2018初一数学几何图形初步单元测试1(供参考)

合集下载

七年级几何图形初步单元测试卷(含答案解析)

七年级几何图形初步单元测试卷(含答案解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.4.综合题(1)ⅰ问题引入如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=________(用α表示);ⅱ拓展研究如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数________(用α表示).ⅲ归纳猜想若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=________(用α表示).(2)类比探索ⅰ特例思考如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数________(用α表示).ⅱ一般猜想若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=________(用α表示).【答案】(1)90°+∠α;120°+∠α;(2)120°-∠α; .【解析】【解答】(1)ⅰ90°+∠α;ⅱ如图②,∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=180°-(180°-∠α)=180°-60°+∠α=120°+∠α;ⅲ;( 2 )ⅰ如图③,∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°-(∠DBC+∠ECB)=180°- [360°-(∠ABC+∠ACB)]=180°- [360°-(180°-∠A)]=180°-(180°+∠α)=180°-60°-∠α=120°-∠α.;ⅱ .【分析】(1)ⅰ根据角平分线的定义,可得出∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅱ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅲ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果。

2018-2019学年七年级上册几何图形初步单元过关试卷含答案解析

2018-2019学年七年级上册几何图形初步单元过关试卷含答案解析

【答案】152°; 62°.
【解析】
试题分析:∵ ∠AOC+∠COD=180°,∠AOC=28°,∴ ∠COD=152°. ∵ OC 是∠AOB 的平分线,
∠AOC=28°,
∴ ∠AOB=2∠AOC=2×28°=56°,∴ ∠BOD=180°- ∠AOB=180°-56°=124°.∵ OE 是∠BOD 的平分线,

4
【答案】两点之间线段最短. 【解析】
考点:线段的性质:两点之间线段最短.
2.若一个角的补角是这个角 2 倍,则这个角度数为
度.
【答案】60°.
【解析】
试题分析:设这个角为 x°,则这个角的补角为 2x°,所以 x+2x=180°,解得 x=60°,即这个角的度数
为 60°.
考点:补角的定义.
3.已知点 P 是线段 AB 的中点,若 PB=8cm,则 AB= cm.
考点:探求规律问题.
6.若∠α 与∠β 互为补角,则下列式子成立的是( )
A.α-β= 90°
B.α+β=90°
C.α-β=180°
D.α+β=180°
【答案】D.
【解析】
试题分析:∵∠α 与∠β 互为补角,∴α+β=180°,
2
故选 D.
考点:余角和补角.
7.如图,点 O 在直线 AB 上,射线 OC 平分∠DOB.若∠COB=35°,则∠AOD 等于(
A.8 cm 【答案】D. 【解析】
B.12 cm
C.14 cm
D. 10 cm
考点:两点间距离.
5.往返于 A、B 两地的客车,中途停三个站,在客车正常营运中,不同的票价有(

A.10 种 B.4 种 C.3 种 D.5 种

人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)

人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)

人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()第 1 页共31 页A.7条B.8条C.9条D.10条5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.66.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()第 2 页共31 页A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二.填空题(共8小题)11.下面的几何体中,属于柱体的有个.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是第 3 页共31 页13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是cm.15.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是.若∠1=28°32′35″,则∠1的补角=.三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)第 4 页共31 页20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有条棱,个面;(2)长方体所有棱长的和;(3)长方体的表面积.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说第 5 页共31 页明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.第 6 页共31 页2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.【解答】解:最接近圆柱的是生日蛋糕.故选:A.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形,当截面平行于圆锥的底面时,截面图形是圆.所以这几个几何体的截面分别是:圆、长方形、三角形、圆,故选:B.3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()第7 页共31 页A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山【解答】解:由图可得,三亚﹣﹣永兴岛两个点之间距离最短,故选:A.4.如图,图中共有线段()A.7条B.8条C.9条D.10条【解答】解:线段由AD,AE,DE,AB,AC,BD,EC,BC,故选:B.5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.6【解答】解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.第8 页共31 页6.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°【解答】解:∵∠AOC+∠COD+∠BOD=180°,∴∠COD=180°﹣∠AOC﹣∠COD=70°,∵OM、ON分别是∠AOC、∠BOD的平分线,∴∠MOC=∠AOC=25°,∠DON=∠BOD=30°,∴∠MON=∠MOC+∠COD+∠DON=125°,故选:C.7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°【解答】解:∵一张长方形纸片沿BC、BD折叠,∴∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠A′BC+∠E′BD=180°×=90°,即∠ABC+∠DBE=90°,∵∠ABC=25°,∴∠DBE=65°.第9 页共31 页8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S3【解答】解:∵矩形的长为a米,宽为b米,小路的宽为x米,∴S1=ab﹣(a+b)x+S4;S2=ab﹣(a+b)x+S5;S3=ab﹣(a+b)x+S6.∵S4=x•x=x2,S5=x•sin60°•x•sin60°=x2,S6=x•sin60°•=x2,∴S2<S1<S3.故选:C.9.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个【解答】解:由题可得,是正方体的平面展开图的有:故选:B.第10 页共31 页10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.二.填空题(共8小题)11.下面的几何体中,属于柱体的有4个.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是中【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第11 页共31 页“我”与“城”是相对面,“北”与“三”是相对面,“爱”与“中”是相对面.故答案为:中.13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是2或8.【解答】解:①如图1所示,∵AB=10,BC=6,∴AC=AB﹣BC=10﹣6=4,∵D是线段AC的中点,∴AD=AC=×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D是线段AC的中点,∴AD=AC=×16=8.故答案为:2或8.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是16 cm.【解答】解:如图所示:所以线段MP与NP和的最小值是16cm,故答案为;1615.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.第12 页共31 页【解答】解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是60°.【解答】解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=56°.【解答】解:由折叠可得出2∠1+∠2=180°,∵∠1=62°,第13 页共31 页∴∠2=180°﹣2×62°=56°,故答案为56°.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是∠AOD.若∠1=28°32′35″,则∠1的补角=151°27′25″.【解答】解:∵∠1=∠2,∴与∠1互补的角是∠AOD,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD;151°27′25″三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)【解答】解:当r=6.96×108时,V=πr3≈×3.14×(6.96×108)3≈1.41×1027m3,答:太阳的体积大约是1.41×1027m3.20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有12条棱,6个面;(2)长方体所有棱长的和;(3)长方体的表面积.【解答】解:(1)长方体有12条棱,6个面;第14 页共31 页故答案为:12,6;(2)(1+1+2)×4=4×4=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2=(1+2+2)×2=5×2=10(cm2).故长方体的表面积是10cm2.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?【解答】解:依题意得:A=﹣2,B=﹣3,C=﹣4.22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.【解答】解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC﹣MP=2x+3x﹣x=0.5x=1.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.第15 页共31 页【解答】解:(1)∠AOD=∠DOE﹣∠AOE=90°﹣32°=58°∠BOD=∠AOB﹣∠AOD=180°﹣58°=122°又OC平分∠BOD所以:∠BOC=∠BOD=×122°=61°(2)因为OC平分∠BOD,OD平分∠AOC 所以∠BOC=∠DOC=∠AOD又∠BOC+∠DOC+∠AOD=180°所以∠AOD=×180°=60°所以∠AOE=∠DOE﹣∠AOD=90°﹣60°=30°24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,第16 页共31 页故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.【解答】解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,第17 页共31 页∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x ﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.第18 页共31 页人教版七年级上册数学第四章几何图形初步单元测试题(含答案)一、选择题1.角是指()A. 由两条线段组成的图形B. 由两条射线组成的图形C. 由两条直线组成的图形D. 有公共端点的两条射线组成的图形2.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°3.下列说法正确的是()A. 经过两点有且只有一条线段B. 经过两点有且只有一条直线C. 经过两点有且只有一条射线D. 经过两点有无数条直线4.如图,四条线段中,最短和最长的一条分别是()A. acB. bdC. adD. bc5.如图,B在线段AC上,且BC=2AB,D,E分别是AB,BC的中点.则下列结论:①AB= AC;②B是AE的中点;③EC=2BD;④DE=AB.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.已知∠α=70°,则∠α的补角为()A. 120°B. 110°C. 70°D. 20°7.下列语句中,正确的是().A. 比直角大的角钝角;B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角8.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()第19 页共31 页A. 55°B. 56°C. 58°D. 62°9.如图,下列关系式中与图不符合的式子是()A. AD-CD=AB+BCB. AC-BC=AD-BDC. AC-BC=AC+BDD. AD-AC=BD-BC10.如图是一个正方体的平面展开图,当把它拆成一个正方体,与空白面相对的字应该是()A. 北B. 京C. 欢D. 迎二、填空题11.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=________.12.若∠α=32°22′,则∠α的余角的度数为________.13.已知一个角的补角等于155°,则这个角的余角等于________14.八棱柱有________个顶点,________条棱,________个面.15.和互补,且-=50°,求和的度数. ________、 ________16.34.42°=________(用度、分、秒表示).17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________ °.18.用一个平面去截长方体,截面________是平行四边形(填“可能”或“不可能”).19.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC=________ .20.已知线段AB=1996,P、Q是线段AB上的两个点,线段AQ=1200,线段BP=1050,则线段PQ=________.三、解答题21.已知∠BOC=120°,∠AOB=70°,求∠AOC的大小。

七年级数学几何图形初步单元测试卷附答案

七年级数学几何图形初步单元测试卷附答案

一、初一数学几何模型部分解答题压轴题精选(难)1.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。

(直接写出结论)问题情境2如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足____关系。

(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F(1)如图4,若∠E=80°,求∠BFD的度数;(2)如图5中,∠ABM= ∠ABF,∠CDM= ∠CDF,写出∠M与∠E之间的数量关系并证明你的结论。

(3)若∠ABM= ∠ABF,∠CDM= ∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M=________.【答案】(1)解:根据问题情境2,可得出∠BFD=∠AEF+∠CDF∵,∠ABE与∠CDE两个角的角平分线相交于点F∴∠AEF=∠FBE,∠CDF=∠FDE∴∠FBE+∠FDE=∠BFD∵∠E+∠BFD+∠FBE+∠FDE=360°∴80°+∠BFD+∠BFD=360°∴∠BFD=140°(2)结论为:6∠M+∠E=360°证明:∵∠ABM= ∠ABF,∠CDM= ∠CDF∴∠ABF=3∠ABM,∠CDF=3∠CDM∵∠ABE与∠CDE两个角的角平分线相交于点F∴∠ABE=6∠ABM,∠CDE=6∠CDM∵∠ABE+∠CDE+∠E=360°∴6(∠ABM+∠CDM)+∠E=360°∵∠M=∠ABM+∠CDM∴6∠M+∠E=360°(3)证明:根据(2)的结论可知2n∠ABM+2n∠CDM+∠E=360°2n(∠ABM+∠CDME)+∠E=360°∵∠M=∠ABM+∠CDM∴2n∠M+m°=360°∴∠M=【解析】问题情境1: 图1中∠B,∠P,∠D之间关系是:∠P+∠B+∠D=360°,问题情境2:图3中∠B,∠P,∠D之间关系是:∠P=∠B+∠D;【分析】问题情境1和2 过点P作EP∥AB,利用平行线的性质,可证得结论。

七年级数学几何图形初步单元测试卷(含答案解析)

七年级数学几何图形初步单元测试卷(含答案解析)

一、初一数学几何模型部分解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O =40°,∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=又∵CF平分∠ACD ,∴ (角平分线定义)∴∠ECF=(2)证明:∵CG⊥CF,∴ .∴又∵)∴∵∴ (等角的余角相等)即CG平分∠OCD(3)解:结论:当∠O=60°时,CD平分∠OCF .当∠O=60°时∵DE//OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD∴∠DCF=60°,∴即CD平分∠OCF【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.3.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系________;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)解:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)解:如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.4.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

2018-2019学年最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析-经典试题

2018-2019学年最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析-经典试题

人教版数学七年级上册“单元精品卷”(含精析)第四章几何图形初步(培优提高卷)题型选择题填空题解答题总分得分一、选择题。

(本题有10个小题,每小题3分,共30分)1.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.2.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱柱 D.三棱锥3.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4 B.6 C.8 D.124.如图所示,∠BAC=90°,AD⊥BC,垂足为D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离.A.1个 B.2个 C.3个 D.4个5.如图,平面内有公共端点的、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2015”在()A.射线OA上 B.射线OB上C.射线OD上 D.射线OE上6.下列说法中,不正确的是()A. 若点C在线段BA的延长线上,则BA=AC-BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A、B、C三点不在一直线上,则AB<AC+BC7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A、15°B、28°C、29°D、34°8.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15 °30′,则下列结论中不正确...的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′9.如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是()【来源:21cnj*y.co*m】10.如图所示,把一张矩形纸片AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题。

人教版七年级上册数学《几何图形初步》单元检测卷带答案

人教版数学七年级上学期第四章单元测试考试时间:100分钟;满分:100分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•密云区期末)下列四个几何体中,是三棱柱的为()A.B.C.D.2.(2017秋•宿州期末)雨滴滴下来形成雨丝属于下列哪个选项的实际应用()A.点动成线B.线动成面C.面动成体D.以上都不对3.(2018秋•竞秀区期末)”在山区建设公路时,时常要打通一条隧道,就能缩短路程”其中蕴含的数学道理是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段的长度是两点间的距离4.(2019春•文登区期末)下列说法正确的是()A.延长直线ABB.延长射线ABC.反向延长射线ABD.延长线段AB到点C,使AC=BC5.(2018秋•榆林期末)如图,右边的平面图形绕虚线l旋转一周,可以得到左边图形的是()A.B.C.D.6.(2018秋•临沧期末)如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角7.(2019春•红河州期末)点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm8.(2019春•岱岳区期末)如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC﹣DB,②CD AB,③CD=AD﹣BC,④BD=2AD﹣AB.其中正确的等式编号是()A.①②③④B.①②③C.②③④D.②③9.(2019春•开福区校级期末)嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(最小圆的半径是1km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3kmC.小艇B在游船的北偏西30°方向上;且与游船的距离是2kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km10.(2018秋•嘉祥县期末)观察下列图形,并阅读相关文字那么20条直线相交,最多交点的个数是()A.190 B.210 C.380 D.420第Ⅱ卷(非选择题)二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•番禺区期末)如图,将甲,乙两个尺子拼在一起,两端重合.若甲尺经校订是直的,那么乙尺就一定不是直的;用数学知识解释这种生活现象为.12.(2019春•莱州市期末)如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子.13.(2019春•浦东新区期末)计算:48°59′+67°31′﹣21°12′=.14.(2019春•浦东新区期末)在直线MN上取A、B两点,使AB=10cm,再在线段AB上取一点C,使AC =2cm,P、Q分别是AB、AC的中点,则PQ=cm.15.(2018秋•福田区校级期末)当时间为3点30分时,时钟上时针与分针所成夹角的度数是.16.(2018秋•孝义市期末)已知∠AOB=60°,以点O为端点作射线OC,使∠BOC=20°,再作∠AOC的平分线OD,则∠AOD的度数为.评卷人得分三.解答题(共6小题,满分46分)17.(6分)(2018秋•龙岩期末)根据语句画出图形:如图,已知A、B、C三点.①画线段AB;②画射线AC;③画直线BC;④取AB的中点P,连接PC.18.(6分)(2018秋•天心区校级期末)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.19.(8分)(2018秋•宁德期末)图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有条棱,有个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开条棱,需剪开棱的棱长的和的最大值为cm.20.(8分)(2018秋•龙泉驿区期末)如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=50°,求∠EOF的度数;(2)如图2,若∠AOB=α,∠AOC=β,求∠EOF的度数.21.(8分)(2018秋•绍兴期末)如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC =a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.22.(10分)(2018秋•永新县期末)如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.(2018秋•密云区期末)下列四个几何体中,是三棱柱的为()A.B.C.D.【解析】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为圆柱,不符合题意;D、该几何体为三棱柱,符合题意;故选:D.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.2.(2017秋•宿州期末)雨滴滴下来形成雨丝属于下列哪个选项的实际应用()A.点动成线B.线动成面C.面动成体D.以上都不对【解析】解:雨滴滴下来形成雨丝属于点动成线,故选:A.【点睛】此题考查点、线、面、体,关键是根据点动成线解答.3.(2018秋•竞秀区期末)”在山区建设公路时,时常要打通一条隧道,就能缩短路程”其中蕴含的数学道理是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段的长度是两点间的距离【解析】解:由线段的性质可知,”在山区建设公路时,时常要打通一条隧道,就能缩短路程”这其中蕴含的数学道理是:两点之间,线段最短.故选:A.【点睛】本题考查的是线段的性质,即两点之间线段最短.4.(2019春•文登区期末)下列说法正确的是()A.延长直线ABB.延长射线ABC.反向延长射线ABD.延长线段AB到点C,使AC=BC【解析】解:A.延长直线AB,说法错误;B.延长射线AB,说法错误;C.反向延长射线AB,说法正确;D.延长线段AB到点C,则AC>BC,故本选项错误;故选:C.【点睛】本题主要考查了直线、射线、线段的概念,注意用两个字母表示射线时,端点的字母放在前边.5.(2018秋•榆林期末)如图,右边的平面图形绕虚线l旋转一周,可以得到左边图形的是()A.B.C.D.【解析】解:由图可知,只有D选项图形绕直线l旋转一周得到如图所示立体图形,故选:D.【点睛】本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.6.(2018秋•临沧期末)如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角【解析】解:A、∠1与∠AOB是同一个角,说法正确;B、∠AOC也可用∠O来表示,说法错误;C、∠β与∠BOC是同一个角,说法正确;D、图中共有三个角:∠AOB,∠AOC,∠BOC,说法正确;故选:B.【点睛】此题主要考查了角的概念,关键是掌握角的表示方法.7.(2019春•红河州期末)点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm【解析】解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.【点睛】考查了两点间的距离,在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.(2019春•岱岳区期末)如图,点C是AB的中点,点D是BC的中点,现给出下列等式:①CD=AC﹣DB,②CD AB,③CD=AD﹣BC,④BD=2AD﹣AB.其中正确的等式编号是()A.①②③④B.①②③C.②③④D.②③【解析】解:①点C是AB的中点,AC=CB.②点C是AB的中点,∴,又∵点D是BC的中点,∴CD.故②正确;③点C是AB的中点,AC=CB.CD=AD﹣AC=AD﹣BC,故③正确;④2AD﹣AB=2AC+2CD﹣AB=2CD=BC,故④错误.故正确的有①②③.故选:B.【点睛】此题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.9.(2019春•开福区校级期末)嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(最小圆的半径是1km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3kmC.小艇B在游船的北偏西30°方向上;且与游船的距离是2kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km【解析】解:A、小艇A在游船的北偏东30°,且距游船3km,故本选项不符合题意;B、游船在小艇A的南偏西30°方向上,且与小艇A的距离是3km,故本选项不符合题意;C、小艇B在游船的北偏西60°,且距游船2km,故本选项不符合题意;D、游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km,故本选项符合题意.故选:D.【点睛】本题考查了方向角.熟练掌握平面内特殊位置的点的坐标特征.理解方向角的表示方法.10.(2018秋•嘉祥县期末)观察下列图形,并阅读相关文字那么20条直线相交,最多交点的个数是()A.190 B.210 C.380 D.420【解析】解:设直线有n条,交点有m个.有以下规律:直线n条交点m个2 13 1+24 1+2+3…n m=1+2+3+…+(n﹣1),20条直线相交有190个.故选:A.【点睛】此题主要考查了相交线,关键是找出直线条数与交点个数的计算公式.二.填空题(共6小题,满分24分,每小题4分)11.(2018秋•番禺区期末)如图,将甲,乙两个尺子拼在一起,两端重合.若甲尺经校订是直的,那么乙尺就一定不是直的;用数学知识解释这种生活现象为两点确定一条直线.【解析】解:∵甲尺是直的,两尺拼在一起两端重合,∴甲尺经校订是直的,那么乙尺就一定不是直的,用数学知识解释这种生活现象为:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题考查的是直线的性质,熟知两点确定一条直线是解答此题的关键.12.(2019春•莱州市期末)如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子4.【解析】解:如图折成3折,有两个拐点,而不是折叠三次,故能得到4条绳子.【点睛】解题的关键是看清图中折的方式,从而作出判断.注意结合图形解题的思想.13.(2019春•浦东新区期末)计算:48°59′+67°31′﹣21°12′=95°18′.【解析】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【点睛】本题主要考查了度、分、秒的四则混合运算,是角度计算中的一个难点,注意以60为进制即可,难度适中.14.(2019春•浦东新区期末)在直线MN上取A、B两点,使AB=10cm,再在线段AB上取一点C,使AC =2cm,P、Q分别是AB、AC的中点,则PQ=4cm.【解析】解:如图,∵AB=10cm,P为AB的中点∴AP=PB=5cm∵AC=2cm,∴CP=3cm∵Q为AC的中点∴QC=AQ=1cm∴PQ=QC+CP=1+3=4cm故答案为:4【点睛】此题主要考查两点间的距离(线段长度)计算,此类题目,通常利用图形结合进行解题.15.(2018秋•福田区校级期末)当时间为3点30分时,时钟上时针与分针所成夹角的度数是75°.【解析】解:时针从数3开始30分转了30×0.5°=15°,分针从数字12开始30分转了30×6°=180°,所以3点30分,时针与分针所成夹角的度数=180°﹣90°﹣15°=75°.故答案为:75°.【点睛】本题考查了钟面角:钟面被分成12大格,每大格30°;分针每分钟转6°,时针每分钟转0.5°.16.(2018秋•孝义市期末)已知∠AOB=60°,以点O为端点作射线OC,使∠BOC=20°,再作∠AOC 的平分线OD,则∠AOD的度数为20°或40°.【解析】解:(1)当OC在∠AOB的内部时,如图1所示:∵∠BOC=20°,∠AOB=60°,∠AOB=∠AOC+∠BOC,∴∠AOC=60°﹣20°=40°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD20°;(2)当OC在∠AOB的外部时,如图2所示:∵∠AOC=∠AOB+∠BOC,∠AOB=60°,∠BOC=20°,∴AOC=80°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD40°;综合所述∠AOD的度数有两个,故答案为20°或40°.【点睛】本题综合了角平分线定义和角的和差知识,重点掌握角的计算,难点是用分类计算角的大小,易掉角的外部这一种情况.三.解答题(共6小题,满分46分)17.(6分)(2018秋•龙岩期末)根据语句画出图形:如图,已知A、B、C三点.①画线段AB;②画射线AC;③画直线BC;④取AB的中点P,连接PC.【解析】解:如图.【点睛】本题考查了直线、射线、线段,正确区分直线、线段、射线是解题关键.18.(6分)(2018秋•天心区校级期末)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.【解析】解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣x°.由题意,得42.∴180﹣x﹣x=84,∴﹣2x=﹣96,解得x=48,故∠AOB=48°,∠AOC=132°.【点睛】本题考查补角的定义,角平分线的定义,及角的运算.在图形中,找补角关系时,除了借助图形外,还需考虑等量关系即有没有相等的角.19.(8分)(2018秋•宁德期末)图1所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有9条棱,有5个面;(2)图2方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开5条棱,需剪开棱的棱长的和的最大值为31cm.【解析】解:(1)这个三棱柱有条9棱,有个5面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:7×3+5×2=31(cm).故答案为:5,31.【点睛】本题主要考查的是认识立体图形,明确n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;能够数出三棱柱没有剪开的棱的条数是解答此题的关键.20.(8分)(2018秋•龙泉驿区期末)如图,已知∠AOB内部有三条射线,其中OE平分角∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=120°,∠AOC=50°,求∠EOF的度数;(2)如图2,若∠AOB=α,∠AOC=β,求∠EOF的度数.【解析】解:(1)∵OF平分∠AOC,∴∠COF∠AOC30°=15°,∵∠BOC=∠AOB﹣∠AOC=120°﹣30°=90°,OE平分∠BOC,∴∠EOC∠BOC=45°,∴∠EOF=∠COF+∠EOC=60°;(2)∵OF平分∠AOC,∴∠COF∠AOC,同理,∠EOC∠BOC,∴∠EOF=∠COF+∠EOC∠AOC∠BOC(∠AOC+∠BOC)∠AOBα.【点睛】本题考查了角平分线的性质,以及角度的计算,正确理解角平分线的定义是关键.21.(8分)(2018秋•绍兴期末)如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC =a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.【解析】解:(1)∵M、N分别是AC、BC的中点,∴MC AC,CN BC,∴MN=MC+CNAC BC4 6=5cm,所以MN的长为5cm.(2)同(1),MN AC CB(AC+CB)(a+b).(3)图如右,MN(a﹣b).理由:由图知MN=MC﹣NCAC BCa b(a﹣b).【点睛】本题主要考查线段中点的定义,线段的中点把线段分成两条相等的线段.22.(10分)(2018秋•永新县期末)如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为30°;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.【解析】解:(1)∵OM平分∠BOC,∠BOC=120°,∴∠BOM=∠MON=60°,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣60°=30°;(2)①∠AOM﹣∠NOC=30°;故答案为:30°②∠AOM﹣∠NOC=30°,理由如下:∵∠AOM=∠MON﹣∠AON=90°﹣∠AON,∠NOC=∠AOC﹣∠AON=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.【点睛】本题考查了角平分线的定义,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.。

(完整版)2018初一数学几何图形初步(一)几何图形练习题

几何图形初步(一)几何图形练习题一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方休中的距离是( )A.0 B.1 C. D.2.要在地球仪上确定深圳市的位置,需要知道的是()A.高度B.经度C.纬度D.经度和纬度3.如图的几何体中,它的俯视图是( )4.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.北 B.京 C.精 D.神5.(3分)如图,图案⑥是由①②③④⑤五种基本图形中的两种拼接而成的,这两种基本图形是()A.①⑤ B.②⑤ C.③⑤ D.②④6.如图的立体图形可由哪个平面图形绕轴旋转而成()7.如图是一个三棱柱的展开图.若AD=10,CD=2,则AB的长度可以是()A.2 B.3 C.4 D.58.下面四个几何体中,左视图是矩形的几何体是()9.下列几何体的主视图是三角形的是()10.如图,从左面观察这个立体图形,能得到的平面图形是( )A. B. C. D.11.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中( )12.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是( )13.用一个平面去截一个几何体,不能截得三角形截面的几何体是( )A.圆柱 B.圆锥 C.三棱柱 D.正方体14.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()15.用4个小立方块搭成如图所示的几何体,该几何体的左视图是( )评卷人得分一、解答题16.小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:只需添加一个符合要求的正方形,并用阴影表示.17.如图,把边长为2的正方形剪成四个完全一样的直角三角形,在下面对应的正方形网格(每个小正方形的边长均为1)中画出用这四个直角三角形按要求分别拼成的新的多边形.(要求全部用上,互不重叠,互不留隙).(1)长方形(非正方形);(2)平行四边形;(3)四边形(非平行四边形).18.(本题满分10分)(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.19.(本题满分8分)一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒.(1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积........说明原因。

七年级几何图形初步同步单元检测(Word版 含答案)

一、初一数学几何模型部分解答题压轴题精选(难)1.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°. 2.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC= ________.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)________.(3)将直线MN绕点P旋转。

初一上册数学(几何图形初步)练习卷(一)

初一上册数学(几何图形初步)练习卷(一)知识点1:立体图形与平面图形以及点线面体1.五棱柱有________个顶点,________条棱,________个面.2.柱体包括________和________,锥体包括________和________.3.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形.4.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .5.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( ).6..如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a在展开前所对的面上的数字是( ).A.2B.3 C.4 D.57.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).8.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是()9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.如图所示是一个几何体的三视图,则这个几何体是________.11.如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.12.对于棱柱体而言,不同的棱柱体由不同的面构成:三棱柱由2个底面,3个侧面,共5个面构成;四棱柱由2个底面,4个侧面,共6个面构成;五棱柱由2个底面,5个侧面,共7个面构成;六棱柱由2个底面,6个侧面,共8个面构成;(1)根据以上规律判断,十二棱柱共有多少个面?(2)若某个棱柱由24个面构成,那么这个棱柱是什么棱柱?(3)棱柱底面多边形的边数为n,则侧面的个数为多少?棱柱共有多少个面?(4)底面多边形边数为n的棱柱,其顶点个数为多少个?有多少条棱?知识点2:直线、射线、线段1.在墙上钉一根木条需_______个钉子,其根据是.2.如下图(1)所示,点A在直线L______,点B在直线L________.3.如下图(2)所示,直线_______和直线______相交于点P;直线AB和直线EF•相交于点______;点R是直线________和直线________的交点.4.如下图(3)所示,图中共有_____条线段,它们是________;共有______条射线,它们是________.5.下面几种表示直线的写法中,错误的是( ).A.直线aB.直线MaC.直线MN D.直线MO6.画线段AB=50mm,在线段AB上取一点C,使得5AC=2AB,在AB的延长线上取一点D,使得AB=10BD,那么CD=______mm.7.如右图,AC=CD=DE=EB,图中和线段AD长度相等的线段是________.以D•为中点的线段是________.8.线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD中点,求EF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年几何图形初步测试题一、选择题1.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么图中x的值是()A.8 B.3 C.2 D.-32.如图所示的几何体的俯视图是().54.下图中共有()条线段.A.4B.6C.8D.105.下列四个图中的线段(或直线、射线)能相交的是()A.(1) B.(2) C.(3) D.(4)6.使分式2+xx有意义的x的取值范围为()A.2≠x B.2-≠x C.2->x D.2<x7.如图,C、D是线段AB上两点,若CB=5cm,DB=9cm,且D是AC的中点,则AC的长等于()A.6cm B.9cm C.8cm D.13cm8.点C在线段AB上,下列条件中不能确定....点C是线段AB中点的是A.B.C.D.C DBA正面A、 AC =BCB、 AC +BC= ABC、 AB =2ACD、 BC =21AB9.已知A、B两点之间的距离是10cm,C是线段AB上的任意一点,则AC中点与BC中点间的距离是()A.3cm B.4cm C .5cm D.不能计算10.将一副三角板如图放置,使点A落在DE上,若BC DE∥,则AFC∠的度数为()A.45°B.50°C.60°D.75°11.如图,直线AB与CD相交于点O,12=∠∠,若140AOE=∠,则AOC∠的度数为().A.40B.60C.80D.10012.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78° B.80° C.88° D.90°13.如图,直线AB与CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为()A.40 B.60 C.80 D.10014.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()AOCED(A)20°(B)25°(C)30°(D)70°评卷人得分一、解答题15.(本题满分7分)线段AB=4cm,延长线段AB到C,使BC = 1cm,再反向延长AB 到D,使AD=3 cm,E是AD中点,F是CD的中点,求EF的长度.16.(本题满分5分)已知:如图所示,已知线段a、b、c(a﹥c),求作:线段AB,使AB=a+b-c.17.(10分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB、CD的中点E、F之间距离是10cm,求AB、CD的长.18.(6分)根据下列语句,画出图形.已知四点A、B、C、D.DCBA①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.[19.(满分8分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.20.(满分5分)线段AB=14cm,C是AB上一点,且AC=9cm,O为AB中点,求线段OC 的长度··A O C BA E DB F C21.如图,如图点B在线段AC上,若D是AB的中点,E是BC的中点,(1)若DE=5,AE=7,求CE 的长(2)若AC=m,试用含m的代数式表示线段ED22.线段cmAC6=,线段cmBC15=,点M是AC的中点,在CB上取一点N,使2:1:=NBCN,求MN的长。

23.(本题10分)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC 的中点。

(1)求线段MN的长;(2)若C为线段AB上任意一点,满足AC+CB=a cm,其他条件不变,你能猜想MN的长度吗?并说明理由。

(3)若C在AB的延长线上,且满足AC-CB=b cm,其他条件不变, MN的长度为。

(直接写出答案)24.作图题.如图,在同一平面内有四个点A、B、C、D.①画射线BD②画直线BC③连结AC与射线BD相交于点P④延长线段AD与直线BC相交于点Q评卷人得分二、填空题25.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭的几何体拼成一个大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体表面积为________________.26.立方体木块的六个面分别标有数字1、2、3、4、5、6,下图是从不同方向观察这BCM N个立方体木块看到的数字情况,数字1和5对面的数字的和是.27.一个几何体是由若干个相同的正方体组成的,从其正面看和左面看都是三个横排的正方体,搭成这样的几何体至少需要个这样的正方体.28.如果∠A=35°,那么它的余角为.29.如图,直线AB、CD交于点O,80=∠COE,OA平分COE∠,则=∠DOB 度.30.如图所示,射线OP表示的方向是.31.已知32=∠α,则α∠的余角是度.32.若一个角的补角是150°,则这个角的余角是____________.33.已知∠1与∠2互余,∠2与∠3互补,∠1=67°,则∠3= 。

34.57.32︒= _____︒______′______"。

35.在长为48cm的线段AB上,取一点D,使AD=13AB ,C为AB的中点,则CD=______________cm.36.如图,已知点C在线段AB上,MN=4cm,BC=2cm,点M、N分别是AC、BC的中点,则线段AM的长度为 cm.37.如图所示,点M,N在线段AB上,且cmMB5=,cmNB14=,N是线段AM 的中点,则线段AB为cm.38.如图,若C为线段AB的中点,D在线段CB 上,6=DA,4=DB,则CD的长度是____________________.39.填空题:如图所示,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,则CD=______.评卷人得分三、计算题40.(13分)已知, ∥OA,︒=∠=∠108AB,试解答下列问题:(1)如图所示,则=∠O___________°,并判断OB与AC平行吗?为什么?(2)如图,若点F、E在线段BC上,且满足AOCFOC∠=∠,并且OE平分BOF∠.则EOC∠的度数等于_____________°;(3)在第(2)题的条件下,若平行移动AC,如图.①求OCB∠:OFB∠的值;②当OCAOEB∠=∠时,求OCA∠的度数(直接写出答案,不必写出解答过程).41.计算:48º39'+67º31'-21º17'×5;42.(本题满分6分)如图,点O在直线AB上,OC平分∠DOB.若∠COB=36°.(1)求∠DOB的大小;(2)请你用量角器先画∠AOD的角平分线OE,再说明OE和OC的位置关系.43.如图,已知∠AOC=∠BOD=900,若∠BOC=550,求∠AOB与∠COD的度数,并比较这两BC D个角的大小.44.推理填空:(5分)如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=____(____________________________)又因为∠1=∠2所以∠1=∠3(______________)所以AB∥_____(_____________________________)所以∠BAC+______=180°(___________________________)因为∠BAC=70°所以∠AGD=_______.A231FGECDB45.已知,如图,DE∥BC,∠A=60°,∠B=50°;(1)求∠1的度数;(2)若FH⊥AB于点H,且∠2=∠3,试判断CD与AB的位置关系?并加以证明.46.如图所示,已知△ABC≌△FED,且BC=ED,那么AB与EF平行吗?为什么?47.(本题5分)已知:如图所示,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A +∠1=74º, 求:∠D 的度数.开心画一画(在原图上作图,保留作图痕迹) 48.在AD 的右侧作∠DCP =∠DAB ;49.在射线CP 上取一点E ,使CE =AB ,连接BE .AE . 50.画出△ABE 的BE 边上的高AF 和AB 边上的高EG .(2分)如果已知:AB=10,BE=12,EG=6,则AF= (直接填结果)EA BD C 1参考答案1.A 【解析】 试题分析:解题的关键是熟记正方体相对面展开后间隔一个正方形;只有符号不同的两个数互为相反数.根据正方体的表面展开图的特征结合相反数的定义即可得到x 的值为8. 故选A.考点:1.正方体的表面展开图;2.相反数. 2.B. 【解析】试题分析:俯视图是从物体上面往下看到的平面图形,中间的竖线应是实线,故选B. 考点:物体的三视图识别. 3.C 【解析】试题分析:根据三视图的画法可得几何体的俯视图为C . 考点:三视图 4.D 【解析】试题分析:同一条直线上的五个点,含有的线段数是4+3+2+1=10条. 考点:线段数量的判断. 5.A 【解析】试题分析:线段的长度是固定的,射线可以向一边无限延伸,直线可以向两边无限延伸.本题中(2)(3)(4)无法相交,只要(1)会相交. 考点:线段、射线、直线的性质. 6.B 【解析】试题分析:当20x +≠时,分式2+x x有意义,所以2-≠x ,故选:B. 考点:分式有意义的条件. 7.C 【解析】试题分析:因为CB =5cm ,DB=9cm ,所以CD=DB-CB=9-5=4cm ,又D 是AC 的中点,所以AC=2CD=8cm ,故选:C. 考点:线段的和差及计算. 8.B 【解析】试题分析:B 选项中不论点C 在线段AB 的什么位置都满足AC +BC= AB 所以点C 不一定是线段AB 的中点,故选B. 考点:线段的中点. 9.C . 【解析】试题分析:∵AC+BC=AB ,∴AC 的中点与BC 的中点距离=12AB=5CM .故选C .考点:两点间的距离. 10.D 【解析】试题分析:根据题意可得:∠E=30°,∠ACB =45°,因为BC ∥DE ,所以∠BCE=∠E=30°,所以∠ACE=∠ACB-∠BCE=45°-30°=15°,故选:D . 考点:1.平行线的性质;2.角的和差计算. 11.C 【解析】 试题分析::∵∠AOE=140°,∠AOE 和∠2是邻补角, ∴∠2=180°-140°=40°,∵∠1=∠2,∴∠BOD=2∠2=80°, 又∵∠BOD 和∠AOC 是对顶角 ∴∠AOC=∠BOD=80°. 故选C .考点:1.邻补角2.对顶角. 12.A 【解析】试题分析:因为OD 是∠AOC 的平分线,OE 是∠BOC 的平分线,所以∠DOC=12∠AOC ,∠COE=12∠BOC ,所以∠DOE=∠DOC+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC )=12∠AOB=12×156°=78°,故选:A .考点:1.角平分线;2.角的计算. 13.C 【解析】试题分析:因为∠AOE+∠2=180°,∠AOE=140°,所以∠2=40°,又因为∠1=∠2,所以∠BOD=80°,又∠AOC 和∠BOD 是对顶角,所以∠AOC=∠BOD=80°,故选:C . 考点:1.互补;2.角的平分线;3.对顶角的性质. 14.D 【解析】试题分析:∵∠1=40°,∴∠BOC =140°,∵OD 平分∠BOC ,∴∠2=70°. 15.2.5cm 【解析】试题分析:根据条件可以求出线段DC 的长,因为E 是AD 中点,F 是CD 的中点,所以可求出线段DE,DF 的长,而EF=DF-DE ,所以EF=2.5cm. 试题解析:解:由AB=4cm ,BC=1cm ,AD=3cm得DC=4+1+3=8cm 2分 因为E 是AD 的中点, 所以DE=21AD=1.5cm 4分 因为F 是CD 的中点, 所以DF=21CD=4cm 6分 所以EF=DF-DE=2.5cm 7分考点:1.线段的中点;2.线段的和差倍分计算.16.(作图略)【解析】试题分析:先画一条射线,然后在射线上依次截取线段即可.试题解析:1、作一条射线,在射线上取一点A,以A为端点在直线上向右截取AC=a;2、再以C为端点在直线上向右截取CD=b;3、以D为端点在直线上向左截取DB=c;所得到的线段AB的长度就是:AB=a+b-c.图略考点:尺规作图.17.AB=12cm,CD=16cm【解析】试题分析:先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.试题解析:解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.考点:线段中点的性质18.【解析】试题分析:根据直线、线段和射线的定义作出即可.试题解析:解:如图所示.考点:直线、线段和射线的作图19.外来人数130万,外出旅游人数96万【解析】试题分析:首先设去年外来人数为x万人,则外出旅游的人数为(x﹣20)万,然后根据增长后的总人数为226万,列出方程进行求解.试题解析:设该市去年外来人数为x万人,外出旅游的人数为(x﹣20)万人,由题意得,(1+30%)x+(1+20%)(x-20)=226解得 x=100则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.考点:一元一次方程的应用20.2cm【解析】试题分析:根据O 为AB 的中点,求出AO 的长度,然后根据OC=AC -AO 求出长度试题解析:∵O 为AB 中点,AB=14∴OA=12AB=7cm 又∵AC=9cm ,OC=AC-AB∴OC=2 cm考点:线段中点的性质以及长度的计算21.(1)3(2)21m 【解析】欲求CE ,由E 是BC 的中点知,BE=CE,故只需求BE 即可,又BE=DE-BD=5-BD,又D 是AB 的中点可得:AD=BD=AE-DE=7-5=2(2)由D 是AB 的中点,E 是BC 的中点BD=21AB,BE=21BC 再把两者相加即可。

相关文档
最新文档