A【解析】分析:根据几何体的特征进行判断即可.详解:A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.点睛:考查立体图形的认识,掌握立体图形的特征是解题的关键.2.下列各组图形中都是平面图形的是()A. 三角形、圆、球、圆锥B. 点、线段、棱锥、棱柱C. 角、三角形、正方形、圆D. 点、角、线段、长方体【答案】C【解析】分析:根据平面图形的定义逐一判断即可.详解:A.圆锥和球不是平面图形,故错误;B. 棱锥、棱柱不是平面图形,故错误;C.角,三角形,正方形,圆都是平面图形,故正确;D.长方体不是平面图形,故错误.故选C.点睛:本题考查了平面图形的定义,一个图形的各部分都在同一个平面内的图形叫做平面图形据此可解.3.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A. B. C. D.【答案】A【解析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选:A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.4.在同一条直线上依次有A,B,C,D四个点,若CD﹣BC=AB,则下列结论正确的是()A. B是线段AC的中点B. B是线段AD的中点C. C是线段BD的中点D. C是线段AD的中点【答案】D【解析】分析:直接利用已知画出图形,进而分析得出答案.详解:如图所示:,符合CD-BC=AB,则C是线段AD的中点.故选:D.点睛:此题主要考查了直线、线段,正确画出符合题意的图形是解题关键.5.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是()A. 过一点有且只有一条直线B. 两点之间,线段最短C. 连接两点之间的线段叫两点间的距离D. 两点确定一条直线【答案】D【解析】【分析】根据师傅的做法和目的,可以知道根据的数学原理.【详解】工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是: 两点确定一条直线.故选:D.【点睛】本题考核知识点:“两点确定一条直线”的应用.解题关键点:理解“两点确定一条直线”的应用. 6.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A. 2cmB. 3cmC. 6cmD. 7cm【答案】D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选:D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.7.如图所示,比较线段a和线段b的长度,结果正确的是()A. a>bB. a<bC. a=bD. 无法确定【答案】B【解析】【分析】利用刻度尺对两条线段进行测量结果分析即可.【详解】∵a=3.5, b=4.2,∴a<b,故选B.【点睛】本题考查了线段的比较,解题的关键是把测量的结果进行比较.8.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A. 北偏东30°B. 北偏东80°C. 北偏西30°D. 北偏西50°【答案】A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.9.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A. 100°B. 110°C. 130°D. 140°【答案】B【解析】分析:根据∠AOC和∠BOC的度数得出∠AOB的度数,从而得出答案.详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.点睛:本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.10.如图,O为直线AB上一点,∠AOC=α,∠BOC=β,则β的余角可表示为()A. (α+β)B. αC. (α﹣β)D. β【答案】C【解析】【分析】由邻补角的定义,得∠α+∠β=180°,继而可得(α+β)=90°,再根据余角的定义进行求解即可得. 【详解】由邻补角的定义,得∠α+∠β=180°,两边都除以2,得(α+β)=90°,β的余角是(α+β)-β=(α-β),故选C.【点睛】本题考查了邻补角的定义、余角的定义,熟练掌握邻补角与余角的定义是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是_____.【答案】祠【解析】【分析】根据正方体的特点得出其中上面的和下面的是相对的2个面,即可得出正方体中与“晋”字所在的面相对的面上标的字是“祠”.【详解】根据正方体的几何展开图,可知,还原该正方体,“晋”与“祠”相对,“恒”与“山”相对,“汾”与“酒”相对.故答案为“祠”.【点睛】本题考查了正方体的展开图,正方体相对两个面上的文字的知识;注意正方体的空间图形,从相对面入手,分析及解答问题,掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12.直线AB,BC,CA的位置关系如图所示,则下列语句:①点A在直线BC上;②直线AB经过点C;③直线AB,BC,CA两两相交;④点B是直线AB,BC,CA的公共点,正确的有_____(只填写序号).【答案】③【解析】【分析】根据直线与点的位置关系即可求解.【详解】①点A在直线BC上是错误的;②直线AB经过点C是错误的;③直线AB,BC,CA两两相交是正确的;④点B是直线AB,BC,CA的公共点是错误的.故答案为:③.【点睛】本题考查了直线、射线、线段,关键是熟练掌握直线、射线、线段的定义.13.青青同学把一张长方形纸折了两次,如图,使点A,B都落在DG上,折痕分别是DE,DF,则∠EDF的度数为_____.【答案】90°【解析】【分析】结合轴对称的特点以及图形的特点进行解题.【详解】∵长方形的纸片折叠了两次,使A、B两点都落DG上,折痕分别是DE、DF,∴∠GDF=∠BDF,∠GDE=∠ADE,∴∠GDF+∠GDE=(∠GDB+∠GDA)=×180°=90°,即∠EDF=90°.故答案为90°.【点睛】本题考查了翻折变换(折叠问题),解题的关键是灵活运用轴对称的应用知识点进行解题.14.将一副三角板如图放置,若∠AOD=20°,则∠BOC的大小为_____.【答案】160°【解析】试题分析:先求出∠COA和∠BOD的度数,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案为:160°.考点:余角和补角.三.解答题(共9小题,满分90分)15.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值;(2)求正方体的上面和右面的数字和.【答案】(1)x=1(2)2【解析】试题分析:(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.考点:专题:正方体相对两个面上的文字.16. 如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点.求:(1)AC的长;(2)BD的长.【答案】(1)(2)【解析】试题分析:(1)根据与的关系,可得的长,根据线段的和差关系,可得的长;(2)根据线段中点的性质,可得AD的长,再根据线段的和差关系,可得的长.试题解析:(1)因为(2)因为是的中点,所以考点:两点间的距离.17.如图,已知A、B、C、D四点,根据下列语句画图(1)画直线AB(2)连接AC、BD,相交于点O(3)画射线AD、BC,交于点P.【答案】作图见解析.【解析】分析:(1)过A,B画直线即可;(2)连接AC、BD,即可得到点O;(3)画射线AD、BC,即可得到点P.详解:(1)如图所示,直线AB即为所求;(2)如图所示,线段AC,BD即为所求;(3)如图所示,射线AD、BC即为所求.点睛:本题主要考查了直线,射线和线段的简单作图,解答此题需要熟练掌握直线、射线、线段的性质.18.如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=2AB,取AC中点D;(2)在(1)的条件下,如果AB=4,求线段BD的长度.【答案】(1)图形见解析(2)2【解析】试题分析:(1)延长线段AB到点C使BC=2AB,再根据线段中点的作法找到AC中点D即可;(2)根据BC=2AB,且AB=4,可求BC,根据线段的和差可求AC,根据线段中点的定义可求AD,再根据线段的和差可求BD.试题解析:解:(1)如图:(2)∵BC=2AB,且AB=4(已知),∴BC=8,∴AC=AB+BC=8+4=12.∵D为AC中点(已知),∴AD=AC=6(线段中点的定义),∴BD=AD﹣AB=6﹣4=2.点睛:本题考查的是两点间的距离,熟知线段中点的定义,各线段之间的和、差关系是解答此题的关键.19.如图,已知在△ABC中,AB=AC.(1)试用直尺和圆规在AC上找一点D,使AD=BD(不写作法,但需保留作图痕迹).(2)在(1)中,连接BD,若BD=BC,求∠A的度数.【答案】 (1) 作图见解析;(2)36°.【解析】试题分析:(1)直接利用线段垂直平分线的性质得出符合题意的图形;(2)直接利用等腰三角形的性质结合三角形内角和定理得出答案.试题解析:(1)如图所示:(2)设∠A=x,∵AD=BD,∴∠DBA=∠A=x,在△ABD中∠BDC=∠A+∠DBA=2x,又∵BD=BC,∴∠C=∠BDC=2x,又∵AB=AC,∴∠ABC=∠C=2x,在△ABC中∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,∴x=36°.【点睛】此题主要考查了基本作图、等腰三角形的性质以及三角形内角和定理,正确掌握线段垂直平分线的性质是解题关键.20.如图,△ABC中,BC>AC,∠C=50°.(Ⅰ)作图:在CB上截取CD=CA,连接AD,过点D作DE⊥AC,垂足为E;(要求:尺规作图,保留作图痕迹,不写作法)(Ⅱ)求∠ADE的度数.【答案】(1)见解析(2)25°【解析】【分析】(Ⅰ)以C为圆心CA为半径画弧交CB于D,作DE⊥AC即可;(Ⅱ)根据三角形内角和定理计算即可. 【详解】(Ⅰ)如图,点D就是所求作的点,线段AD,DE就是所要作的线段.(Ⅱ)∵CA=CD,∴,在Rt△ADE中,∠ADE=90°﹣∠DAE=90°﹣65°=25°.【点睛】本题考查作图﹣复杂作图,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识.21.如图,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=30°,求∠DOE的度数;(2)若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)在(1)的条件下,∠BOC的内部有一射线OG,射线OG将∠BOC分为1:4两部分,求∠DOG的度数.【答案】(1)15°(2)α(3)①60°②30°【解析】【分析】(1)由已知可求出∠BOD=180°-90°-30°=60°,再由∠COB是150°,OE平分∠BOC求出∠DOE的度数;(2)根据(1)的解题思路,可求出∠DOE的度数;(3) ∠BOC的内部有有一射线OG,射线OG将∠BOC分为1:4两部分,题中没有明确射线OG的位置,分情况解答即可.【详解】(1)∵∠COD是直角,∠AOC=30°,∴∠BOD=180°﹣90°﹣30°=60°,∴∠COB=90°+60°=150°,∵OE平分∠BOC,∴∠BOE=∠BOC=75°,∴∠DOE=∠BOE﹣∠BOD=75°﹣60°=15°.(2)∵∠COD是直角,∠AOC=α,∴∠BOD=180°﹣90°﹣α=90°﹣α,∴∠COB=90°+90°﹣α=180°﹣α,∵OE平分∠BOC,∴∠BOE=∠BOC=90°﹣α,∴∠DOE=∠BOE﹣∠BOD=90°﹣α﹣(90°﹣α)=α.(3)①当射线OG位于DC之间时,如图1所示∵∠AOC=30°,射线OG将∠BOC分为1:4两部分,∴∠BOC=150°,∠COG=30°,∠BOG=120°由(1)知:∠BOD=60°,∴∠DOG=∠BOG﹣∠BOD=120°﹣60°=60°②当射线OG位于DB之间时,如图2所示∵∠AOC=30°,射线OG将∠BOC分为1:4两部分,∴∠BOC=150°,∠COG=120°,∠BOG=30°由(1)知:∠BOD=60°,∴∠DOG=∠BOD﹣∠BOG=60°﹣30°=30°【点睛】本题考查了角平分线的定义,解题的关键是掌握各角之间的关系.22.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【答案】90°【解析】试题分析:由折叠的性质易得:∠A BC=∠ABC=∠A BA,再由BD平分∠A'BE,可得∠A'BD=∠A BE,由此可得∠BCD=∠A BC+∠A'BD=(∠A BA+∠A BE)=∠ABE=90°.试题解析:∵∠ABC折叠后与∠A BC是完全重合在一起的,∴∠A BC=∠ABC=∠A BA.∵BD平分∠A'BE,∴∠A'BD=∠A BE,∴∠A BC+∠A'BD=(∠A BA+∠A BE),又∵∠A BA+∠A BE=∠ABE=180°,∴∠A BC+∠A'BD=90°,即∠CBD=90°.点睛:这道题的解答有两个要点:(1)折叠后能够重合在一起的两个角是相等的;(2)图中点B在线段AE上,则∠ABE是一个平角.23.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=__________°,∠NOB=__________°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)50°,40°;(2)2α-β=40°;(3)不成立,2α+2β=40°.【解析】试题分析:(1)根据互为余角和角平分线的性质可分别求解;(2)结合(1)的求解方法即可化为字母的计算;(3)根据根据互为余角和角平分线的性质,结合角的和差倍半的关系可求解.试题解析:(1)∵与互余,∴∠BOC=50°∵平分,∴∠MOB=100°∵∴∠NOB=40°.故答案为:50°,40°.(2)∵与互余,,∴∠BOC=90°-α∵平分,∴∠MOB=180°-2α∵,∠NOB=β.∴180°-2α+β=140°∴2α-β=40°.(3)不成立,2α+2β=40°.。
人教版七年级上学期数学《几何图形初步》单元测试附答案

(1)∠FEC′和∠GED′互为余角吗?为什么?
(2)∠GEF 直角吗?为什么?
(3)在上述折纸图形中,还有哪些互为余角?哪些互为补角?(各写出两对即可)
C.线段A B和线段B A是两条线段D.直线A B和直线B A是两条直线
[答案]B
[解析]
[分析]
根据直线、线段以及射线的概念来解答即可.
[详解]直线A可以表示任意一条直线,故A选项错误,
射线A B和射线B A的端点不同,是两条射线,故B选项正确,
线段A B和线段B A是一条线段,故C选项错误,
直线A B和直线B A是一条直线,故D选项错误,
13.已知线段A B=16Cm,直线A B上有一点C,且B C=10Cm,M是线段A C 中点,则AM的长为________Cm.
14.如图,O 直线A B上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.
(1)OD与OE的位置关系是______;(2)∠EOC的余角是_______.
故选B.
6.已知线段MN=10Cm,现有一点P满足PM+PN=20Cm.有下列说法:①点P必在线段MN上;②点P必在直线MN外;③点P必在直线MN上;④点P可能在直线MN上;⑤点P可能在直线MN外.其中正确的说法是( )
A.①②B.②③C.④⑤D.①③④
[答案]C
[解析]
[分析]
根据线段的MN长度,及PM+PN的长度即可判断出P的位置.
三、解答题(共66分)
19.计算:(1)23°45′+24°20′;(2)34°5′-10°25′;(3)22°33′44″×6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)
15︒
65︒
东(5)
B
A O
北西南几何图形单元测试卷
一、填空题: 1.82°32′5″+______=180°. 2.如图(1),线段AD 上有两点B 、C,图中共有______条线段.
(2)
C
B
A O E D 43
2
1
(3)
C
B
A O E
D
(4)
C
B
A
O E
D
3.一个角是它补角的一半,则这个角的余角是_________.
4.线段AB=8cm,CJ 是线段AB 上的一点,BC=5cm,则AC=________.
5.如图(2),直线AB 、CD 相交于点O,OE 平分∠COD,则∠BOD 的余角______, ∠COE 的补角是_______,∠AOC 的补角是______________________.
6.如图(3),直线AB 、CD 相交于点O,∠AOE=90°,从给出的A 、B 、C 三 个答案中选择适当答案填空.
(1)∠1与∠2的关系是( ) (2)∠3与∠4的关系是( )
(3)∠3与∠2的关系是( ) (4)∠2与∠4的关系是( )
A.互为补角
B.互为余角
C.即不互补又不互余
7.如图(4),∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.
8.如图(5)所示,射线OA 表示_____________方向,射线OB 表示______________方向. 9.四条直线两两相交时,交点个数最多有_______个.
10.38°41′的角的余角等于________,123°59′的角的补角等于________.
11.如果∠1的补角是∠2,且∠1>∠2,那么∠2的余角是________(用含∠1 的式子表示). 12.如果∠α与∠β互补,且∠α:∠β=5:4,那么,∠α=_______,∠β=_________. 13.
根据下列多面体的平面展开图,填写多面体的名称
.
(1)__________,(2)__________,(3)_________. 二、选择题:
14、如图,是一个正方体纸盒的展开图,若在其中三个正方形A 、B 、C 中分别填入适当的
数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A 、B 、C 、中的三个数依次是 ( )
A 、1、-3、0
B 、0、-3、1
C 、-3、0、1
D 、-3、1、0
O
A
B
C
E
F
15.如图(8),直线a 、b 相交,∠1=130°,则∠2+∠3=( ) A.50° B.100° C.130° C.180°
b a
31
2
(8)
c
b a (9)
O
16.如图(9),三条直线相交于O 点,则图中相等的角(平角除外)有( )对 A.3对 B.4对 C.6对 D.8对 17.下列图形不是正方体展开图的是
( )
A
B
C
D
18.从正面、上面、左面看四棱锥,得到的3个图形是
( )
A
B
C
D.北偏西25º 四、计算题:
19. 如图(10),已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点. (1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长.
(10)
20.如图3所示,︒=∠90AOB ,OE 、OF 分别平分AOB ∠、BOC ∠,如果︒=∠60EOF ,求BOC ∠的度数.。