标准系列化管壳式换热器的设计计算步骤(精)

合集下载

管壳式换热器设计和选型

管壳式换热器设计和选型

(3) )
(4) )
(2)计算管程的压降和传热系数
a、参考表选定流速 参考表选定流速,确定管程数目,计算管程压降 参考表选定流速
l ρu 2 ( ∑ ∆pi = (∆p1 + ∆p2 )Ft N s N p = λ d + 3) 2 Ft N s N p
若管程允许压降已经有规定,可由上式计算管程数Ns. b、计算管内传热系数hi< K估则应增加管壳数,重新) 则应增加管壳数,重新) 计算。若改变管程不能同时满足h 和 计算。若改变管程不能同时满足 i> K估,和 ∑ ∆pi < ∆p允 ,则应重新估计 估(减小 ,另选一台换热器 则应重新估计K 减小 减小), 则应重新估计 型号进行试算。 型号进行试算。
(2) BIU 600--1.6--90--6/25-2 II
封头管箱,公称直径600mm, 封头管箱,公称直径600mm,管、壳程压力均为 1.6MPa,公称换热面积90平方米 普通级冷拔换热管, 1.6MPa,公称换热面积90平方米,普通级冷拔换热管, 平方米, 外径25mm,管长6m, 管程,单壳程的U 外径25mm,管长6m,2管程,单壳程的U形管式换热 器。
⑦流量小或粘度大的流体宜走壳程,因流体在有 流量小或粘度大的流体宜走壳程, 折流挡板的壳程中流动, 折流挡板的壳程中流动,由于流速和流向的不断 改变,在低Re(Re>100)下即可达到湍流, 改变,在低Re(Re>100)下即可达到湍流,以 提高传热系数。 提高传热系数。 若两流体温差较大, ⑧若两流体温差较大,宜使对流传热系数大的流 体走壳程,因壁面温度与α大的流体接近, 体走壳程,因壁面温度与α大的流体接近,以减 小管壁与壳壁的温差,减小温差应力。 小管壁与壳壁的温差,减小温差应力。 以上原则并不是绝对的,对具体的流体来说, 以上原则并不是绝对的,对具体的流体来说, 上述原则可能是相互矛盾的。因此, 上述原则可能是相互矛盾的。因此,在选择流体 的流径时,必须根据具体的情况, 的流径时,必须根据具体的情况,抓住主要矛盾 进行确定。 进行确定。

管壳式换热器设计与选型步骤

管壳式换热器设计与选型步骤

生意社08月13日讯
1、工艺计算:
1>按流体种类、冷却流体的流量、进出口温度、工作压力等计算出需要传递的热量。

2>根据流体的腐蚀性及其它特性选择管子和壳体的材料。

并根据材料加工特性,流体的流量、压力、温度,换热管与壳体的温度,需要传递热量的多少,造价的高低及检修清洗方便等因素,决定采用哪一种类型的管壳式换热器。

3>确立流体的流动空间,即确定管程与壳程内分别是什么介质
4>确定参与换热器的两种流体的流向,使并流、逆流还是错流。

并计算出流体的有效平均温差.
5>根据经验初选传热系数K,并估算所需传热面积A。

6>根据计算出传热面积A,参照我国管壳式换热器标准系列,初步确定换热器的基本参数(管径、管程数、管子根数、管长、管子排列方式、折流元件等的型式及布置、壳体直径等结构参数)。

7>根据确定的标准系列尺寸,进行传热系数的校核和阻力降的计算。

最后按标准选用换热器或者进行机械设计。

2、机械设计计算
机械设计计算包括:
(1)壳体和管箱壁厚的计算
(2)管子与管板连接结构设计
(3)壳体与管板连接结构设计
(4)管板厚度计算
(5)折流板、支持板等零部件的结构设计
(6)换热管与壳体在温差和流体压力联合作用下的应力计算
(7)管子拉脱力和稳定性校核
(8)判断是否需要膨胀节,如需要,则选择膨胀节结构形式,并进行有关的计算。

(9)接管、接管法兰、容器法兰、支座等的选择及开孔补强设计。

管壳式换热器的设计及计算

管壳式换热器的设计及计算

第一章换热器简介及发展趋势1.1 概述在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。

进行热量传递的设备称为换热设备或换热器。

换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。

在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。

由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。

在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。

70年代的世界能源危机,有力地促进了传热强化技术的发展,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。

这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。

所以,这些年来,换热器的开发与研究成为人们关注的课题,最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,向低温差设计和低压力损失设计的方向发展。

同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。

当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。

当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。

各种新型高效紧凑式换热器的应用范围将得到进一步扩大。

在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。

总之,为了适应工艺发展的需要,今后在强化传热过程和换热设备方面,还将继续探索新的途径。

化工原理课程设计管壳式换热器的设计

化工原理课程设计管壳式换热器的设计

西北大学化工学院列管式换热器的工艺设计说明书题目: 列管式换热器的工艺设计和选用课程名称: 化工原理课程设计专业: 化学工程与工艺班级: 09级学生姓名: 李哲学号: 2009115057指导教师: 吴峰设计起止时间:2012 年1月1日至2012 年 1月13日设计题目:列管式换热器的工艺设计和选用一、设计条件炼油厂用循环水将煤油油从230℃冷却到120℃。

柴油流量位28700kg/h;循环水初温为22℃,经换热后升温到46℃。

换热器的热损失可忽略。

管、壳程阻力压降不大于100kPa。

试设计能完成上述任务的列管式换换热器。

二、设计说明书的内容1、设计题目及原始数据;2、目录;3、设计方案的确定;4、工艺计算及主体设备设计;5、辅助设备的计算及选型;(主要设备尺寸、衡算结果等);6、设计结果概要或设计结果汇总表;7、参考资料、参考文献;目录一.设计任务及设计条件 (3)二.设计方案 (3)1.换热器类型选择 (3)2.流程选择 (3)3.流向选择 (3)三.确定物性数据 (3)四.估算传热面积 (3)五.工艺结构尺寸计算 (3)1.管径及管内流速选择 (3)2.传热管数和传热管程数 (4)3.平均传热温差校正及壳程数 (5)4.传热管排列和分程方法 (5)5.壳体内径 (5)6.折流板 (5)7.其他主要附件 (6)8.接管 (6)9.壁厚的确定、封头 (7)六.换热器核算 (7)(一).热流量核算 (7)1.壳程表面传热系数核算 (8)2.管程表面传热系数核算 (8)3.污垢热阻 (9)4.传热面裕度 (9)(二)传热管壁温及壳体壁温计算 (9)(三)阻力计算 (10)1.管程流体阻力计算 (10)2.壳程流体阻力计算 (10)七.换热器主要计算结果汇表 (11)八.主要符号说明 (11)九.换热器主要结构尺寸图和管子布置图 (12)十.参考文献 (15)一.设计任务及设计条件:用循环冷却水将流量为28700Kg/h 的煤油从230℃降至120℃,冷却水为清净河水,进口温度22℃,选定冷却水出口温度46℃,设计一台列管换热器完成冷却任务。

管壳式换热器谁走管程谁走壳程是怎么定的?

管壳式换热器谁走管程谁走壳程是怎么定的?
物性特征:
混和气体在℃下地有关物性数据如下(来自生产中地实测值):
密度
定压比热容℃
热导率
粘度
循环水在℃下地物性数据:
密度㎏
定压比热容℃
热导率℃
粘度
二.确定设计方案
.选择换热器地类型
两流体温地变化情况:热流体进口温度℃出口温度℃;冷流体进口温度℃,出口温度为℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器地管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器.文档来自于网络搜索
管子在管板上排列地间距(指相邻两根管子地中心距),随管子与管板地连接方法不同而异.通常,胀管法取(~),且相邻两管外壁间距不应小于,即≥().焊接法取.文档来自于网络搜索
.管程和壳程数地确定当流体地流量较小或传热面积较大而需管数很多时,有时会使管内流速较低,因而对流传热系数较小.为了提高管内流速,可采用多管程.但是程数过多,导致管程流体阻力加大,增加动力费用;同时多程会使平均温度差下降;此外多程隔板使管板上可利用地面积减少,设计时应考虑这些问题.列管式换热器地系列标准中管程数有、、和程等四种.采用多程时,通常应使每程地管子数大致相等.文档来自于网络搜索
.计算管、壳程压强降根据初定地设备规格,计算管、壳程流体地流速和压强降.检查计算结果是否合理或满足工艺要求.若压强降不符合要求,要调整流速,再确定管程数或折流板间距,或选择另一规格地设备,重新计算压强降直至满足要求为止.文档来自于网络搜索
.核算总传热系数计算管、壳程对流传热系数α和α,确定污垢热阻和,再计算总传热系数',比较得初始值和计算值,若'=~,则初选地设备合适.否则需另设选值,重复以上计算步骤.文档来自于网络搜索
.流体流动阻力(压强降)地计算

ASME中国制造-标准系列化管壳式换热器的设计计算步骤

ASME中国制造-标准系列化管壳式换热器的设计计算步骤
所选换热器的安全系数为
565 427 / 427100% 32.3%
表明该换热器的传热面积裕度符合要求。 (5)核算壁温与冷凝液流型 核算壁温时,一般忽略管壁热阻,按以下近似计算公式计算
T tw t tw 51.7 t w t 35.67 w 1 1 1 1 Rso Rsi 0.000172 0.0002 αo αi 1051 3736
ρ 596kg/m3, μ 1.8 104 Pa s, c p 2.34kJ/kg C,λ 0.13W/m C,r 357.4kJ/kg。
井水的定性温度: 入口温度为 t1
32C ,出口温度为
t2
ms1r t ms 2 c p 2 1
2.376104 103 / 330 24 3000kg/h 0.833kg/s 3000 357.4 t2 32 35.67C 70000 4.174 井水的定性温度为 t m 32 35.67 / 2 33.84 C 两流体的温差 Tm t m 51.7 33.84 17.86 C 50 C ,故选固定管板式换热器
非标准系列化列管式换热器的设计计算步骤
(1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关, 因此,一般先假定一个壳程传热系数,以计算 K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的 1.15~1.25 倍 (9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。

(完整版)HTRI管壳式换热器设计基础教程讲解

(完整版)HTRI管壳式换热器设计基础教程讲解

HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。

HTRI帮助其会员设计高效、可靠及低成本的换热器。

HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。

该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。

HTRI.Xphe能够设计、核算、模拟板框式换热器。

这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。

该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。

HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。

该软件使用了HTRI的最新逐点完全增量计算技术。

HTRI.Xjpe是计算套管式换热器的软件。

HTRI.Xtlo是管壳式换热器严格的管子排布软件。

HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。

HTRI.Xfh能够模拟火力加热炉的工作情况。

该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。

在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。

一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。

换热器计算步骤

换热器计算步骤

第2章工艺计算设计原始数据表2—1管壳式换热器传热设计基本步骤(1)了解换热流体的物理化学性质和腐蚀性能(2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量;3确定流体进入的空间4计算流体的定性温度,确定流体的物性数据5计算有效平均温度差,一般先按逆流计算,然后再校核6选取管径和管内流速7计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核8初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的~倍l9选取管长10计算管数NT11校核管内流速,确定管程数12画出排管图,确定壳径D和壳程挡板形式及数量等i13校核壳程对流传热系数14校核平均温度差15校核传热面积16计算流体流动阻力;若阻力超过允许值,则需调整设计;确定物性数据定性温度由饱和水蒸气表可知,蒸汽和水在p=、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变;对于壳程不存在相变,其定性温度可取流体进出口温度的平均值;其壳程混合气体的平均温度为:t=420295357.52+=℃2-1管程流体的定性温度:T=3103303202+=℃根据定性温度,分别查取壳程和管程流体的有关物性数据;物性参数管程水在320℃下的有关物性数据如下:参考物性数据无机表表2—2壳程蒸气在下的物性数据1:锅炉手册饱和水蒸气表表2—3估算传热面积 热流量根据公式2-1计算:p Q Wc t =∆ 化原 4-31a 2-2将已知数据代入 2-1得:111p Q WC t =∆=60000××310 330-310/3600=式中: 1W ——工艺流体的流量,kg/h ;1p C ——工艺流体的定压比热容,kJ/㎏.K ;1t ∆——工艺流体的温差,℃;Q ——热流量,W;平均传热温差根据 化工原理 4-45 公式2-2计算:1212ln m t t t t t ∆-∆∆=∆∆ 2-3 按逆流计算将已知数据代入 2-3得:()()()()121242033031029541.86420330ln ln 310295m t t t t t ---∆-∆∆===∆-∆-℃式中: m t ∆——逆流的对数平均温差,℃;1t ∆——热流体进出口温差,℃; 2t ∆——冷流体进出口温差,℃; 可按图2-1中b 所示进行计算;图2-1 列管式换热器内流型传热面积根据所给条件选定一个较为适宜的K 值,假设K =400 W/则估算传热面积为:mt K QS ∆=化工原理 式4-43 2-4 将已知数据代入 2-3得: 2m 39.10986.4140067.1831666t =⨯∆=m K Q S式中:S ——估算的传热面积,2m ; K ——假设传热系数,W/m 2.℃;m t ∆——平均传热温差,℃; 考虑的面积裕度,则所需传热面积为:28.12515.188.11215.1'm S S =⨯=⨯= 2-5热流体用量根据公式2-4计算:由化工原理热平衡公式p QW c t=∆ 将已知数据代入 2-4得: kg/h 68.17392)295420(033.367.1831666222=-⨯=∆=t C Q W p 2-6式中Q ——热流量,W ;2p c ——定压比热容,kJ/㎏.℃;2t ∆——热流体的温差,℃;2W ——热流体的质量流量,kg /h ;工艺尺寸 管数和管长1.管径和管内流速根据红书 表3-2 换热管规格表2-4根据 红书 表3-4 取管内流速s m i /1u = ⒉管程数和传热管数 依红书3-9式 un dqv 24π=,可根据传热管内径和流速确定单管程传热管数758.74102.047.70967.164n 22≈=⨯⨯==ππu d qii v s 根 2-7 式中qv——管程体积流量,s 3m ;n ——单程传热管数目;i d ——传热管内径,mm ; u ——管内流体流速,sm ;按单管程计算,依红书3-10,所需的传热管长度为 ()m nd A sop 3.2175025.08.125L =⨯⨯==ππ 2-8式中 L ——按单程管计算的传热管长度,m A p ——传热面积,2m ;do——换热管外径,m;按单管程设计,传热管过长,则应采用多管程,根据本设计实际情况,采用非标准设计,现取传热管长m l 6=,则该换热器的管程数为 456.363.21≈===l L N p 管程 2-9 传热管总根数 300475=⨯=⨯=N n N p s T 根 2-10 式中, 0d ——管子外径,m ;'T N ——传热管总根数,根;0d ——管子外径,m ;3.换热器的实际传热面积,依据红书3-12,203.1413006025.014.3m lN d A T =⨯⨯⨯==π 2-11式中,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

标准系列化管壳式换热器的设计计算步骤
(1)了解换热流体的物理化学性质和腐蚀性能
(2)计算传热量,并确定第二种流体的流量
(3)确定流体进入的空间
(4)计算流体的定性温度,确定流体的物性数据
(5)计算有效平均温度差,一般先按逆流计算,然后再校核
(6)选取经验传热系数
(7)计算传热面积
(8)查换热器标准系列,获取其基本参数
(9)校核传热系数,包括管程、壳程对流给热系数的计算。

假如核算的K与原选的经验值相差不大,就不再进行校核。

若相差较大,则需重复(6)以下步骤
(10)校核有效平均温度差
(11)校核传热面积
(12)计算流体流动阻力。

若阻力超过允许值,则需调整设计。

非标准系列化列管式换热器的设计计算步骤
(1)了解换热流体的物理化学性质和腐蚀性能
(2)计算传热量,并确定第二种流体的流量
(3)确定流体进入的空间
(4)计算流体的定性温度,确定流体的物性数据
(5)计算有效平均温度差,一般先按逆流计算,然后再校核
(6)选取管径和管内流速
(7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核
(8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长
(10)计算管数
(11)校核管内流速,确定管程数
(12)画出排管图,确定壳径和壳程挡板形式及数量等
(13)校核壳程对流传热系数
(14)校核平均温度差
(15)校核传热面积
(16)计算流体流动阻力。

若阻力超过允许值,则需调整设计。

甲苯立式管壳式冷凝器的设计(标准系列)
一、设计任务
1.处理能力:
2.376×104t/a正戊烷;
2.设备形式:立式列管式冷凝器。

二、操作条件
1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器;
2.冷却介质:为井水,流量70000kg/h,入口温度32℃;
3.允许压降:不大于105Pa;
4.每天按330天,每天按24小时连续运行。

三、设计要求
选择适宜的列管式换热器并进行核算。

附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)
正戊烷立式管壳式冷凝器的设计——工艺计算书(标准系列)
本设计的工艺计算如下:
此为一侧流体为恒温的列管式换热器的设计。

1.确定流体流动空间
冷却水走管程,正戊烷走壳程,有利于正戊烷的散热和冷凝。

2.计算流体的定性温度,确定流体的物性数据
正戊烷液体在定性温度(51.7℃)下的物性数据(查化工原理附录)。

,,kJ/kg C W/m C kJ/kg s Pa kg/m 34357130342,1081,5964.r .λ.c .μρp =︒⋅=︒⋅=⋅⨯==- 井水的定性温度:
入口温度为C ︒=321t ,出口温度为
12
212t c m r
m t p s s +=
式中33kg/s 3000kg/h 8024330101037623
41./.m s ==⨯⨯⨯=
C ︒=+⨯⨯=
673532174
4700004
35730002...t
井水的定性温度为()C
84332673532./.t m =+= 两流体的温差C 50C
<=-=-86178433751...t T m m ,故选固定管板式换热器 两流体在定性温度下的物性数据如下
3.计算热负荷
kW 7297435783301...r m Q s =⨯==
4.计算有效平均温度差
逆流温差()()()()[]
C 32-51.7ln 8176735751673575132751.../...t Δ,m =----=
逆 5.选取经验传热系数K 值
根据管程走井水,壳程走正戊烷,总传热系数C W/m 2
︒⋅=815470~K ,现暂取C W/m 2
︒⋅=600K 。

6.估算换热面积
23m 17.85001024533797..t ΔK Q S m =⨯⨯==,逆
7.初选换热器规格
立式固定管板式换热器的规格如下
公称直径D ..............................500mm 公称换热面积S ........................40m 2 管程数N p .. (2)
管数n ………………………………..172 管长L ………………………………..3.0m
管子直径……………………………..mm 5225.Φ⨯ 管子排列方式………………………..正三角形
换热器的实际换热面积()()2
m 16391030250143172100.....L d πn S o =-⨯⨯=-=
该换热器所要求的总传热系数C W/m 2o ︒⋅=⨯⨯==142781716391072973
....t ΔS Q K m o ,逆
8.核算总传热系数o K
(1)计算管程对流传热系数i α
/s m 3019607993441979933600
70000
../../ρ/m V i si si ==== 2m 0270020078502172422...d πN n A i p i =⨯⨯=⎪⎭⎫ ⎝⎛⎪⎪⎭

⎝⎛= m/s 7260027
001960...A V u i si i ===
1000020123000717
07
99372600200>=⨯⨯==
....μρu d Re i i i i i (湍流) 7734627
01071701017443
3....λμc Pr i
i pi i =⨯⨯⨯==
-
故()()C)W/(m 2︒⋅=⨯⨯==3736773420123020
062700230023
04
0804080....i i i ....Pr Re d λ.α (2)计算壳程对流传热系数o α
因为立式管壳式换热器,壳程为正戊烷饱和蒸汽冷凝为饱和液体后离开换热器,故可按蒸汽在垂直管外冷凝的计算公式计算o α
4
132131/o t ΔL μr λρg .α⎪
⎪⎭

⎝⎛=
现假设管外壁温C ︒=40w t ,则冷凝液膜的平均温度为()()C ︒=+=+8545407515050...t t .w s ,这与其饱和温度很接近,故在平均膜温45.85℃下的物性可沿用饱和温度51.7℃下的数据,在层流下:
()C 51W/m 2︒⋅=⎪⎪⎭

⎝⎛-⨯⨯⨯⨯⨯⨯=⎪
⎪⎭

⎝⎛=1050751300071701043571305968191311314
13324
132//o ......t ΔL μr λρg .α
(3)确定污垢热阻
(井水)(有机液体)C/W m C/W m 22︒⋅⨯=︒⋅⨯=--44100210721.R ,.R si so
(4)总传热系数o K
C
W/m C W/m 22︒⋅>︒⋅==++++=⨯+⨯+⨯+++=++++=42756500177
00003350000250000006200001720000951020
25
37361202500020522254500250000172010511111o i
o
i i o si m o w so o o K ..........d d αd d R d d λb R αK 所选换热器的安全系数为()[]%.%/332100427427565=⨯- 表明该换热器的传热面积裕度符合要求。

(5)核算壁温与冷凝液流型
核算壁温时,一般忽略管壁热阻,按以下近似计算公式计算
000203736
167
3500017201051175111..t .t .R αt t R αt T w w si i w so o w +-=
+-⇒+-=+- C ︒=440.t w ,这与假设相差不大,可以接受。

核算流型 冷凝负荷s kg/m ⋅=⨯⨯==
06170172
025*******
0....b m M s 1800344000717
00617044<=⨯==
..μM Re (符合层流假设) 9.计算压强降
(1)计算管程压降
()s p t i
N N F p Δp
Δp Δ21
+=∑(F t 结垢校正系数,N p 管程数,N s 壳程数)
取碳钢的管壁粗糙度为0.1mm ,则0050.d /ε=,而20123=i Re ,于是
033068201010681023
023
0.Re ..Re d e .λ..=⎪

⎫ ⎝⎛+=⎪

⎫ ⎝⎛+=
Pa 12962
7260799302003033022
21=⨯⨯⨯==....u ρd L λp Δi i
Pa 7862
726079933232
22=⨯⨯=⨯=..u ρp Δi
对mm 5225.φ⨯的管子有1241===s p t N ,N ,.F 且
()()Pa 58301241786129621
=⨯⨯⨯+=+=∑.N N F p Δp
Δp Δs p t i
(2)计算壳程压力降
壳程为恒温恒压蒸汽冷凝,可忽略压降。

由此可知,所选换热器是合适的。

相关文档
最新文档