管壳式换热器设计

合集下载

管壳式换热器设计要领

管壳式换热器设计要领

管壳式换热器设计要领1.结构设计:管壳式换热器由壳体、管束、管板、管头盖板等部分组成。

在设计中,需考虑到换热器的耐压性能、换热面积、流体分布等因素。

换热器的结构应具有良好的刚性和密封性能,以确保设备的可靠运行。

2.材料选择:换热器的材料选择直接影响其性能和使用寿命。

一般来说,壳体、管束等部分可选用碳钢、不锈钢、铜合金等材料,而密封件宜选择耐高温、耐腐蚀的材料。

在实际应用中,还需要根据工艺要求和介质特性选择合适的材料。

3.传热计算:换热器的传热计算是设计的重要环节之一、传热计算需要确定换热器的传热系数、摩擦阻力、压降等参数。

传热系数的计算可采用经验公式或传热实验数据进行估算。

同时,需考虑换热介质的性质、流体状态和流速等因素。

4.流动特性:换热器的流动特性对传热效果和设备性能有重要影响。

合理设计的管束结构和流体分布能有效提高传热效果。

同时,应考虑流体在管束间和壳内的流动方式,如单相流、两相流、多相流等。

对于热敏介质,还需注意避免结垢、热点等问题。

5.安全性和维修性:管壳式换热器在使用过程中要保证安全性和维修性。

在设计中要考虑到设备的容易维修、更换部件的便利性,以及防止泄漏、爆炸等安全事故的发生。

合理的结构设计和材料选择可以提高设备的可靠性和安全性。

6.经济性:在设计过程中要全面考虑成本和效益,追求经济性指标。

应根据具体的工艺要求和使用情况,合理选择换热器的型号、大小和材料。

在满足工艺条件的前提下,尽量降低投资成本和运行成本,提高设备的经济效益。

综上所述,管壳式换热器的设计要领主要包括结构设计、材料选择、传热计算、流动特性、安全性和维修性、经济性等方面。

合理的设计能够保证设备的正常运行和高效换热,同时提高设备的安全性和经济性。

在具体的设计中应根据实际情况进行优化和改进,以满足特定工艺要求和使用要求。

管壳式换热器的课程设计

管壳式换热器的课程设计
注意事项
避免选用不合适的材料导致设备损坏 或安全事故;注意材料的兼容性和与 其他材料的接触情况;考虑材料的可 加工性和安装维护的便利性。
04
管壳式换热器的优化设计
传热效率优化
01
传热效率
通过选择合适的材料、优化管程和壳程流体的流速和温度,以及采用强
化传热技术,如增加翅片、改进管子形状等,提高换热器的传热效率。
管件与结构
优化换热器内部的管件和 结构,减少流体流动过程 中的局部阻力,降低压力 损失。
结构强度优化
1 2
应力分析
对换热器进行详细的应力分析,确保其在正常操 作条件下具有足够的结构强度和稳定性。
材料选择
根据使用条件和要求,选择合适的材料和厚度, 以提高换热器的结构强度和耐腐蚀性。
3
支撑与固定
合理设计换热器的支撑和固定结构,以减小应力 集中和振动,提高其结构强度和使用寿命。
新材料与新技术的应用
新型材料
采用高导热性能的复合材料、纳米材料等,提高换热器的传热效率。
新型涂层
利用先进的涂层技术,如陶瓷涂层、金属氧化物涂层等,增强换热器的抗腐蚀和 耐磨性能。
节能减排与环保要求
高效节能
研发低能耗的换热器,优化换热器结构,降低运行过程中的能源消耗。
环保设计
采用无毒、无害的材料,减少换热器对环境的影响,同时对换热器产生的废弃物进行环保处理。
能源与动力工程领域的应用
发电厂
管壳式换热器可用于加热和冷却发电厂中的各种 流体,如锅炉给水、凝结水和冷却水等。
船舶工程
在船舶工程中,管壳式换热器可用于船舶发动机 的冷却和加热,以及生活用水的加热和冷却。
采暖系统
在供暖系统中,管壳式换热器可用于将热量从热 源传递到水中,为建筑物提供热水供暖。

管壳式换热器的设计

管壳式换热器的设计

管壳式换热器的设计管壳式换热器是一种常用的换热设备,广泛应用于石油化工、冶金、电力、制药、食品等行业。

它由壳体、管束、管板、管箱等组成,能够有效地将两种介质之间的热量传递。

下面将从换热原理、设计要求和结构设计等方面进行详细介绍。

一、换热原理管壳式换热器通过管壳两侧的介质进行热量传递。

其中,一个介质在管内流动,被称为"壳侧流体",另一个介质在管外流动,被称为"管侧流体"。

壳侧流体通过壳体流动,而管侧流体则通过管束流动。

热量传递主要通过壳侧流体和管侧流体之间的传导和对流传热方式进行。

二、设计要求1.热量传递效果好:要求在换热器内两种介质之间实现高效的热量传递,以满足工艺要求。

2.压力损失小:为了保证介质流动的稳定性和降低能源消耗,设计时需要尽量减小换热器内的动能损失。

3.适应不同工艺条件:换热器的设计要能适应不同的流量、温度和压力等工艺条件的变动。

4.安全可靠:要求在设计中考虑到换热器的安全性和可靠性,尽量减少故障率。

三、结构设计1.壳体:壳体是换热器的外壳,一般采用钢质材料制造。

壳体的选择应考虑到介质的性质、压力和温度等参数,并采取相应的增强措施。

2.管束:管束是由多根管子组成的,一般采用金属材料或塑料制造。

管束的设计要考虑到介质对管材的腐蚀性、温度和压力等参数,同时也要考虑到换热面积的要求。

3.管板:管板位于管束两端,起到支撑和固定管束的作用,一般采用钢质材料制造。

管板的设计要考虑到壳侧和管侧流体的流动特性,并采用合适的孔洞布置,以保证流体的均匀流动。

4.管箱:管箱是安装在管板上的设施,主要用于集流壳侧流体并将其引导出换热器。

管箱的设计应考虑到壳侧流体的流动特性和流量等参数,以实现流体的顺畅流动。

在设计过程中,需要进行换热器的热力计算和结构力学计算,以确定壳体、管束和管板等部件的尺寸和选材。

同时,还需要根据不同工艺和使用条件的要求,进行热交换面积的计算和确定。

管壳式换热器结构设计

管壳式换热器结构设计

管壳式换热器结构设计在化工、石油和能源等领域中,管壳式换热器是一种广泛应用的高效换热设备。

本文将详细探讨管壳式换热器的结构设计,包括材料选择、传热原理和应用特点等方面的内容,旨在提高设备的传热效率和可靠性。

一、管壳式换热器的基本结构管壳式换热器主要由壳体、管束、折流板、进出口接管等部件组成。

其核心部分是管束,它由许多平行排列的传热管组成。

这些传热管的一端与壳体连接,另一端则通过封头与进出口接管相连。

在操作时,一种流体(例如水或油)在管内流动,另一种流体(例如蒸汽或冷凝液)在壳侧流动,两种流体通过管壁进行热交换。

二、材料选择与优化管壳式换热器的材料选择对其性能和可靠性至关重要。

壳体通常采用碳钢、不锈钢和钛等材料,而管束则通常采用不锈钢、铜和钛等具有优良传热性能和抗腐蚀性的材料。

在某些特殊情况下,还可以考虑对关键部位进行表面处理,以提高抗腐蚀性和耐磨性。

三、传热原理与优化管壳式换热器的传热原理主要是通过对流传热和热传导的组合来实现的。

为了提高设备的传热效率,可以采用以下措施:1、改变折流板的形状和布置,以增加壳侧流体的湍流度。

2、选择具有高导热系数的材料,以提高管壁的热传导性能。

3、适当增加管束数量和布置密度,以增加传热面积。

四、应用特点与优势管壳式换热器在各种工业领域中得到了广泛应用,主要特点有:1、结构紧凑,占地面积小,易于布置。

2、材料选择广泛,适用于各种不同的工艺条件和腐蚀性介质。

3、传热效率高,能够实现两种流体的有效热交换。

4、制造工艺成熟,操作维护方便,使用寿命较长。

五、结论本文对管壳式换热器的结构设计进行了全面分析,包括材料选择、传热原理和应用特点等方面的内容。

通过合理的结构设计,可以显著提高管壳式换热器的传热效率和可靠性,使其在各种工业领域中发挥更加重要的作用。

随着技术的不断进步,管壳式换热器的设计和制造水平也将不断提升,为工业生产带来更大的价值。

六、展望随着工业生产的不断发展和能源紧缺的压力日益增大,管壳式换热器的应用前景更加广阔。

管壳式换热器设计 课程设计

管壳式换热器设计 课程设计

管壳式换热器设计课程设计XXX课程设计:管壳式换热器设计学院:机械与XXX专业:热能与动力工程专业班级:11-02班指导老师:小组成员:目录第一章:设计任务书第二章:管壳式换热器简介第三章:设计方法及设计步骤第四章:工艺计算4.1 物性参数的确定4.2 核算换热器传热面积4.2.1 传热量及平均温差4.2.2 估算传热面积第五章:管壳式换热器结构计算管壳式换热器是常用的热交换设备,广泛应用于化工、石油、制药、食品等行业。

本次课程设计旨在设计一台管壳式换热器,以满足特定工艺条件下的换热需求。

在设计之前,需要了解管壳式换热器的基本结构和工作原理。

管壳式换热器由外壳、管束、管板、管箱、管夹等部分组成。

热量通过内置于管束中的流体在管内传递,再通过管壳间的流体传递到外壳中,从而实现热交换。

设计过程中,需要确定流体的物性参数,包括密度、比热、导热系数等。

同时,还需要核算换热器传热面积,以满足特定的传热需求。

传热量和平均温差是计算传热面积的重要参数,而估算传热面积则需要考虑流体的流动状态、管束的排布方式等因素。

最终,我们将根据设计要求进行管壳式换热器的结构计算,确定外壳、管束等部分的尺寸和数量,以满足特定工艺条件下的换热需求。

第一章设计任务书本项目旨在设计一台管壳式换热器,用于将煤油由140℃冷却至40℃。

处理能力为10t/h,压强降不得超过100kPa。

具体操作条件为:煤油的入口温度为140℃,出口温度为40℃,冷却水的入口温度为26℃,出口温度为40℃。

2.第二章管壳式换热器简介管壳式换热器是石油化工行业中应用最广泛的换热器。

尽管各种板式换热器的竞争力不断上升,但管壳式换热器仍然占据着换热器市场的主导地位。

目前,各国为提高这类换热器性能进行的研究主要集中在强化传热、提高对苛刻工艺条件的适应性以及开发适用于各类腐蚀介质的材料。

此外,结构改进也是向着高温、高压、大型化方向发展的必然趋势。

5.1 换热管计算及排布方式在设计管壳式换热器时,需要计算并确定换热管的数量、直径和排布方式。

管壳式换热器设计总结

管壳式换热器设计总结

管壳式换热器设计总结管壳式换热器是一种常见的热交换设备,广泛应用于化工、石油、制药等行业。

其设计涉及到许多方面,包括换热原理、结构设计、材料选择等。

本文将从这些方面对管壳式换热器的设计进行总结和分析。

管壳式换热器的换热原理是通过管内流体与壳侧流体之间的热传导来实现热量的交换。

管内流体一般为待加热或待冷却的介质,而壳侧流体一般为冷却剂或加热介质。

通过这种方式,可以实现两种介质之间的热量转移,达到加热或冷却的目的。

管壳式换热器的结构设计是十分重要的。

它由管束、壳体、管板、管侧流体进出口以及壳侧流体进出口等部分组成。

管束是换热的核心部分,通过将多根管子固定在管板上,形成流体的通道。

而壳体则是管束的外部保护壳,起到支撑和密封的作用。

管侧流体通过管侧进出口进入管束内,与管内流体进行热量交换,然后再通过壳侧进出口流出。

这样的结构设计,既保证了换热效率,又方便了设备的安装和维护。

管壳式换热器的材料选择也是十分重要的一环。

由于在换热过程中,介质可能存在腐蚀、高温等问题,因此需要选择耐腐蚀、耐高温的材料。

常见的材料有不锈钢、钛合金等。

对于特殊的工况,还可以采用陶瓷、镍基合金等材料。

在管壳式换热器的设计过程中,还需要考虑一些其他因素。

首先是换热面积的确定,它与换热效果直接相关。

一般来说,换热面积越大,换热效果越好。

其次是流体的流速和流量,它们对换热器的换热效果和压力损失有着重要影响。

此外,还需要考虑到换热器的尺寸和重量,以及设备的安全性和可靠性等方面。

在实际应用中,还需要根据具体的工况和要求进行换热器的定制设计。

例如,在高温高压的条件下,需要采用密封性好、耐高温高压的结构和材料;在对流体的温度变化要求较高的情况下,需要采用多级换热器或增加管程等方式来提高换热效果。

管壳式换热器的设计需要考虑多个方面的因素,包括换热原理、结构设计、材料选择等。

合理的设计可以提高换热效率,降低能耗,满足工业生产的需求。

同时,还需要根据具体的工况和要求进行定制设计,以提高设备的安全性和可靠性。

完整版HTRI管壳式换热器设计基础教程讲解


市场前景
随着科技的不断进步和工业的快速发展,管 壳式换热器的应用领域将不断扩大。同时, 随着环保意识的提高和节能减排政策的实施, 高效、节能、环保的管壳式换热器将成为未
来市场的主流产品。
02
HTRI软件简介及功能
HTRI软件发展历程
01
初始开发阶段
HTRI软件最初由美国Heat Transfer Research Inc.公司开发,专注于管
04
HTRI在管壳式换热器设 计中的应用
工艺流程模拟与优化
工艺流程建模
使用HTRI软件对管壳式换热器工艺流程进行 建模,包括输入工艺参数、物性数据和设备尺 寸等。
模拟计算
通过软件内置的算法和模型,对工艺流程进行模拟计 算,得出各物流的温度、压力、流量和物性变化等关 键参数。
优化设计
根据模拟结果,对换热器的结构、尺寸和布局 等进行优化设计,以提高换热效率和降低能耗。
换热器类型选择依据
传热方式
根据工艺要求选择合适的传热方式,如并流、逆 流或错流。
操作条件
根据操作压力、温度、流量等条件选择合适的换 热器类型。
ABCD
流体性质
考虑流体的物理性质(如密度、粘度、比热容等) 和化学性质(如腐蚀性、结垢性等)。
经济性
在满足工艺要求的前提下,考虑换热器的制造成 本、运行费用和维修费用等因素。
壳式换热器的热工水力设计计算。
02
逐步完善阶段
随着技术的发展和用户需求的变化,HTRI软件逐步增加了新的功能模
块,如振动分析、腐蚀预测等,并不断优化算法以提高计算精度和效率。
03
广泛应用阶段
目前,HTRI软件已成为全球范围内广泛应用于石油、化工、制冷等领

管壳式换热器的设计


六、折流挡板
作用: ①提高壳程内流体的流速;
②加强湍流强度; ③提高传热效率; ④支撑换热管。
形式:
圆缺形
盘环形
最常用的为圆缺形挡板,切去的弓形高度约为外壳内径的
10%~40%,一般取20%~25%。
两相邻挡板的距离(板间距)h为外壳内径D的(0.2~1)倍。
• 板间距过小,不便于制造和维修,阻力较大; • 板间距过大,流体难于垂直地流过管束,使对流传热系数下降。
s 1.72 Re 0.19
Re u0 d e

de当量直径, m;NB折流挡板数; u 0为壳层中流体的流速, m s1
设计步骤
1、试算并初选设备规格
① 确定流体在换热器中流动途径。 ② 根据传热任务计算热负荷Q。 ③ 确定流体在换热器两端的温度,选择列管换热器的形 式;计算定性温度,并确定在定性温度下的流体物性。
五、管程和壳程数的确定
1.管程数
当流体的流量较小或传热面积较大而需管数很多时,有时会使管内流速较 低,对流系数较小。 为提高管内流速,可采用多管程。 但管程数过多,管程流动阻力加大,增加动力费用;多程会使平均温度差下降; 多程隔板使管板上可利用面积减少 标准中管程数有:1、2、4和6程,多程时应使每程管子数大致相等。-管程数Np:Ⅰ、Ⅱ、Ⅳ、Ⅵ 4-公称压力PN,MPa
• •
5-公称换热面积SN,m2
一、流体流径的选择-冷、热流体走管程或壳程
① 不洁净和易结垢的液体宜在管内-清洗比较方便
② 腐蚀性流体宜在管内-避免壳体和管子同时腐蚀,便于清洗 ③ 压强高的流体宜在管内-免壳体受压,节省壳程金属消耗量
系列标准中,采用的h(mm)值为: • 固定管板式:150,300,600; • 浮头式:150,200,300,480和600.

管壳式换热器的设计

管壳式换热器的设计
1.传热面积的计算:传热面积决定了热交换效果的好坏,计算传热面
积是设计的第一步。

传热面积的大小受到工艺需求、流体特性和设备尺寸
等因素的影响。

2.流体流速的选择:流体流速对传热效率有重要影响。

流速不宜过大,以免增加流体阻力和泵耗能,但也不宜过小,以免影响传热效果。

需要通
过经验和实验确定合适的流速范围。

3.换热器的参数选择:根据工艺要求和流体性质选择合适的管壳式换
热器参数,如管子和外壳的材料、厚度和长度等。

一般情况下,不同材料
的换热器对不同的流体具有不同的传热效果和抗腐蚀能力。

4.温度和压力的控制:管壳式换热器工作时,内外两种流体通常以不
同的温度和压力运行,因此需要采取相应的措施确保换热器的安全性能。

这包括选择合适的密封材料、加装安全阀和温控装置等。

5.清洗和维护的考虑:管壳式换热器在长期使用过程中会有积垢和堵
塞的问题,因此需要预留清洗口和维护通道,并定期进行清洗和维护工作,以保证换热器的正常运行。

总之,管壳式换热器的设计需要综合考虑传热效率、流体性质、工艺
要求和设备安全性能等因素,确保换热效果良好、运行安全可靠。

通过合
理的设计和选择,可以使管壳式换热器发挥最佳的效果,实现节能降耗的
目的。

管壳式换热器设计-课程设计

一、课程设计题目管壳式换热器的设计二、课程设计内容1.管壳式换热器的结构设计包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。

2. 壳体及封头壁厚计算及其强度、稳定性校核(1)根据设计压力初定壁厚;(2)确定管板结构、尺寸及拉脱力、温差应力;(3)计算是否安装膨胀节;(4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。

3. 筒体和支座水压试验应力校核4. 支座结构设计及强度校核包括:裙座体(采用裙座)、基础环、地脚螺栓5. 换热器各主要组成部分选材,参数确定。

6. 编写设计说明书一份7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。

三、设计条件气体工作压力管程:半水煤气0.75MPa壳程:变换气 0.68 MPa壳、管壁温差55℃,tt >ts壳程介质温度为220-400℃,管程介质温度为180-370℃。

由工艺计算求得换热面积为140m2,每组增加10 m2。

四、基本要求1.学生要按照任务书要求,独立完成塔设备的机械设计;2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制;3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔;4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。

5.根据设计说明书、图纸、平时表现及答辩综合评分。

五、设计安排六、说明书的内容1.符号说明2.前言(1)设计条件;(2)设计依据;(3)设备结构形式概述。

3.材料选择(1)选择材料的原则;(2)确定各零、部件的材质;(3)确定焊接材料。

4.绘制结构草图(1)换热器装配图(2)确定支座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及环向位置,以单线图表示;(3)标注形位尺寸。

(4)写出图纸上的技术要求、技术特性表、接管表、标题明细表等5.壳体、封头壁厚设计(1)筒体、封头及支座壁厚设计;(2)焊接接头设计;(3)压力试验验算;6.标准化零、部件选择及补强计算:(1)接管及法兰选择:根据结构草图统一编制表格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按GB151-2014规定,取标准直径
44长径比l/Ds=4.5/0.5
45管程接管直径
D 2
mm
按钢管标准取值46管程雷诺数Re 2
47
管程换热系数
α2
W/(
·℃)48折流板形式选定
49折流板缺口高度h m 取h=0.25Ds=0.25×0.5
50折流板的圆心角度51折流板间距l s m (0.2~0.1)Ds=(0.2~0.1)×0.5=0.1~0.5,取
52折流板数目N b 块l/l s -153折流板上管孔数个由图得
54折流板上管孔直径d H
m 由GB151-2014规定
55流过折流板上管子数目根由图56
折流板缺口处管子数目

由图
57折流板直径D b m 由GB151-2014规定58折流板缺口面积A wg
m 2
59错流区内管数占总管数的百分比Fc
60缺口处管子所占面积A wt ㎡
61流体在缺口处流通面积A b

A b =A wg -A wt =0.03839-0.01237
62流体在两折流板间错流流通截面积
A c

63壳程流通截面积As ㎡64壳程接管直径D 1mm 按 计算,并由钢管标准选接近规格65错流区管排数
N c 排由图
66每一缺口内的有效错流管排数
N cw 排
67旁流通道数N E 68
旁通挡板数
N ss
对选取69错流面积中旁流面积所占分数F bp
70
一块折流板上管子和管孔间泄漏面

A tb

71
折流板外缘与课题内壁之间泄露面

A sb ㎡21000mm =D 22226
w 19940.021Re =
71910ρμ-⨯⨯=⨯i d 2
2i
0.80.4220.80.4
0.023Re Pr d 0.623 =0.02329023 4.80.021
λα=
⨯⨯⨯
⨯2wg 2o 1
2[(1)sin ]4220.5120π20.125 [0.5-(1-)sin60]
41800.5
s Ds h A D θ
θ=
--⨯=⨯s s c s 122{2sin[arccos()]22arccos()}
10.520.1250.520.125{2sin[arccos()]0.4730.473
0.520.125
2arccos()}
0.473π()ππ()π--=+-
--⨯-⨯=+-⨯-L L
L
D h D h
F D D D h
D 2
wt 2
d (1)
8
0.025140(10.64)
8
ππ =-⨯=⨯⨯-t o c A n F 0
c 0[()]0.4730.025
0.25[0.50.473(0.0320.025)]
0.032-=-+
--=-+-L s s L D d A l D D s d s
s A 2
1D 0.02854
π=p
s h N ⨯
=8.0cw bp 1
[]/2
[0.50.4730.510.044]0.25/0.031
=-+=-+⨯⨯⨯s L E E s c
F D D N l l A sb ()2[arccos(1)]20.5(0.50.4955)20.25[-arccos(1)]
20.5s s b s
D D D h
A D -=
---⨯=-ππtb 001
d ()(1)2
0.0250.0254-0.0250.510.64136
ππ()()=-⨯+=⨯⨯⨯+⨯t
H c A d d F n 2

72壳程雷诺数Re 1604873理想管数传热因子j H 由图2.280.0174
折流板缺口校正因子
j c
由图2.29
1
75
折流板泄漏校正因子
j 1
0.7
76旁通校正因子j b 0.8277壳程传热因子j o j 0=j H j c j 1j b
0.005778壳程质量流量G s G s =M 1/A s =4.17/0.0285
146.279壳侧壁面温度t w ℃假定6380
壁温下煤油粘度
μw1
kg/(m·s)
查物性表
0.001080
81壳侧换热系数α1W/(㎡·℃)314.982水垢热阻r s,2(㎡·℃)/W 查有关资料0.0005283煤油污垢热阻r s,1
(㎡·℃)/W
查有关资料
0.0004184管壁热阻

85传热系数K
W/(m 2·℃)
#NAME?
86传热面积F ㎡#NAME?87传热面积之比F ,,/F 72.1/61.85
#NAME?88检验壳侧壁温t w1℃#NAME?89管内摩擦系数f i 查图2.35
0.006590管侧壁温t w2℃假定4091
壁温下水的粘度
μw2
kg/(m·s)
查物性表
#NAME?
92沿程阻力
ΔP i
Pa
#NAME?
93回弯阻力ΔP r Pa #NAME?94进出口连接管阻力ΔP N Pa #NAME?95两台管程总阻力ΔP t Pa
#NAME?96
理想管束摩擦系数
f k
查图2.36
0.19
97理想管束错流段阻力
ΔP bk
Pa #NAME?
98
理想管束缺口处阻力
ΔP wk
Pa
59.9
99旁路校正系数R b ——查图2.380.79
折流板泄漏校正系数R 1——查图2.370.55折流板间距不等的校正系数
R s ——间距相等,无需校正
1
壳程总阻力
ΔP s ,
Pa
#NAME?
sb ()2[arccos(1)]20.5(0.50.4955)20.25[-arccos(1)]
20.5s s b s
D D D h
A D -=
---⨯=-ππ10161 4.170.025
e 604.5100.0284
μ-⨯=
=
⨯⨯s M d R A sb sb 0.0023650.0035
0.18890.0310.0023650.400.0023650.00352.30由
及查图++====++tb c sb tb A A A A A A ss bp 30.3330.3959
2.31
由及查资料图线===c N F N s m ⋅2kg 112/30.14
102/3
j Pr (/)0.0060146.2233013.7
/1.0846
αμμ--==⨯⨯⨯p s w G c 001
,1,2121
11[
]125125 =[0.000520.00041]314.921476121αα--=+++++⨯+⨯s s i i d d K r r d d m
=621770/236*42.63t Q
F K =
⋅∆m
s m t r K t ∆+-=)1
(
t 1,0
011w α2
0.14
i 26-0.14
64(/)2
4 4.59967191040.00650.021265410()
ρμμ---∆=⨯⨯=⨯⨯⨯⨯⨯t
i
w i L w P f d 24996
r 44
22t t w P Z ρ⨯∆==⨯2
195.9965.12
w 5
.12
t ⨯⨯
==∆ρN P N
i P P P ++∆=∆r t P 220.14
k 111
224(/)2 4.178
=40.19 1.084
20.031744
μμρ-∆=⨯⨯⨯
⨯⨯⨯s c
b k
w c M N P f A 2
k 1
2(20.6)
24.17(20.6 3.7)20.0320.044774
ρ∆=
++⨯=
⨯⨯⨯s w cw b c M P N A A s c
cw
b bk wk b b bk b R N N R P R P N R P N P )1(2])1[(1s +
∆+∆+∆-=∆
103两台的壳程总阻力ΔP s PaΔPs,=2ΔPs#NAME?附

备注
1.704748092 0.833333333
0.1
以外径为准
4.5
#NAME?
见图
合理
1.19047619
稍大
与原假定值差
0.42℃
两台
两台
没有超过表2.10的规定
没有超过表2.10的规定。

相关文档
最新文档