几何图形初步单元测试卷(含答案解析)

合集下载

人教版数学七年级上册《几何图形初步》单元综合检测卷(带答案)

人教版数学七年级上册《几何图形初步》单元综合检测卷(带答案)

人教版数学七年级上学期第四章单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·四川初一期中)有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是( )A .4B .3C .2D .12.(2019·西安交通大学附属中学初一月考)用如图所示的图形,旋转一周所形成的几何体是( )A .B .C .D .3.(2019·河北初二期中)一副三角板按如图方式摆放,已知∠1=5∠2,则∠1的度数是( )A .15°B .18°C .72°D .75°4.(2019·山西初三)如图,点O 是直线AB 上的一点,AOC 40∠=,OM 平分BOC ∠,则BOM ∠等于( )A .60B .65C .70D .755.(2019·贵州省织金县第六中学初一期中)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市6.(2019·福建聚龙外国语学校初二月考)下列说法正确的是( )A.延长线段AB和延长线段BA的含义相同B.射线AB的长度为12cmC.经过两点可以画一条直线,并且只能画一条直线D.延长直线AB7.(2019·济宁高新区第五中学初一期末)下面说法错误的是( )A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等8.(2019·广东正德中学初一月考)下列说法正确的有()①长方体、正方体都是棱柱;②圆锥和圆柱的底面都是圆;③若直棱柱的底面边长相等,则它的各个侧面的面积相等;④棱锥底面的边数与侧棱数相等;⑤直棱柱的上、下底面是形状、大小相同的多边形,侧面都是长方形.A.2个B.3个C.4个D.5个9.(2018·河北省保定市第十七中学初一期末)已知线段AB=6cm,线段BC=8cm,则线段AC 的长度为( ) A.14cm B.2cm C.14cm或2cm D.不能确定10.(2019·山东初一期中)如图,在正方形网格中,∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°二、填空题(每小题4分,共24分)11.(2019·河北初一期中)如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.12.(2019·重庆市第一一0中学校初一期中)三条直线两两相交,它们的交点个数是________个。

数学七年级上册《几何图形初步》单元测试题(含答案)

数学七年级上册《几何图形初步》单元测试题(含答案)
A. B. C. D.
11.将长方形ABCD沿AE折叠,得到如图所示的图形,已知∠CEB′=50°,∠DAB′的度数是( )
A.40°B.60°C.75°D.80°
12.如图是一个长方体之和表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为( )
A.6B.8C.10D.15
二.填空题(每小题3分,共24分)
4.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )
A. 两点确定一条直线B. 垂线段最短
C. 两点之间,线段最短D. 两点之间,直线最短
【答案】C
【解析】
分析:由题意从A地到B地有多条道路,肯定要尽量选择两地之间最短的路程,就用到两点间线段最短定理.
6.已知∠A=55°,则它的余角是( )
A.25°B.35°C.45°D.55°
【答案】B
【解析】
【分析】根据余角的定义进行解答即可得.
【详解】∵∠A=55°,
∴它 余角是90°﹣∠A=90°﹣55°=35°,
故选B.
【点睛】本题考查了余角与补角,熟知互余两角的和为90度是解本题的关键.
7.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为( )
2.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这样做蕴含的数学原理是( )
A.过一点有无数条直线Bቤተ መጻሕፍቲ ባይዱ两点确定一条直线
C.两点之间线段最短D.线段是直线的一部分
【答案】B
【解析】
【分析】
由直线公理可直接得出答案.
【详解】建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,

人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)

人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)

人教版七年级上册数学《第四章几何图形初步》单元测试题(含解析)一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()第 1 页共31 页A.7条B.8条C.9条D.10条5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.66.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()第 2 页共31 页A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°二.填空题(共8小题)11.下面的几何体中,属于柱体的有个.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是第 3 页共31 页13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是cm.15.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于.16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是.若∠1=28°32′35″,则∠1的补角=.三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)第 4 页共31 页20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有条棱,个面;(2)长方体所有棱长的和;(3)长方体的表面积.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说第 5 页共31 页明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.第 6 页共31 页2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图所示的四种物体中,哪种物体最接近于圆柱()A.B.C.D.【解答】解:最接近圆柱的是生日蛋糕.故选:A.2.下列几何体的截面分别是()A.圆、平行四边形、三角形、圆B.圆、长方形、三角形、圆C.圆、长方形、长方形、三角形D.圆、长方形、三角形、三角形【解答】解:当截面平行于圆柱底面截取圆柱时得到截面图形是圆,截面截取经过四个顶点的截面时可以截得长方形,当截面垂直圆锥的底面时,截面图形是三角形,当截面平行于圆锥的底面时,截面图形是圆.所以这几个几何体的截面分别是:圆、长方形、三角形、圆,故选:B.3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()第7 页共31 页A.三亚﹣﹣永兴岛B.永兴岛﹣﹣黄岩岛C.黄岩岛﹣﹣弹丸礁D.渚碧礁﹣﹣曾母暗山【解答】解:由图可得,三亚﹣﹣永兴岛两个点之间距离最短,故选:A.4.如图,图中共有线段()A.7条B.8条C.9条D.10条【解答】解:线段由AD,AE,DE,AB,AC,BD,EC,BC,故选:B.5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.6【解答】解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.第8 页共31 页6.如图,∠AOB是平角,∠AOC=50°,∠BOD=60°,OM平分∠BOD,ON平分∠AOC,则∠MON的度数是()A.135°B.155°C.125°D.145°【解答】解:∵∠AOC+∠COD+∠BOD=180°,∴∠COD=180°﹣∠AOC﹣∠COD=70°,∵OM、ON分别是∠AOC、∠BOD的平分线,∴∠MOC=∠AOC=25°,∠DON=∠BOD=30°,∴∠MON=∠MOC+∠COD+∠DON=125°,故选:C.7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A.50°B.65°C.45°D.60°【解答】解:∵一张长方形纸片沿BC、BD折叠,∴∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠A′BC+∠E′BD=180°×=90°,即∠ABC+∠DBE=90°,∵∠ABC=25°,∴∠DBE=65°.第9 页共31 页8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S3【解答】解:∵矩形的长为a米,宽为b米,小路的宽为x米,∴S1=ab﹣(a+b)x+S4;S2=ab﹣(a+b)x+S5;S3=ab﹣(a+b)x+S6.∵S4=x•x=x2,S5=x•sin60°•x•sin60°=x2,S6=x•sin60°•=x2,∴S2<S1<S3.故选:C.9.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个【解答】解:由题可得,是正方体的平面展开图的有:故选:B.第10 页共31 页10.如图是一个棱长为1的正方体的展开图,点A,B,C是展开后小正方形的顶点,连接AB,BC,则∠ABC的大小是()A.60°B.50°C.45°D.30°【解答】解:连接AC.根据勾股定理可以得到:AC=BC=,AB=,∵()2+()2=()2,即AC2+BC2=AB2,∴△ABC是等腰直角三角形.∴∠ABC=45°.故选:C.二.填空题(共8小题)11.下面的几何体中,属于柱体的有4个.【解答】解:柱体分为圆柱和棱柱,所以柱体有圆柱、正方体、六棱柱,三棱柱共4个.故答案为:4.12.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是中【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,第11 页共31 页“我”与“城”是相对面,“北”与“三”是相对面,“爱”与“中”是相对面.故答案为:中.13.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D 两点间的距离是2或8.【解答】解:①如图1所示,∵AB=10,BC=6,∴AC=AB﹣BC=10﹣6=4,∵D是线段AC的中点,∴AD=AC=×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D是线段AC的中点,∴AD=AC=×16=8.故答案为:2或8.14.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是16 cm.【解答】解:如图所示:所以线段MP与NP和的最小值是16cm,故答案为;1615.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.第12 页共31 页【解答】解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°16.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是60°.【解答】解:∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°﹣150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.17.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=56°.【解答】解:由折叠可得出2∠1+∠2=180°,∵∠1=62°,第13 页共31 页∴∠2=180°﹣2×62°=56°,故答案为56°.18.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是∠AOD.若∠1=28°32′35″,则∠1的补角=151°27′25″.【解答】解:∵∠1=∠2,∴与∠1互补的角是∠AOD,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD;151°27′25″三.解答题(共7小题)19.太阳可以近似地看成球体,已知太阳的半经为6.96×108m,太阳的体积大约是多少?(球的体积的计算公式是V=πr3,π取3.14)【解答】解:当r=6.96×108时,V=πr3≈×3.14×(6.96×108)3≈1.41×1027m3,答:太阳的体积大约是1.41×1027m3.20.已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:(1)长方体有12条棱,6个面;(2)长方体所有棱长的和;(3)长方体的表面积.【解答】解:(1)长方体有12条棱,6个面;第14 页共31 页故答案为:12,6;(2)(1+1+2)×4=4×4=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2=(1+2+2)×2=5×2=10(cm2).故长方体的表面积是10cm2.21.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?【解答】解:依题意得:A=﹣2,B=﹣3,C=﹣4.22.如图,点B、C把线段MN分成三部分,其比是MB:BC:CN=2:3:4,P 是MN的中点,且MN=18cm,求PC的长.【解答】解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC﹣MP=2x+3x﹣x=0.5x=1.23.如图,∠AOB是平角,∠DOE=90°,OC平分∠DOB.(1)若∠AOE=32°,求∠BOC的度数;(2)若OD是∠AOC的角平分线,求∠AOE的度数.第15 页共31 页【解答】解:(1)∠AOD=∠DOE﹣∠AOE=90°﹣32°=58°∠BOD=∠AOB﹣∠AOD=180°﹣58°=122°又OC平分∠BOD所以:∠BOC=∠BOD=×122°=61°(2)因为OC平分∠BOD,OD平分∠AOC 所以∠BOC=∠DOC=∠AOD又∠BOC+∠DOC+∠AOD=180°所以∠AOD=×180°=60°所以∠AOE=∠DOE﹣∠AOD=90°﹣60°=30°24.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,第16 页共31 页故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.探索性问题:已知A,B在数轴上分别表示m,n.(1)填表:(2)若A,B两点的距离为d,则d与m,n有何数量关系.(3)在数轴上整数点P到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.【解答】解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,第17 页共31 页∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x ﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.第18 页共31 页人教版七年级上册数学第四章几何图形初步单元测试题(含答案)一、选择题1.角是指()A. 由两条线段组成的图形B. 由两条射线组成的图形C. 由两条直线组成的图形D. 有公共端点的两条射线组成的图形2.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°3.下列说法正确的是()A. 经过两点有且只有一条线段B. 经过两点有且只有一条直线C. 经过两点有且只有一条射线D. 经过两点有无数条直线4.如图,四条线段中,最短和最长的一条分别是()A. acB. bdC. adD. bc5.如图,B在线段AC上,且BC=2AB,D,E分别是AB,BC的中点.则下列结论:①AB= AC;②B是AE的中点;③EC=2BD;④DE=AB.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.已知∠α=70°,则∠α的补角为()A. 120°B. 110°C. 70°D. 20°7.下列语句中,正确的是().A. 比直角大的角钝角;B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角8.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()第19 页共31 页A. 55°B. 56°C. 58°D. 62°9.如图,下列关系式中与图不符合的式子是()A. AD-CD=AB+BCB. AC-BC=AD-BDC. AC-BC=AC+BDD. AD-AC=BD-BC10.如图是一个正方体的平面展开图,当把它拆成一个正方体,与空白面相对的字应该是()A. 北B. 京C. 欢D. 迎二、填空题11.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=________.12.若∠α=32°22′,则∠α的余角的度数为________.13.已知一个角的补角等于155°,则这个角的余角等于________14.八棱柱有________个顶点,________条棱,________个面.15.和互补,且-=50°,求和的度数. ________、 ________16.34.42°=________(用度、分、秒表示).17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________ °.18.用一个平面去截长方体,截面________是平行四边形(填“可能”或“不可能”).19.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC=________ .20.已知线段AB=1996,P、Q是线段AB上的两个点,线段AQ=1200,线段BP=1050,则线段PQ=________.三、解答题21.已知∠BOC=120°,∠AOB=70°,求∠AOC的大小。

初中数学同步 7年级上册 第四章《几何图形初步》单元测试卷(教师版含解析)

初中数学同步 7年级上册 第四章《几何图形初步》单元测试卷(教师版含解析)

第4章几何图形初步单元测试一.选择题(共10小题,满分30分,每小题3分)1.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这样做蕴含的数学原理是()A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分【解析】解:建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层转在一条直线上,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了考查了直线的性质,要想确定一条直线,至少要知道两点.2.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.【解析】解:由长方体和第一部分所对应的几何体可知,第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.故选:B.【点睛】本题考查了认识立体图形,找到长方体中,第一部分所对应的几何体的形状是解题的关键.3.有下列生活,生产现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从A地到B地架设电线,总是尽可能沿着线段AB架设.其中能用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④【解析】解:①用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误;②把弯曲的公路改直,就能缩短路程是利用了“两点之间线段最短”,故正确;③植树时,只要定出两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误;④从A地到B地架设电线,总是尽可能沿着线段AB架设,就能缩短路程是利用了“两点之间线段最短”,故正确.故选:C.【点睛】本题考查了线段的性质以及直线的性质,熟记性质公理是解题的关键,是基础题.4.如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.【解析】解:左边的图形绕着给定的直线旋转一周后形成的几何体是空心圆柱,故选:D.【点睛】此题主要考查了点、线、面、体,关键是同学们要注意观察,培养自己的空间想象能力.5.已知点A、B、C在一条直线上,AB=5,BC=3,则AC的长为()A.8 B.2 C.8或2 D.无法确定【解析】解:本题有两种情形:①当点C在线段AB上时,如图1,∵AC=AB﹣BC,又∵AB=5cm,BC=3cm,∴AC=5﹣3=2cm;②当点C在线段AB的延长线上时,如图2,∵AC=AB+BC,又∵AB=5cm,BC=3cm,∴AC=5+3=8cm.综上可得:AC=2cm或8cm.故选:C.【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.6.如图,点A,B,C,D,E,F在同一条直线上,则图中线段和射线的条数分别为()A.10,10 B.12,15 C.15,12 D.15,15【解析】解:图中线段有15条:线段AB、线段AC、线段AD、线段AE、线段AF、线段BC、线段BD、线段BE、线段BF、线段CD、线段CE、线段CF、线段DE,线段DF、线EF;以每个点为端点的射线有2条,共6个点,故射线有12条;故选:C.【点睛】此题主要考查了数线段和射线,关键是不要漏数和重复,先确定一个端点,然后数线段.7.如图,OE平分∠AOC,OF平分∠BOC,且∠BOC=60°,若∠AOC+∠EOF=156°,则∠EOF的度数是()A.88°B.30°C.32°D.48°【解析】解:∵OF平分∠BOC,∠BOC=60°,∴∠COF=30°,∴∠EOF=∠COE﹣∠COF=∠COE﹣30°,∵OE平分∠AOC,∴∠AOC=2∠COE,又∵∠AOC+∠EOF=156°,∴2∠COE+∠COE﹣30°=156°,解得∠COE=62°,∴∠EOF=62°﹣30°=32°.故选:C.【点睛】本题考查了角的计算以及角平分线的定义,解题的关键是根据角平分线的定义以及角的和差关系进行计算.8.如图,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°【解析】解:∵∠AOB与∠AOC互余,∠AOD与∠AOC互补,∴∠AOB=90°﹣∠AOC,∠AOD=180°﹣∠AOC,∴∠BOD=∠AOD﹣∠AOB=90°,∵OC平分∠BOD,∴∠BOC=45°,∴∠AOC=45°+∠AOB,∴∠AOB=90°﹣∠AOC=90°﹣(45°+∠AOB),∴∠AOB=22.5°,故选:B.【点睛】本题考查了余角和补角,角平分线的定义,利用了互余的定义,角平分线的定义,角的和差.9.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O4【解析】解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,如图所示,灯塔的位置可以是点O1,故选:A.【点睛】本题主要考查方向角,解题的关键是掌握方向角的定义.10.如图,将三个同样的正方形的一个顶点重合放置,如果∠1=α,∠2=β,那么∠3的度数是()A.90°﹣α﹣βB.90°﹣α+βC.90°+α﹣βD.α﹣β【解析】解:如图:解:∵∠BOD=90°﹣∠1=90°﹣α,∠EOC=90°﹣∠2=90°﹣β,又∵∠3=∠BOD+∠EOC﹣∠BOE,∴∠3=90°﹣α+90°﹣β﹣90°=90°﹣α﹣β.故选:A.【点睛】本题主要考查了正方形的性质,角度的计算,正确理解∠2=∠BOD+EOC﹣∠BOE这一关系是解决本题的关键.二.填空题(共6小题,满分24分,每小题4分)11.现在人们锻炼身体的意识日渐增强,但是一些人保护环境的意识却很淡薄.如图是昌平滨河公园的一角,有人为了抄近道而避开横平竖直的路,走“捷径AC”,于是在草坪内走出了一条不该有的“路线AC”.请你用数学知识解释出现这一现象的原因是两点之间,线段最短.【解析】解:为了抄近道而避开横平竖直的路,走“捷径AC”,用数学知识解释出现这一现象的原因是两点之间,线段最短.故答案为两点之间,线段最短.【点睛】本题考查了线段的性质,熟记线段的性质是解题关键.12.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=.【解析】解:∵D是AB中点,E是BC中点,∴AD=DB,BE=EC,∴AB=AC﹣BC=3,∴AD=1.5.故答案为:1.5.【点睛】本题考查了两点间的距离,解题的关键是利用中点的性质.13.如图是用量角器测量角度的结果,如果∠AOB=∠COD,那么∠AOD的度数是80°.【解析】解:由图可得,∠AOC=55°,∠BOC=30°,∴∠AOB=25°,又∵∠AOB=∠COD,∴∠COD=25°,∴∠AOD=55°+25°=80°,故答案为:80°.【点睛】此题主要考查了角的计算,关键是理清角之间的和差关系.14.已知线段AB=8cm,点C在直线AB上,AC AB,则BC=6或10cm.【解析】解:点C在直线AB上,于是应该分C点在线段AB上与在线段AB外两种情况①若点C在线段AB上∵AC AB,∴BC AB8=6②若点C在线段AB外∵AC AB,∴BC=AB+AC AB8=10故答案为6或10.【点睛】本题考查的是线段的长度计算,熟练进行线段的和、差、倍、分的计算是解决问题的关键.15.钟面上12点30分,时针与分针的夹角是165度.【解析】解:12点半时,时针指向1和12中间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,因此12点半时,分针与时针的夹角正好是30°×5+15°=165°.【点睛】本题是一个钟表问题,钟表12个数字,每相邻两个数字之间的夹角为30°.借助图形,更容易解决.16.如图,已知OM,ON分别是∠BOC和∠AOC的角平分线,∠AOB=86°,(1)∠MON=43(度);(2)当OC在∠AOB内绕点O转动时,∠MON的值不会改变(填“会”或“不会”).【解析】解:(1)∵OM,ON分别是∠BOC和∠AOC的角平分线,∴∠MOC∠OBC,∠NOC∠AOC.∴∠MON=∠MOC+∠NOC∠OBC∠AOC(∠OBC+∠AOC)∠AOB86°=43°.故答案为43;(2)有(1)可知∠MON∠AOB,即∠MON的度数始终等于∠AOB度数的一半,所以当OC在∠AOB内绕点O转动时,∠MON的值不会改变.故答案为不会.【点睛】本题主要考查角平分线的定义,会运用整体思想找到∠MON与∠AOB的倍分关系是解题的关键.三.解答题(共6小题,满分46分)17.(6分)如图,已知平面上四个点A、B、C、D,请按要求作出相应的图形.(1)画直线AB;(2)连接BC并反向延长线段BC;(3)作射线DC;(4)作出到A、B、C、D四个点距离之和最小的点P.【解析】解:(1)如图所示,直线AB即为所求;(2)如图所示,射线BC即为所求;(3)如图所示,射线DC即为所求;(4)如图所示,点P即为所求.【点睛】本题考查作图﹣复杂作图、直线、射线、线段的定义,解题的关键是熟练掌握基本知识,属于中考基础题.18.(6分)如图是一个正方体的平面展开图,标注了A字母的是重正方体的正面,如果正方体的左面与右面标注的式子相等.①求x的值.②如果这个正方体前后左右四个面的数字和为﹣12,求正面字母A所表示的数.【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1.(2)正方体前后左右四个面的文字分别是:A、﹣2、x、3x﹣2,依题意得A﹣2+x+3x﹣2=﹣12A﹣2+1+3﹣2=﹣12A=﹣12.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.(8分)线段AB=12cm,点C在线段AB上,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长.(2)若AC=4cm,求DE的长.(3)若点C为线段AB上的一个动点(点C不与A,B重合),求DE的长.【解析】解:(1)∵点D是AC中点,∴AC=2AD=6,又∵D、E分别是AC和BC的中点,∴DE=DC+CE AC BC AB=6;故DE的长为6cm;(2)∵AB=12cm,AC=4cm,∴BC=8cm,∵点D、E分别是AC和BC的中点,∴DC AC=2,CE BC=4,∴DE=6cm;(3)∵DE=DC+CE AC BC AB而AB=12,∴DE=6cm.【点睛】本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.20.(8分)如图,将两块直角三角板的直角顶点C叠放在一起.(1)若∠DCE=28°10',求∠ACB的度数;(2)若∠ACB=148°21',求∠DCE的度数;(3)直接写出∠ACB与∠DCE的数量关系.【解析】解:(1)∵∠DCE=28°10',∠ACD=90°,∴∠ACB=90°+90°﹣28°10'=151°50';(2)∵∠ACB=148°21',∠ECB=90°,∴∠ACE=148°21'﹣90°=58°21',∵∠ACD=90°,∴∠ECD=31°39';(3)∠ACB+∠DCE=180°,∵∠ACD=∠ECB=90°.∴∠ACB+∠ECD=∠ECB+∠ACE+∠ECD=90°+90°=180°.【点睛】此题主要考查了余角和补角,关键是理清角之间的和差关系.21.(8分)如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角,3∠AOC=∠BOD,求∠COD的度数;(2)在(1)中∠COD绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)在(1)中线段OC、OD绕着点O顺时针旋转,速度分别为每秒20°和每秒10°(当OD与OB重合时旋转都停止),OM、ON分别平分∠BOC、∠BOD,多少秒时∠COM=∠BON(直接写出答案,不必写出过程).【解析】解:(1)∵∠AOD是直角,∴∠BOD=∠AOD=90°,∵3∠AOC=∠BOD=90°,∴∠AOC=30°,∴∠COD=90°﹣30°=60°;(2)不会变化,理由如下:∵OE、OF分别平分∠AOC、∠BOD,∴∠COE∠AOC,∠DOF∠BOD,∵∠AOC+∠BOD=180°﹣∠COD,∴∠COE+∠DOF(180°﹣∠COD)=90°∠COD,∴∠EOF=∠COE+∠DOF+∠COD=90°∠COD+∠COD=120°(3)如图设运动时间为t秒,则∠BOC=150﹣20t,∠BOD=90﹣10t所以∠COM∠BOC(150﹣20t)∠BON∠BOD(90﹣10t)∴(150﹣20t)(90﹣10t)解得t=6所以6秒时∠COM=∠BON.【点睛】本题考查了角平分线的意义,角的和差倍分的关系,和一元一次方程的应用,第三题关键画出图形,找出角和t的关系.22.(10分)点O在直线AB上,射线OC上的点C在直线AB上方,∠AOC=4∠BOC.(1)如图1,求∠AOC的度数;(2)如图2,点D在直线AB上方,∠AOD与∠BOC互余,OE平分∠COD求∠BOE的度数;(3)在(2)的条件下,点F,G在直线AB下方,OG平分∠FOB,若∠FOD与∠BOG互补,求∠EOF的度数.【解析】解:(1)设∠BOC=α,则∠AOC=4α,∵∠BOC+∠AOC=180°,∴α+4α=180°,∴α=36°,∴∠AOC=144°;(2)∵∠AOD与∠BOC互余,∴∠AOD=90°﹣∠BOC=90°﹣36°=54°,∴∠COD=180°﹣∠AOD﹣∠BOC=180°﹣54°﹣36°=90°,∵OE平分∠COD,∴∠COE90°=45°,∴∠BOE=∠COE+∠BOC=45°+36°=81°,(3)①如图1,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,设∠BOG=x°,∠BOF=2x°,∠BOD=∠DOC+∠BOC=36°+90°=126°,∵∠FOD=∠BOD+∠BOF,∴126+2x+x=180,解得:x=18,∴∠EOF=∠BOE+∠BOF=81°+2×18°=117°;②如图2,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,∴∠FOD+∠BOG=180°,∴D,O,G共线,∴∠BOG=∠AOD=54°,∴∠AOF=180°﹣∠BOF=72°,∴∠AOE=180°﹣∠BOE=180°﹣81°=99°,∴∠EOF=∠AOF+∠AOE=72°+99°=171°.【点睛】本题考查了余角和补角,角平分线的定义,补角的定义,正确的识别图形是解题的关键.。

2022年初中数学《第4章几何图形初步》单元测试含解析

2022年初中数学《第4章几何图形初步》单元测试含解析

《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如下图的平面图形,那么这个几何体是〔〕A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有〔〕A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是〔〕A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是〔〕A.B.C. D.5.下面等式成立的是〔〕A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′6.以下语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有〔〕A.1个B.2个C.3个D.4个7.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,那么∠BOD的度数是〔〕A.25° B.35° C.45° D.55°8.如图,∠1+∠2等于〔〕A.60° B.90° C.110°D.180°9.C是线段AB上一点,D是BC的中点,假设AB=12cm,AC=2cm,那么BD的长为〔〕A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角〔如图〕,两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,那么∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,那么∠MAN=45°.对于两人的做法,以下判断正确的选项是〔〕A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影局部绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如下图:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,假设∠BOC=80°,那么∠AOE= °.15.如图是某几何体的平面展开图,那么这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如下图,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C 点,那么∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.∠A=40°,那么它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题〔21、22、26、27小题各12分,23、24、25题各14分,共90分〕21.如图,假设CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如下图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.〔1〕求∠MON的大小;〔2〕当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.〔1〕求x的值.〔2〕求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,C是AB的中点,D是AC的中点,E是BC的中点.〔1〕假设DE=9cm,求AB的长;〔2〕假设CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如下图的平面图形,那么这个几何体是〔〕A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.应选C.【点评】此题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有〔〕A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;应选B.【点评】此题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于根底题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是〔〕A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其外表展开图的特点解题.【解答】解:观察图形,由立体图形及其外表展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.应选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是〔〕A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.应选B.【点评】此题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是〔〕A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.应选D.【点评】此类题是进行度、分、秒的加法、减法计算,相比照拟简单,注意以60为进制即可.6.以下语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有〔〕A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.应选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,那么∠BOD的度数是〔〕A.25° B.35° C.45° D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.应选D.【点评】此题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于〔〕A.60° B.90° C.110°D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.应选B.【点评】此题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,假设AB=12cm,AC=2cm,那么BD的长为〔〕A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.应选C.【点评】此题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角〔如图〕,两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,那么∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,那么∠MAN=45°.对于两人的做法,以下判断正确的选项是〔〕A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换〔折叠问题〕.【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.应选A.【点评】此题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影局部绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】此题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决此题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】此题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如下图:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】此题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,假设∠BOC=80°,那么∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠A OD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,那么这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】此题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四局部,因而每局部被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.故答案为:90°.【点评】此题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如下图,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C 点,那么∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】此题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.故答案为360.【点评】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.∠A=40°,那么它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】此题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】此题考查了直线、射线、线段,主要利用了相交线的交点,是根底题.三、解答题〔21、22、26、27小题各12分,23、24、25题各14分,共90分〕21.如图,假设CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3〔cm〕;D是AC的中点,AD=DC=3〔cm〕,AB=AD+DB=3+7=10〔cm〕.【点评】此题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如下图,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】此题主要考查邻补角的概念以及角平分线的定义.23.:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.〔1〕求∠MON的大小;〔2〕当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】〔1〕根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.〔2〕根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:〔1〕∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,〔2〕当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于根底题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.〔1〕求x的值.〔2〕求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】〔1〕正方体的外表展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;〔2〕确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“A〞与“﹣2”是相对面,“3”与“1”是相对面,“x〞与“3x﹣2”是相对面,〔1〕∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;〔2〕∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换〔折叠问题〕.【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】此题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,C是AB的中点,D是AC的中点,E是BC的中点.〔1〕假设DE=9cm,求AB的长;〔2〕假设CE=5cm,求DB的长.【考点】比拟线段的长短.【专题】计算题.【分析】〔1〕根据中点的概念,可以证明:AB=2DE,故AB的长可求;〔2〕由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:〔1〕∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;〔2〕∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,那么它的余角为〔90°﹣x〕,补角为〔180°﹣x〕,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,那么它的余角为〔90°﹣x〕,补角为〔180°﹣x〕,根据题意可,得90°﹣x=〔180°﹣x〕﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于根底题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.第四章几何图形初步单元测试卷(时间:45分钟,总分值:100分)一、选择题(每题4分,共32分)1.以下立体图形中,侧面展开图是扇形的是()2.以下图形中,∠1和∠2互为余角的是()3.如图,点A位于点O的方向上.()A.南偏东35°B.北偏西65°C.南偏东65°D.南偏西65°4.如图,一个斜插吸管的盒装饮料从正面看到的图形是()5.以下现象中,可用根本领实“两点之间,线段最短〞来解释的现象是()A.用两个钉子就可以把木条固定在墙上B.把弯曲的公路改直,就能缩短路程C.利用圆规可以比拟两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线6.一块手表如图,早上8时的时针、分针的位置如下图,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°7.将一长方形纸片,按以下图的方式折叠,BC,BD为折痕,那么∠CBD的度数为()A.60°B.75°C.90°D.95°8.一个正方体的每个面都写有一个汉字,其平面展开图如下图,那么在该正方体中,和“崇〞相对的面上写的汉字是()A.低B.碳C.生D.活二、填空题(每题4分,共16分)9.∠A与∠B互补,假设∠A=70°,那么∠B的度数为.10.一个角的补角等于它的余角的6倍,那么这个角的大小为.11.(1)13°30'=°;(2)0.5°='=″.12.平面上有四个点,过每两个点画一条直线,一共可以画条直线.三、解答题(共52分)13.(每题5分,共10分)计算:(1)40°26'+30°30'30″÷6;(2)13°53'×3-32°5'31″.14.(10分)在一张城市地图上,如图,有学校、医院、图书馆三地,图书馆被墨水污染,具体位置看不清,但知道图书馆在学校的东北方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?15.(10分)C为线段AB的中点,D在线段BC上,且AD=7,BD=5.求线段CD的长度.16.(10分)如图,∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.17.(12分)如图,把一副三角尺的直角顶点O重叠在一起.(1)如图①,当OB平分∠COD时,那么∠AOD和∠BOC的和是多少度?(2)如图②,当OB不平分∠COD时,那么∠AOD和∠BOC的和是多少度?参考答案一、选择题1.B2.D3.B4.A5.B6.C7.C此题考查角平分线和平角的概念.由图的折叠可知BC,BD分别是∠ABA',∠E'BE的角平分线,而∠ABE是一个平角,所以∠CBD=90°.8.A二、填空题9.110°10.72°设这个角的大小为x°,列方程得180°-x°=6(90°-x°),解得x°=72°.11.(1)13.5(2)30 1 80012.1或4或6此题没指明这四个点的位置关系,所以应予以讨论,不要遗漏.(1)当A,B,C,D四点在同一条直线上时,可画1条直线,如图①;(2)当三点(如A,B,C)在同一直线上,而另一个点D在该直线外时,可画出4条直线,如图②;(3)当上述四点没有任何三点在同一直线上时,可画出6条直线,如图③.三、解答题13.解:(1)40°26'+30°30'30″÷6=40°26'+5°5'5″=45°31'5″.(2)13°53'×3-32°5'31″=39°159'-32°5'31″=41°38'60″-32°5'31″=9°33'29″.14.解:如图,点P就是图书馆所在的位置.15.解:因为AD=7,BD=5,所以AB=AD+BD=12.又因为C为线段AB的中点,所以AC=AB=6.所以CD=AD-AC=7-6=1.16.解:因为∠AOD=∠AOC-∠DOC=60°-∠DOC,∠BOC=∠BOD-∠DOC=90°-∠DOC,所以∠AOB=∠AOD+∠COD+∠BOC=60°-∠DOC+∠COD+90°-∠DOC=150°-∠DOC.所以150°-∠DOC=3∠DOC.所以∠DOC=37.5°.所以∠AOB=3×37.5°=112.5°.17.解:(1)∵∠AOB=∠COD=90°,当OB平分∠COD时,∠DOB=∠BOC=∠COA=45°,∴∠AOD+∠BOC=3×45°+45°=4×45°=180°.(2)∠AOD+∠BOC=∠AOB+(∠COD-∠BOC)+∠BOC=∠AOB+∠COD=90°+90°=180°.。

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版七年级上册数学《几何图形初步》单元综合检测(带答案)

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.参考答案一、选择题1.有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是()A. B. C. D.【答案】B【解析】【分析】根据五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱的面数进行判断.【详解】依题意得,有六个面的立体图形为:①正方体,③四棱柱,④长方体,共有3个.故答案选:B.【点睛】本题考查的知识点是认识立体图形,解题的关键是熟练的掌握立体图形概念.2.用两把常用三角板不可能拼成的角度为()A. B. C. D.【答案】C【解析】【分析】根据两个三角板可拼出的角度有15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,180°【详解】∵三角板的度数为30°,60°,90°;45°,45°,90°∴可拼出的角度有15°,30°,45°,60°,75°,90°105°,120°,135°,150°,180°.故答案选:C.【点睛】本题考查的知识点是角的计算,解题的关键是熟练的掌握角之间的转换.3. 如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是( )A. ∠AOD>∠BOCB. ∠AOD<∠BOC;C. ∠AOD=∠BOCD. 无法确定【答案】C【解析】本题考查了角的大小比较根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.4.如果两个不相等的角的和为,则这两个角可能是()A. 一个小于直角,一个大于直角B. 两个大于直角的角C. 两个小于直角的角D. 以上答案都不对【答案】A【解析】【分析】根据补角定义,两个不相等的角的和为180°,则这两个角是一个锐角,一个钝角,由此选择答案即可.【详解】∵两个不相等的角的和为180°,∴这两个角是一个锐角(小于直角),一个钝角(大于直角).故答案选:A.【点睛】本题考察的知识点是余角和补角,解题的关键是熟练的掌握余角和补角的定义与计算.5.已知∠α=35°,那么∠α的余角的补角等于A. 35°B. 65°C. 125°D. 145°【答案】C【解析】【分析】根据余角和补角的概念列式计算即可.【详解】解:∵∠α=35°,∴∠α的余角为:90°-35°=55°,∴∠α的余角的补角为:180°-55°=125°,故选:C.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.6.如图是一个正方体展开图,把展开图折叠成正方体后,”我”字一面的相对面上的字是( )A. 的B. 中C. 国D. 梦【答案】D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,”们”与”中”是相对面,”我”与”梦”是相对面,”的”与”国”是相对面.故选D.考点:正方体相对两个面上的文字.【此处有视频,请去附件查看】7.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A. 甲B. 乙C. 丙D. 丁【答案】D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.8.如图,一副三角尺按不同的位置摆放,摆放位置中的图形有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选C.点睛:此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等,等角的余角相等.二、填空题9.如果点,,在一条直线上,线段,线段,则、两点间的距离是________.【答案】或【解析】【分析】根据题意画出图形,根据点C在线段AB上和在线段AB外两种情况进行解答即可.【详解】解:当如图1所示点C在线段AB的外时,∵AB=6cm,BC=8cm,∴AC=6+8=14(cm);当如图2所示点C在线段AB上时,∵AB=6cm,BC=8cm,∴AC=8-6=2(cm).故答案为:14cm或2cm.【点睛】本题考查的是两点间的距离,解答此题时要注意进行分类讨论,不要漏解.10.如图所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=PB,若剪断后的各段绳子中最长的一段为30cm,则绳子的原长为________ cm..【答案】40或80【解析】解:本题有两种情形:(1)当点A是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴BP=30cm,AP=10cm.∴绳子的原长=2AB=80cm;(2)当点B是绳子的对折点时,将绳子展开如图.∵AP=PB,剪断后的各段绳子中最长的一段为30cm,∴2BP=30cm,∴BP=15cm,AP=5cm.∴绳子的原长=2AB=40cm.11.如图,从A到B有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是.【答案】两点之间线段最短【解析】试题分析:根据线段的性质:两点之间线段最短填空即可.解:从A到B有多条道路,人们会走中间的直路,而不会走其他曲折的路,这是因为两点之间,线段最短.故答案为:两点之间,线段最短.考点:线段的性质——两点之间,线段最短12.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______【答案】南偏西60°【解析】【分析】根据方向角的定义即可解答.【详解】由于人相对与太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向北偏东60°方向,∴太阳相对于你的方向是南偏西60°.故答案为:南偏西60°.【点睛】本题考查了方向角的概念,熟知方向角的概念是解答本题的关键.13.如图所示,已知∠AOB=90°,∠COD=90°,∠AOC︰∠BOD=1︰2,则∠BOD=________.【答案】120°【解析】【分析】根据周角的定义及已知条件可得∠AOC+∠BOD=180°,再由∠AOC︰∠BOD=1︰2即可求得∠BOD的度数.【详解】∵∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=360°-(∠AOB+∠COD)=180°,∵∠AOC︰∠BOD=1︰2,∴∠BOD=2∠AOC,∴∠AOC+2∠AOC=180°,即∠AOC=60°,∴∠BOD=2∠AOC=120°.故答案为:120°.【点睛】本题考查了角的计算,根据平角的定义求得∠AOC+∠BOD=180°是解决问题的关键.14.如图,M是线段AB的中点,N是线段BC的中点,AB=8cm,BC=6cm,则线段MN=__ cm.【答案】7 cm.【解析】【分析】由线段中点的定义知AM=MB=AB=4cm,BN=NC=BC=3cm.然后结合图示中的”MN=MB+BN”来求线段MN的长度.【详解】解:∵M是线段AB的中点,AB=8cm,∴MB=AB=4cm;∵N是线段BC的中点,BC=6cm,∴BN=NC=BC=3cm;∴MN=MB+BN=4+3=7cm.故答案为7.【点睛】本题考查了两点间的距离和线段中点的性质.注意”数形结合”的数学思想在本题中的应用.三、解答题15. (6分)下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的错误指出,并给出你认为正确的解法.【答案】小马不会得满分的.见解析.【解析】试题分析:在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB 的外部.试题解析:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.考点:角的计算.16.已知∠α=76°,∠β=41°31′.(1)求∠β的余角;(2)求∠α的2倍与∠β的的差.【答案】(1)48°29′;(2)131°14′30″.【解析】试题分析:(1)根据余角的定义即可求解;(2)根据题意列出式子求解即可.试题解析:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′.(2)∵∠α=76°,∠β=41°31′,∴2∠α-∠β=2×76°-×41°31′=152°-20°45′30″=131°14′30″.17.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中共有多少个小于平角的角?(2)求∠BOD的度数.(3)请通过计算说明OE是否平分∠BOC.【答案】(1)9;(2)155°;(3)OE平分∠BOC.理由见解析.【解析】试题分析:(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE-∠DOC和∠BOE=∠BOD-∠DOE分别求得∠COE与∠BOE的度数即可说明.试题解析:解:(1)图中小于平角的角有9个.它们分别是:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)∵∠AOC=50°,OD平分∠AOC,∴∠DOC=∠AOC=25°,∠BOC=180°﹣∠AOC=130°,∴∠BOD=∠DOC+∠BOC=155°.(3)∵∠DOE=90°,∠DOC=25°,∴∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又∵∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∴∠COE=∠BOE,即OE平分∠BOC.点睛:本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.18.如图,C,D为线段AB上的两点,M,N分别是线段AC,BD的中点.(1)如果CD=5cm,MN=8cm,求AB的长;(2)如果AB=a,MN=b,求CD的长.【答案】(1)线段AB的长为11cm;(2)2b﹣a.【解析】【分析】(1)先根据M,N分别是线段AC,BD的中点,可得MC=AC,DN=BD,再根据MC+CD+DN=MN=8cm,可得MC+DN=8﹣5=3cm,进而可得:AC+BD=2MC+2DN=2×3=6cm,所以AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),(2)根据M,N分别是线段AC,BD的中点,可得CM=AM=AC,BN=DN=BD,再根据AM+BN=MC+DN=AB﹣MN,可得MC+DN=a﹣b,进而可得:CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【详解】(1)M,N分别是线段AC,BD的中点,∴MC=AC,DN=BD,∵MC+CD+DN=MN=8cm,∴MC+DN=8﹣5=3cm,∴AC+BD=2MC+2DN=2×3=6cm,∴AB=AC+CD+BD=AC+BD+CD=6+5=11(cm),即线段AB的长为11cm,(2)M,N分别是线段AC,BD的中点,∴CM=AM=AC,BN=DN=BD,∵AM+BN=MC+DN=AB﹣MN,∴MC+DN=a﹣b,∴CD=MN﹣(MC+DN)=b﹣(a﹣b)=2b﹣a.【点睛】本题主要考查线段的中点性质和线段和差关系,解决本题的关键是要熟练掌握线段中点性质,根据线段和差关系进行求解.19.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.【答案】(1)25°;(2)①n°+25°,②n=65°;(3)m°+25°.【解析】【分析】(1)如图1,根据OM平分∠AOB,∠AOB=130°,利用角平分线的定义可得:∠AOM=∠AOB=×130°=65°,再根据ON平分∠COD,∠COD=80°,可得∠AON=∠COD=×80°=40°,进而求出∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,根据图形中角的和差关系可得:∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,由于n°+25°=90°,所以n=65°,(3)如图3中,根据图中角的和差关系可得:∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°. 【详解】(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°,(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°,②当∠MON=90°时,n°+25°=90°,∴n=65°,(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.【点睛】本题主要考查角平分线的定义和角的和差关系,解决本题的关键是要熟练掌握角平分线的定义,并能结合图形分析角的和差关系.。

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版初一七年级上册数学 《第四章 几何图形初步》单元测试卷02(含答案)

人教版七年级数学上册《第四章几何图形初步》单元测试卷一、选择题(共8小题,4*8=32)1.下列能用∠C表示∠1的是()2.A,B两点间的距离是()A.连结两点间的直线B.连结两点的线段C.连结两点间的直线的长度D.连结两点的线段的长度3.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A.1B.2C.3D.44.已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cmC.10cm或5cm D.7.5cm5.α与∠β的度数分别是(2m-67)°和(68-m)°,且∠α与∠β都是∠γ的补角,那么∠α与∠β的关系是()A.互余但不相等B.互为补角C.相等但不互余D.互余且相等6.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cmC.7cm或3cm D.7cm7.已知∠AOB=30°,自∠AOB的顶点O引射线OC,若∠AOC:∠AOB=4:3,则∠BOC=()A.10°B.40°C.40°或70°D.10°或70°8.已知直线AB上有一点O,射线OC和射线OD在直线AB的同侧,∠BOC=50°,∠COD =100°,则∠BOC与∠AOD的平分线的夹角的度数是()A.130°B.135°C.140°D.145°二、填空题(共6小题,4*6=24)9.如图,AB+BC>AC,其理由是____.10.如图,在横线上填上适当的角:∠AOB=-∠COB=∠AOD-.11.如图,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的_____倍.12.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.13.已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC=________.14.归纳与猜想:(1)观察下图填空:图1中有个角;图2有个角;图3中有个角;(2)根据(1)猜想:在一个角内引n-2条射线可组成个角.三、解答题(共5小题,44分)15.(6分)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.16.(8分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?AB,点E是17.(8分)如图,已知A,B,C三点在同一直线上,AB=24cm,BC=38 AC的中点,点D是AB的中点,求DE的长.18.(10分)如图,已知∠AOB=12∠BOC,∠COD=∠AOD=3∠AOB,求∠AOB和∠COD的度数.19.(12分)如图,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD 的中点E,F之间的距离是10cm,求AB,CD的长.参考答案1-4CDBC5-8CBDC9.两点之间线段最短10.∠AOC ,∠DOB11.312.155°13.2cm 或8cm14.3,6,10;n (n -1)215.解:如图所示。

(常考题)人教版初中数学七年级数学上册第四单元《几何图形初步》测试(包含答案解析)

(常考题)人教版初中数学七年级数学上册第四单元《几何图形初步》测试(包含答案解析)

一、选择题1.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 2.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12ABD .AD=12(CD+AB ) 3.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上 B .点C 在线段AB 的延长线上C .点C 在直线AB 外D .不能确定 4.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 5.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 6.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°7.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 9.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .410.体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处,则表示他最好成绩的点是( )A .MB .NC .PD .Q11.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( )A .①④B .②④C .①②④D .①②③④ 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 二、填空题13.(1)375324'''°=________°;(2)1.45︒=________′.14.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.15.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.16.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.17.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若CP=,则线段PN的长为________.3AC=,118.将下列几何体分类,柱体有:______(填序号).19.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.20.已知∠A=67°,则∠A的余角等于______度.三、解答题21.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.22.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.23.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留 )24.作图:如图,平面内有 A,B,C,D 四点按下列语句画图:(1)画射线 AB,直线 BC,线段 AC(2)连接 AD 与 BC 相交于点 E.25.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 26.直线上有,两点,,点是线段上的一点,.(1)__________,___________;(2)若点是线段上的一点,且满足,求的长;(3)若动点,分别从,同时出发向右运动,点的速度为,点的速度为,设运动时间为,当点与点重合时,,两点停止运动.①当为何值时,;②当点经过点时,动点从点出发,以的速度向右运动.当点追上点Q后立即返回.以同样的速度向点运动,遇到点后立即返回,又以同样的速度向点运动,如此往返,直到点,停止时,点也停止运动.在此过程中,点行驶的总路程为___________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.2.D解析:D【解析】解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D.3.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.5.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 6.A解析:A【分析】首先根据三角形的内角和定理求得∠B ,再根据角平分线的定义求得∠BAD ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC ,最后根据直角三角形的两个锐角互余即可求解.∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD是∠BAC的角平分线,∠BAC=30°,∴∠BAD=12∴∠ADE=∠B+∠BAD=70°,又∵OE⊥BC,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A.【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.7.C解析:C【分析】根据柱体的体积V=S•h,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h,其中S表示柱体的底面面积,h表示柱体的高,现将矩形ABCD绕轴l旋转一周,∴柱体的底面圆环面积为:π(2r)2-πr2=3πr2,∴形成的几何体的体积等于:3πr2h.故选:C.【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.8.C解析:C【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C在线段AB上时,BC=AB-AC= 8-6=2;当C在线段BA的延长线上时,BC=AB+AC =8+6=14;当C不在直线AB上时,AB、AC、BC三边构成三角形,则2<BC<14,综上所述①②④正确故选:C.【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键.9.C解析:C确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.10.C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.11.B解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.12.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C 在直线AB 上,AB=8,BC=2,∴当点C 在线段AB 上时,AC=AB-BC=8-2=6cm ,当点C 在线段AB 的延长线上时,AC=AB+BC=8+2=10cm ,∴AC 的长度是6cm 或10cm.故选D.【点睛】本题考查线段的和与差,注意点C 在直线AB 上,要分几种情况讨论是解题关键.二、填空题13.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.14.【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的 解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.15.BC 【分析】把展开图折叠成一个长方体找到与AB 重合的线段即可【详解】解:根据题意得:折叠后与棱AB重合的棱是BC故答案为BC【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可解析:BC【分析】把展开图折叠成一个长方体,找到与AB重合的线段即可.【详解】解:根据题意得:折叠后与棱AB重合的棱是BC.故答案为BC.【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.16.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.17.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.18.(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:(1)(2)(3)故答案为(1)(2)(3)【点睛】此题主要考查了认识立体图形几解析:(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3).故答案为(1)(2)(3).【点睛】此题主要考查了认识立体图形,几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.19.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.20.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.22.(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.23.(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.24.答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.25.如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.26.(1),;(2);(3)①t=或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设的长为.由题意,得.解得.所以的长为.(3)①当点P在点O左边时,2(16−2t)−(8+t)=8,t=,当点P在点O右边时,2(2t−16)−(8+t)=8,t=16,∴t=或16s时,2OP−OQ=8.②设点M运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.(1)当时,的值为________.(2)如何理解表示的含义?(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.【答案】(1)5或-3(2)解:∵ = ,∴表示到-2的距离(3)解:∵点、在0到3(含0和3)之间运动,∴0≤a≤3, 0≤b≤3,当时, =0+2=2,此时值最小,故最小值为2;当时, =2+5=7,此时值最大,故最大值为7【解析】【解答】(1)∵,∴a=5或-3;故答案为:5或-3;【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;(2)此题就是求表示数b的点与表示数-2的点之间的距离;(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.3.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)∵∠O =40°,∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=又∵CF平分∠ACD ,∴ (角平分线定义)∴∠ECF=(2)证明:∵CG⊥CF,∴ .∴又∵)∴∵∴ (等角的余角相等)即CG平分∠OCD(3)解:结论:当∠O=60°时,CD平分∠OCF .当∠O=60°时∵DE//OB,∴∠DCO=∠O=60°.∴∠ACD=120°.又∵CF平分∠ACD∴∠DCF=60°,∴即CD平分∠OCF【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,可得到∠GCO =∠GCD,即可证明CG平分∠OCD;(3)根据两直线平行,内错角相等得出∠DCO=∠O=60°,根据角平分线可得到∠DCF=60°,以此可得∠DCO=∠DCF,即CD平分∠OCF.4.综合题(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度.(2)对于(1)问,如果我们这样叙述:“已知点C在直线AB上,且AC=6cm,BC=4cm,点M、N分别是AC,BC的中点,求线段MN的长度.”结果会有变化吗?如果有,求出结果;如果没有,说明理由.【答案】(1)解:∵AC=6cm,且M是AC的中点,∴MC= AC= 6=3cm,同理:CN=2cm,∴MN=MC+CN=3cm+2cm=5cm,∴线段MN的长度是5m(2)解:分两种情况:当点C在线段AB上,由(1)得MN=5cm,当C在线段AB的延长线上时,∵AC=6cm,且M是AC的中点∴MC= AC= ×6=3cm,同理:CN=2cm,∴MN=MC﹣CN=3cm﹣2cm=1cm,∴当C在直线AB上时,线段MN的长度是5cm或1cm.【解析】【分析】(1)根据线段的中点定义,由M是AC的中点,求出MC、CN的值,得到MN=MC+CN的值;(2)当点C在线段AB上,由(1)得MN的值;当C在线段AB 的延长线上时,再由M是AC的中点,求出MC、CN的值,得到MN=MC﹣CN的值.5.已知,AB//CD,(1)如图,若E 为DC 延长线上一点,AF、CG 分别为∠BAC、∠ACE 的平分线.(1)求证:AF//CG.(2)若 E 为线段 DC 上一点(E 不与 C 重合),AF、CG 分别为∠BAC、∠ACE的平分线,画出图形,试判断 AF,CG 的位置关系,并证明你的结论.【答案】(1)证明:∵AB//CD∴∠BAC=∠ACE,∵AF、CG 分别为∠BAC、∠ACE的平分线,∴∠CAF= ∠BAC, ∠ACG= ∠ACE,∴∠CAF=∠ACG∴AF//CG.(2)解:AF⊥CG,理由如下:如图,AF、CG 分别为∠BAC、∠ACE的平分线,∴∠1= ∠BAC,∠2= ∠ACD,∵AB//CD,∴∠BAC+∠ACD=180°,∴∠1+∠2= ∠BAC+ ∠ACD= (∠BAC+∠ACD)=90°,∴∠3=180°-(∠1+∠2)=90°,∴AF⊥CG.【解析】【分析】(1)根据二直线平行,内错角相等得出∠BAC=∠ACE,根据角平分线的定义得出∠CAF=∠ACG ,进而根据内错角相等,二直线平行得出AF∥CG;(2)根据题意作出图形,根据角平分线的定义得出∠1= ∠BAC,∠2= ∠ACD, 根据二直线平行,同旁内角互补得出∠BAC+∠ACD=180°,从而即可得出∠1+∠2= 90°,根据三角形的内角和定理得出∠3=90°,进而根据垂直的定义得出AF⊥CG.6.(1)思考探究:如图①,的内角的平分线与外角的平分线相交于点,请探究与的关系是________.(2)类比探究:如图②,四边形中,设,,,四边形的内角与外角的平分线相交于点 .求的度数.(用,的代数式表示)(3)拓展迁移:如图③,将(2)中改为,其它条件不变,请在图③中画出,并直接写出 ________.(用,的代数式表示)【答案】(1)(2)解:延长、,交于点 .,由(1)知:∴ .(3)【解析】【解答】解:(1)∵平分,平分,∴,∵是的外角∴∵是的外角∴( 3 )延长,交于点 . 作与外角的平分线相交于点 . 如图:,【分析】(1)利用角平分线求出∠PCD= ∠ACD,∠PBD= ∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA、CD交于点F,然后根据(1)的结题可得到∠P的表达式.(3)延长AB、DC交于F,然后根据(1)的结题可得到∠P的表达式.7.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。

设∠OCP的度数为x°,∠CDP的度数为y°。

小明对x与y之间满足的等量关系进行了探究,下面是小明的探究过程,请补充完整;(1)x的取值范围是________;(2)按照下表中x的值进行取点、画图、计算,分别得到了y与x的几组对应值,补全表格;(3)在平面直角坐标系xOy中,①描出表中各组数值所对应的点(x,y);②描出当x=120°时,y的值;(4)若∠AOB= °,题目中的其它条件不变,用含、x的代数式表示y为________。

【答案】(1)40°<x<140°(2)解:∵∠DPB=∠AOB+∠CDP=40°+ y°,∠DPB= (40°+ x°),∴40°+ y°= (40°+ x°),即y= x-20,x=60时,y= x-20= ×60-20=10,x=70时,y= x-20= ×70-20=15,x=80时,y= x-20= ×80-20=20,x=90时,y= x-20= ×90-20=25,补全表格如下:;(3)解:①②如图:x=120时,y= x-20= ×120-20=40;(4)y= (x-a)【解析】【解答】解:(1)∵∠CPB是△COP的外角,∴∠CPB=40°+ x°,∠CPB一定小于180°,即40°+ x°<180°,x<140°,∵PD平分∠CPB,∴∠DPB= ∠CPB = (40°+ x°),∵当∠DPB=40°时,DP∥OA,即∠CPB的角平分线与OA无交点,所以∠DPB一定大于40°,即(40°+ x°)>40°,解得x>40°,∴x的取值范围是40°<x<140°;(4)∵∠DPB=∠AOB+∠CDP,∠AOB= °,∠CDP的度数为y°,∴∠DPB= °+ y°,∵∠CPB=∠AOB+∠OCP,∠AOB= °,∠OCP的度数为x°,∴∠CPB= °+ x°,∵PD平分∠CPB,∴∠DPB= ∠CPB= ( °+ x°),∴ °+ y°= ( °+ x°),即y= (x-a).【分析】(1)根据角平分线和三角形外角的性质,可得∠CPB=40°+ x°,∠DPB= (40°+ x°),当∠DPB=40°时,DP∥OA,即∠CPB的角平分线与OA无交点,所以∠DPB一定大于40°,且∠CPB是△COP的外角,一定小于180°,即可得出x的取值范围;(2)根据角平分线和三角形外角的性质列出y与x的关系式,分别计算求值即可;(3)在平面直角坐标系xOy中描出各点即可;(4)根据角平分线和三角形外角的性质即可求解.8.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,则∠AOC=________ .如图(2)若∠BOD=35°,则∠AOC=________ .(2)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(3)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直.(填空)当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .当________ ⊥ ________时,∠AOD = ________ .【答案】(1)145°;145°(2)解:∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(3)AB;OD;30°;CD;OA;45°;OC;AB;60°;AB;CD;75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-35°=145°;如图2,若∠BOD=35°,则∠AOC=360°-∠BOD-∠AOB-∠COD=360°-35°-90°-90°=145°;(3)解:当 AB ⊥ OD 时,∠AOD = 30°.当 CD ⊥ OA 时,∠AOD = 45°.当 OC ⊥ AB 时,∠AOD = 60°.当 AB ⊥ CD 时,∠AOD = 75°.即∠AOD角度所有可能的值为:30°、45°、60°、75°.【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可计算出∠AOC的度数;根据∠AOC=360°-∠BOD-∠AOB-∠COD可计算出∠AOC的度数;(2)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(3)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.9.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠C OM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.【答案】(1)解:①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°(3)解:设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC 平分∠MON列方程求解即可.10.如图,直线和直线互相垂直,垂足为,直线于点B,E是线段AB上一定点,D为线段OB上的一动点(点D不与点O、B重合),直于点,连接AC.(1)当,则 ________°;(2)当时,请判断CD与AC的位置关系,并说明理由;(3)若、的角平分线的交点为P,当点D在线段上运动时,问的大小是否会发生变化?若不变,求出的大小,并说明理由;若变化,求其变化范围. 【答案】(1)40(2)解:由(1)可得:∠CDO=∠BED,∵,∴∠A=∠BED,∴AC∥DE,∵CD⊥DE,∴AC⊥CD;(3)解:∠P的大小不会发生变化,理由如下:如图,连接PD并延长,∵CP平分∠OCD,PE平分∠BED,∴∠1= ∠OCD,∠2= ∠BED,即∠1+∠2= (∠OCD+∠BED),∵∠CDO=∠BED,∴∠OCD+∠BED=∠OCD+∠CDO=90°,∴∠1+∠2=45°,∵CD⊥DE,∴∠3+∠4=90°,∵∠5=∠3−∠1,∠6=∠4−∠2,∴∠P=∠5+∠6=∠3−∠1+∠4−∠2=∠3+∠4−(∠1+∠2)=45°,即∠P的大小是定值45°.【解析】【解答】解:(1)∵直线,CD⊥DE,∴∠EDB+∠BED=90°,∠CDO+∠EDB=90°,∴∠CDO=∠BED=50°,∵直线和直线互相垂直,∴∠OCD=40°;【分析】(1)首先根据题意得出∠EDB+∠BED=90°,∠CDO+∠EDB=90°,由此可以求出∠CDO度数,最后进一步求出答案即可;(2)由(1)可得∠CDO=∠BED,然后进一步利用“同位角相等,两直线平行”证明CD∥AC,最后利用平行线性质进一步求证即可;(3)连接PD并延长,首先根据角平分线性质得出∠1= ∠OCD,∠2= ∠BED,由此结合题意进一步得出∠1+∠2=45°,再根据三角形外角性质得出∠5=∠3−∠1,∠6=∠4−∠2,据此利用∠P=∠5+∠6进一步计算即可.11.直线AB与直线CD相交于点O,OE平分 .(1)如图①,若,求的度数;(2)如图②,射线OF在内部.①若,判断OF是否为的平分线,并说明理由;②若OF平分,,求的度数.【答案】(1)解:∵∠BOC=130°∴∠BOD=180°-∠BOC=180°-130°=50°∵OE平分∠BOD∴∴∠AOD=∠BOC=130°∴∠AOE=∠AOD+∠DOE=130°+25°=155°(2)解:①∵OE平分∠BOD∴∠BOE=∠DOE∵OF⊥OE∴∠EOF=90°∴∠DOF=90°-∠DOE∵∠AOF=180°-∠EOF-∠BOE=180°-90°-∠BOE=90°-∠BOE∴∠AOF=∠DOF∴DF平分∠AOD②∵∴设∠DOF=3x,则∠AOF=5x∵OF平分∠AOE∴∠EOF=∠AOF=5x,∠AOE=10x∴∠DOE=∠EOF-∠DOF=5x-3x=2x∵OE平分∠BOD∴∠BOE=∠DOE=2x,∠BOD=4x∵∠BOE+∠AOE=180°∴2x+10x=180°∴x=15°∴∠BOD=4×15°=60°【解析】【分析】(1)由∠BOC=130°可得∠BOD=50°根据OE平分∠BOD得,根据对顶角相等可得∠AOD=∠BOC=130°即可求出∠AOE的度数;(2)①由OE平分∠BOD可得∠BOE=∠DOE由OF⊥OE可得∠EOF=90°,故∠DOF=90°-∠DOE由图形可计算出:∠AOF=90°-∠BOE,故∠AOF=∠DOF可证DF平分∠AOD②依题意设∠DOF=3x,则∠AOF=5x由OF平分∠AOE,可得∠EOF=∠AOF=5x,∠AOE=10x,可得:∠DOE=∠EOF-∠DOF=5x-3x=2x由OE平分∠BOD可得∠BOE=∠DOE=2x,∠BOD=4x由图形可知∠BOE+∠AOE=180°,列出方程求出x即可12.已知将一副三角板(直角三角板OAB和直角三角板OCD∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)(1)如图1摆放,点O,A,C在一直线上,则∠BOD的度数是多少?(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点Q任意转动,∠M0N的度数是否发生变化?如果不变,求其值;如果变化,说明理由。

相关文档
最新文档