相遇问题整理

合集下载

相遇问题的应用题(2022年整理)

相遇问题的应用题(2022年整理)

一、同时出发、相向而行1、两辆汽车从A、B两地同时出发、相向而行,甲每小行50千米,乙每小行60千米,经过3.5小时相遇。

A、B两地相距多少千米?2、小明与小清家相距4.5千米,两人同时骑车从家出发相向而行,小明每分钟行50米,小青每分钟行40米,经过几分钟两人相遇?3、客车和货车同时从两城出发,相向而行,客车每小时行45千米,比货车每小时多行3千米,经过4小时两车相遇。

两城相距多少千米?4、客轮、货轮从武汉和上海两地同时出发,相对开出,货轮每小时行40千米,客轮的速度是货轮的1.2倍,两地相距862.4千米。

请问几小时两船可以相遇?5、两个工程队同时从两端开一条长850米的隧道,甲队每天开凿26米,乙队每天开凿24米,经过几天就可以打通?6、师徒两个人合作加工一批零件,师傅每小时加工68个,徒弟每小时加工55个,合作6小时完成任务,这批零件一共有多少个?7、加工厂用两台磨面机同时磨面17280千克,第一台磨面机每小时磨面364千克,第二台磨面每小时磨面356千克,如果每天加工8小时,磨完这些面粉需要多少天?二、同时出发,相背而行1、甲、乙两人同时从学校出发向反方向行去。

甲每分钟走60米,乙每分钟走70米,5分钟后两人相距多少米?2、两辆汽车同时从一个工厂出发,相背而行,一辆汽车每小时行33千米,另一辆汽车每小时行42千米。

多少分钟后两车相距15千米?三、同时出发、相向而行,不相遇1、甲、乙两站间的铁路长560千米,两列火车同时从两站相对开出,一列火车每小时行63.5千米,另一列火车每小时行80.5千米,3小时后两列火车还相距多少千米?2、货车和客车同时从甲、乙两地相对开出,货车每小时行57.5千米,客车每小时行45.8千米,3小时后两车相距100千米,甲、乙两地相距多少千米?3、师徒两人共同加工312个零件,师傅每小时加工45个,徒弟每小时加工35个,加工几小时后还剩40个?四、不同时出发,相向而行1、甲、乙两列火车从两地相对行驶。

相遇问题之对应分率法(整理)

相遇问题之对应分率法(整理)
7、甲、乙两人同时从A、B两地相向而行,相遇时甲、乙所行的路程比是5:3,并且甲比乙多行12千米。甲行完全程要8小时,乙每小时行多少千米?(2010年升中试题)
8、甲、乙两车分别从A、B两地同时出发相向而行,两车经过6小时相遇,已知乙车每小时行全程的 ,甲车每小时行60千米,A、B两地相距多少千米?(2012年升中试题)
9、甲乙两车分别从A、B两地同时出发,相向而行,甲每小时行90千米,乙每小时行全程的10%,当乙车行到全程的 时,甲车再行全程的 可到B地,求A、B两地相距多少千米?
10、客车和货车同时从A、B两城分别开出,相对而行,客车驶过两城中点20千米处与货车相遇,相遇后,货车仍以原来每小时40千米的速度继续前进,再经过3.5小时到达A城,客车每小时行多少千米?
★多维精英班冲刺训练之-----两人同时从两地相向而行,在距离中点40米处相遇,已知甲行了全程的55%,甲行了多少千米?
2、甲乙两人同时骑自行车从东、西两镇相向而行,甲和乙的速度比是3 :4,已知甲行了全程的 ,离相遇地点还有20千米,全长多少千米?
3、一辆客车和一辆货车同时从甲、乙两地相向开出,在离中点15千米的地方相遇。已知客车与货车的速度比是4:3。求甲乙两地相距多少千米?(2007年升中试题)
11、客车和货车同时从A、B两地相向开出,客车每小时行驶50千米,货车的速度是客车速度的80%。相遇后客车继续行驶3.2小时到达B地,A、B两地相距多少千米?
12、一辆汽车从甲地向乙地行驶,行了一段后,距离乙地还有220千米,接着又行了全程的25%,这时已行路程和未行路程的比是5:3,求甲乙两地距离多少千米?
4、甲、乙两车从A、B两地同时出发相向而行,5小时相遇。已知乙车行了200千米,甲、乙两车的速度比是4:5。A、B两地相距多少千米?

小升初数学复习重点:相遇问题公式与例题

小升初数学复习重点:相遇问题公式与例题

小升初数学复习重点:相遇问题公式与例题相遇问题公式
1.相遇路程=速度和×相遇时间
2.相遇时间=相遇路程÷速度和
3.速度和=相遇路程÷相遇时间
例1.甲乙两站相距360千米。

客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站多少千米?
解答:
客车从甲站行至乙站需要
360÷60=60(小时)
客车在乙站停留0.5小时后开始返回甲站时,货车行了
40×(6+0.5)=260(千米)
货车此时距乙站还有360-260=100(千米)
货车继续前行,客车返回甲站(化为相遇问题)“相遇时间”为100÷(60+40)=1(小时)
所以,相遇点离乙站
60×1=60(千米)
例2.甲每分钟走50米,乙每分钟走60米,丙每分钟70米,甲乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?
解答:
甲、丙相遇时,甲、乙两人相距的路程就是乙、丙相背运动的路程和,即
(60+70)×2=260(米)
甲、乙是同时出发的,到甲、丙相遇时,甲、乙相距260米,所以,从出发到甲、丙相遇需
260÷(60-50)=26(分)
所以,A、B两地相距
(50+70)×26=3120(米)
精心整理,仅供学习参考。

相遇问题整理

相遇问题整理

相遇问题整理相遇问题课前预习哲⼈说:“世界是运动的。

”伟⼈说:“⽣命在于运动。

”在⼈类的⽣存和进化过程中,⼀定离不开“⾏”,所以俗语⼜称——“⾐、⾷、住、⾏”。

“⾏”中有三个重要的因素——()、()和()。

我们从千变万化的运动中,抽象出⼀种简单的运动形式:在同⼀直线上运动。

那么运动的⽅向有()和()两种;运动的出发地⼜分为()和()两种。

下⾯我们就从你我的⽣活中,开始我们今天的学习:尝试探究:假如你的家离学校600⽶,你在家,⽼师在学校,同时出发,在同⼀条路上⾏⾛,你的速度是40⽶/分,⽼师的速度是60⽶/分,4分钟后两⼈相距多少⽶?问题①⽼师4分钟⾛()⽶。

算式:“你”4分钟⾛()⽶。

算式:问题②你能确定⽼师的运动⽅向吗?问题③如图所⽰,两⼈相距多少⽶?问题④如图所⽰,两⼈相距多少⽶?问题⑤如图所⽰,两⼈相距多少⽶?问题⑥如图所⽰,两⼈相距多少⽶?相遇问题补充练习11客、货两列⽕车分别从相距420千⽶的甲、⼄两地同时相对开出,客车每时⾏50千⽶,货车每时⾏55千⽶。

(2)相遇时,客车⾏了多少千⽶?(3)出发2时后,客车与货车相距多少千⽶?(4)出发5时后,客车与货车相距多少千⽶?(5)⼏时后,它们第⼀次相距105千⽶?(6)⼏时后,它们第⼆次相距105千⽶?2、甲⼄两⼈同时从学校出发,相背⽽⾏,甲每分⾏60⽶,⼄每分⾏80⽶,40分后甲⼄两⼈相距多少⽶?3、甲⼄两辆汽车同时从两城开出,相向⽽⾏。

甲车每⼩时⾏80千⽶,⼄车每⼩时⾏75千⽶,5⼩时两车在途中相遇,求两城4、甲⼄两车同时从两地相对出发,甲车每⼩时⾏45千⽶,⼄车每⼩时⾏50千⽶,6⼩时后两车还相距30千⽶,求两地之间相距多少千⽶?5、甲⼄两地相距980千⽶,两列客车分别从两地相向⽽⾏,其中⼀列客车每⼩时⾏65千⽶,另⼀列客车每⼩时⾏75千⽶,⼏⼩时相遇?6、甲⼄两⼈从相距740⽶的两地相对⽽⾏,甲每分⾏70⽶,⼄每分⾏50⽶,甲先⾏2分后⼄才⾛,再过⼏分后两⼈相遇?7、甲、⼄⼆⼈同时从A、B两个县城相对⽽⾏,甲每⼩时⾏6千⽶,⼄每⼩时⾏5千⽶,2⼩时后⼆⼈还相距4千⽶。

相遇问题的基本公式

相遇问题的基本公式

相遇问题的基本公式
相遇问题是数学中的一个经典问题,涉及到两个物体在不同速
度下移动并在某一点相遇的时间和位置。

其基本公式可以从两个物
体的运动方程入手来推导。

假设两个物体分别以速度v1和v2沿着同一直线运动,初始位
置分别为s1和s2,相遇的时间为t。

根据物体的运动方程s = vt,其中s为位移,v为速度,t为时间,可以得到物体1和物体2的位
移方程分别为s1 = v1t和s2 = v2t。

当两个物体相遇时,它们走过的距离之和等于它们相遇时的位
置差,即s1 + s2 = |s2 s1|,代入位移方程可以得到v1t + v2t = |s2 s1|,整理得到t = |s2 s1| / (v1 + v2)。

这就是相遇问题的基本公式,表示两个物体相遇所需的时间。

需要注意的是,当两个物体在同一方向运动时,速度取正值;当它
们在相反方向运动时,速度取负值。

除了基本公式外,相遇问题还涉及到一些变形和扩展,比如考
虑相遇点的具体位置,或者考虑多个物体的相遇等情况。

在实际问
题中,可以根据具体情况进行适当的推导和求解,以得到更加精确的结果。

总之,相遇问题的基本公式是一个简单而重要的数学工具,可以帮助我们理解和解决各种与物体相遇相关的实际问题。

小学奥数的二次相遇问题(最新整理)

小学奥数的二次相遇问题(最新整理)

例1、甲、乙两车分别从A、B两地同时相向而行,甲、乙两车的速度比是7:11,相遇后继续行驶,分别到达A、B两地后立即返回,第二次相遇时甲车距B地80千米,A、B两地相距多少千米?关键词:速度比=路程比两次相遇三倍路程第二次相遇时甲、乙两车的路比为: 7:11总路程为两地距离的3倍.解:设甲乙两地相距s千米,则共行了S+80 ,乙行了2S-80。

(s+80):(2s-80)=7:117(2s-80)=11(s+80)s=480答:A、B两地相距480千米例2、一段路程分为上坡、平路、下坡三段,各段路程长为比依次是1:2:3。

某人走各段路程所用时间之比依次是4:5:6。

已知他上坡速度每小时3千米,路程全长50千米。

问此人走完全程用了多少时间?解: 关键词:分数应用题与行程问题组合上坡路长: 50*【1/(1+2+3)】=25/3km上坡的时间:(25/3)/3=25/9小时走完全程的时间:(25/9)/【4/(4+5+6)】=125/12小时答:此人走完全程用了125/12小时例3、甲、乙、丙,3人环湖跑步。

从湖边同一地点出发,甲与乙、丙,逆向跑。

在甲第一次遇到乙后的1又4分之1分钟后遇到丙,再3又4分之3分钟,第二次遇到乙。

已知甲乙的速度比是3:2,湖的周长是2000米。

问乙丙每分钟各跑多少米?解:关键词:封闭曲线上的相遇问题从题知,甲乙第一次相遇与第二次相遇间隔得时间为1又4分之1+3又4分之3=5分钟。

甲乙的速度和是:2000÷5=400(米/分)甲的速度是:400×3/(3+2)=240(米/分)乙的速度是:400×2/(3+2)=160(米/分)甲丙的速度和是:2000÷(25/4)=320(米/分)丙的速度是:320-240=80(米/分)答:乙每分钟跑160米,丙每分钟跑80米设计思想:本课教学设计依据"利用音像教材培养学生数学素质"的课题研究目标,以现代教育思想、理论为指导,以认知主义学习理论为基础,以培养智能型、创造型人才为目的,试图通过对教学的科学设计,实现音像教材在教学过程中的有机渗透,充分挖掘音像教材在帮助学生正确理解"相遇问题"的数量关系,探究解答方法,培养学生知识与能力素质、身体心理素质等方面发挥的作用,全课采用启发式电化教学,本教学设计力求体现以下特点: 1.充分体现学生的主体地位,重视挖掘学生的认知潜力。

小升初相遇问题专项整理

小升初相遇问题专项整理一.解答题1.甲、乙两地相距294千米,一辆客车和一辆货车先后从两地出发,相向而行.货车先开出0.5小时后客车开出,已知货车每小时行60千米,客车的速度是货车的1.2倍.客车开出几小时后两车相遇?2.一天,熊猫胖胖和小白兔分别开着甲、乙两车从相距800千米的两地同时出发相向而行,甲车每小时行52千米,乙车每小时行48千米。

(1)几小时后两车还相距200千米?(2)几小时后两车相遇?(3)几小时后两车相遇后又相距400千米?3.小刚家住在公园的正南方向1300m处,小林家住在公园的正北方向1400m处。

周末两人约好下午3时到公园游玩。

两人下午2:30同时从家里出发走向公园。

小刚每分钟步行70m,小林每分钟步行65m。

2:45两人能在公园相遇吗?如果小刚先到公园后不停留继续向北走,从出发到两人相遇用了多长时间?相遇地点距离公园有多远?4.甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站多少千米?5.小明家住在电影院的正西1000米,小冬家住在电影院的正东1200米。

周末两人约好去看下午3时放映的电影。

两人下午2:35同时从家里出发走向电影院。

小明每分钟步行60米,小冬每分钟步行50米。

两人约定相遇后才一起去电影院,从出发到两人相遇用了多长时间?要想准时观看电影他们相遇后一起步行的速度至少是多少?6.客车、货车分别从甲、乙两地出发相向而行。

如果两车都在6:00出发,那么会在11:00相遇,如果客车和货车分别于7:00和8:00出发,那么会在12:40相遇,现在客车和货车分别于10:00和8:00出发,它们将在什么时候相遇?7.甲、乙、丙三人往返于A、B两地.甲从A地出发,丙同时从B地出发,30分钟后乙也从B出发,乙出发3小时后与甲相遇,又过了1小时,甲和丙才相遇.已知甲的速度是每小时12千米,乙的速度是丙速度的2倍,求A、B两地的距离和乙的速度.8.环形跑道400米,小百、小合背向而行,小百速度是6米/秒,小合速度是4米/秒,当小百碰上小合时立即转向跑,小合不改变方向,小百追上小合时也立即转向跑,小合仍不改变方向,问两人第11次相遇时离起点多少米?(按较短距离算,追上和迎面都算相遇)9.甲、乙两人分别从A、B两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,请问:甲、乙两地相距多少千米?10.宜宾到重庆沿长江的水路航程约为372千米,两艘轮船同时从重庆和宜宾相对开出。

六年级相遇问题经典题型

六年级相遇问题经典题型相遇问题是六年级数学中的经典题型之一,也是数学中最具挑战性的问题之一。

这类问题让我们思考两个或更多个运动物体在不同的速度和方向下移动,他们在未来的某一时刻是否会相遇。

这类问题需要我们清楚地了解速度、时间和距离之间的关系。

在解决这类问题时,我们常使用的方法是建立关于两个运动物体的距离和时间的方程。

下面,我将通过一些具体的例子来帮助我们更好地理解和解决这类问题。

例1:机车追击问题问题描述:甲乙两台机车在同一直线上行驶,甲车速度为40 km/h,乙车速度为50 km/h。

乙车发现甲车后,立即开始追赶,问需要追多长时间才能赶上甲车?解析:在这个问题中,我们需要确定乙车追上甲车的时间。

我们可以设甲车和乙车相遇的时间为t,此时甲车与乙车距离记为D。

甲车在t小时内行驶的距离为40t km。

相遇时,乙车追上甲车,因此乙车行驶的距离加上相遇时乙车与甲车的距离等于甲车行驶的距离,即50t + D = 40t。

我们可以整理这个方程,得到D = 10t。

根据题意,乙车的速度比甲车的速度快10 km/h。

根据问题,我们可以得到追上甲车所需时间t为t = D / 10,带入D = 10t的方程中,得到D = t。

所以乙车追上甲车的时间为t = D / 10 = t小时。

在这个问题中,我们可以得出结论:乙车追上甲车所需的时间是相遇时距离的1/10。

例2:两船相对而行问题问题描述:A船从A码头出发,速度为25 km/h。

b船从B码头出发,速度为15 km/h。

两船相对而行可以靠近一艘岛屿,问首次靠岸的位置与离说的距离是什么?解析:在这个问题中,我们需要确定两船相对运动的距离和时间。

我们可以设两船相对运动的时间为t,此时两船的相对速度记为V。

船B在t小时内行驶的距离为15t km。

两船靠近岛屿的位置与离岛屿的距离为D。

根据题意,在两船相遇时,船A行驶过的距离加上此时两船的距离等于船B行驶的距离,即25t + D = 15t。

小升初多次相遇问题专项整理(一)

多次相遇问题专项整理(一)一.解答题1.甲、乙两车分别同时从A、B两地相对开出.第一次在离A地95千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?2.甲、乙两人骑自行车从环形公路上的同一地点、同一时间出发,背向而行.甲走一圈需60分钟.已知出发45分钟后,甲、乙两人相遇.如果甲、乙两人相遇后,甲反向而行,问几分钟后甲、乙两人再次相遇.3.甲、乙两人同时从A、B两地相向而行,第一次相遇在离A地40千米的地方,两人仍以原速前进,各自到达终点后立即返回,又在离B地20千米处相遇,问A、B两地的距离是多少千米?4.甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒跑2米.如果他们同时从他们两端出发,跑了10分钟.那么,在这段时间内,甲、乙两人共迎面相遇了多少次?5.快车和慢车同时从东西两站相对开出,第一次在距中点西侧10千米处相遇,相遇后两车以原速前进,到达东西两地后,两车立即返回,第二次相遇时离东站的距离占两站距离的七分之三.东西两站相距多少千米?6.小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,同向而行,小明每秒跑3.5米,小华每秒跑5.5米.经过多少秒,两人第三次相遇?7.已知甲车速度为每小时90千米,乙车速度为每小时60千米,甲乙两车分别从A,B两地同时出发相向而行,在途经C地时乙车比甲车早到10分钟;第二天甲乙分别从B,A两地出发同时返回原来出发地,在途经C地时甲车比乙车早到1个半小时,那么AB距离是多少?8.小华和小明分别从一座桥的两端同时出发,往返于桥的两端之间.小华的速度是65米/分,小明的速度是70米/分,经过5分钟两人第二次相遇.这座桥长多少米?9.A、B、C三辆车同时从甲出发到乙地去,A、B两车的时速分别为80千米和48千米,有一辆迎面开来的卡车分别在它们出发5小时,7小时,8小时先后与A、B、C三辆车相遇,求C车的速度?10.龟、兔在甲、乙两地之间做往返跑,兔的速度是龟的3倍,它们分别在甲、乙两地同时相对起跑,当他们在途中相遇(处于同一地点即为相遇)了12次,龟跑了多少个单程?11.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处。

相遇问题解决公式

相遇问题解决公式相遇问题是数学中常见的一个问题,涉及到两个物体在不同的起点出发,以不同的速度向同一个方向运动,问它们何时相遇。

相遇问题可以通过公式来解决,下面将介绍相遇问题及其解决公式。

相遇问题可以分为两种情况:一种是两个物体在同一直线上运动,另一种是两个物体在平面上运动。

对于第一种情况,假设两个物体分别以速度v1和v2在同一直线上运动,起始位置分别为x1和x2,相遇时间为t。

根据速度和时间的关系,可以得到以下公式:x1 + v1t = x2 + v2t通过对上述公式进行整理,可以得到相遇时间t的解析表达式为:t = (x2 - x1) / (v1 - v2)这个公式可以用来计算两个物体在同一直线上的相遇时间。

对于第二种情况,假设两个物体分别以速度v1和v2在平面上运动,起始位置分别为(x1, y1)和(x2, y2),相遇时间为t。

根据速度和时间的关系,可以得到以下公式:(x1 + v1t, y1 + v1t) = (x2 + v2t, y2 + v2t)通过对上述公式进行整理,可以得到两个方程:x1 + v1t = x2 + v2ty1 + v1t = y2 + v2t解这个方程组可以得到相遇时间t的解析表达式。

除了上述的公式,还可以通过图形方法来解决相遇问题。

对于第一种情况,可以通过在坐标轴上绘制两个物体的位置随时间的变化曲线,根据曲线的交点可以确定相遇点和相遇时间。

对于第二种情况,可以通过在平面上绘制两个物体的运动轨迹,确定它们的相遇点和相遇时间。

相遇问题是一类经典的问题,在物理学、数学等领域都有广泛的应用。

通过解决相遇问题,可以帮助我们更好地理解物体在运动过程中的相对关系,也可以应用到实际问题中,例如交通规划、航空航天等领域。

总结一下,相遇问题可以通过解析公式或图形方法来解决。

通过公式可以计算两个物体在同一直线上的相遇时间,而对于在平面上运动的物体,可以通过解方程组或绘制轨迹图来确定相遇点和相遇时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇问题整理(总16页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除应用题—行程问题(相遇、流水行船)知识点:1.相遇问题是行程问题中的一种情况。

这类应用题的特点是:两个运动的物体,同时从两地相对而行,越行越近,到一定的时候二者可以相遇。

2.相遇问题的数量关系:速度和×相遇时间=两地路程两地路程÷速度和=相遇时间两地路程÷相遇时间=速度和3.解题时,除掌握数量关系外,还要根据题意想象实际情景,画线段图来帮助理解和分析题意,突破题目的难点。

4.流水行船问题船速:船在静水中的速度;水速:水流速度;顺水速度:船顺水航行的实际速度;逆水速度:船逆水航行的实际速度;行船问题中也反映了行程问题的路程、速度与时间的关系。

顺水路程=顺水速度×时间逆水路程=逆水速度×时间行船问题中的两个基本关系式:顺水速度=船速+水速逆水速度=船速-水速由以上两个基本关系式还可以得到以下两个关系式:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例1一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?解:设原速度是1.%后,所用时间缩短到原时间的这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要同样道理,车速提高25%,所用时间缩短到原来的如果一开始就加速25%,可少时间现在只少了40分钟, 72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长答:甲、乙两地相距270千米.练习:1.一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达。

如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?解:设原速度是1. 后来速度为1+20%=速度比值:这是具体地反映:距离固定,时间与速度成反比.时间比值:6:5这样可以把原来时间看成6份,后来就是5份,这样就节省1份,节省1个小时。

原来时间就是=1×6=6小时。

同样道理,车速提高30%,速度比值:1:(1+30%)=1:时间比值::1这样也节省了份,节省1小时,可以推出行驶一段时间后那段路程的原时间为÷=13/3所以前后的时间比值为(6-13/3):13/3=5:13。

所以总共行驶了全程的5/(5+13)=5/182.兄妹两人同时离家去上学。

哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校多远?答案:180×2÷(90-60)=12(分钟)12×60+180=900(米)答:他们家离学校900米。

例2甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.答案:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B 地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

练习:1.甲乙两地的公路长195千米,两辆汽车同时从两地出发,相向而行,甲车每小时行45千米,乙车每小时30千米,途中乙车出现故障,修车用了1小时,两车从出发到相遇经过了几小时?答案3(小时)乙车出故障修车1小时看成是甲车先走1小时解:甲车1小时行的路程=45×1=45千米路程和=195-45=150千米速度和=45+30=75(千米每小时)相遇时间=150 ÷75=2(小时)2+1=3(小时)答:两车从出发到相遇经过了3小时。

2. 从A 城到B 城,甲汽车用6小时,从B 城到A 城,乙汽车用4 小时。

现在甲、乙两车分别从A 、B 两城同时出发相对而行,相遇时甲汽车行驶了96千米, A 、B 两城相距多远?答案:240千米速度比:4:6=2:3. 路程比:2:3. 24032296=+⨯÷)(千米例3甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?答案:解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷()=36分钟,所以路程=36×(60+75)=4860米。

练习:1.甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A地,丙一人从B地同事相向出发,丙遇到乙后两分钟又遇到甲,AB两地相距多少米?答案:丙遇到乙后 2 分钟再遇到甲,2分钟甲、丙两人的相遇路程=甲乙两人的追及路程=(50+70)×2=240(米), 甲乙的追及时间=甲丙的相遇时间=240÷(60-50)=24(分) 两地距离=甲丙相遇路程=(60+70)×24=3120(米)2.甲乙丙三人的行走速度分别为每分钟80米,60米,50米.甲,乙两人从A地,丙一人从B地相向出发,如果在两地同时而行,乙丙比甲丙迟2分钟相遇.AB两地的距离是多少米?答案:设AB两地的距离是x米x/(60+50)-x/(80+50)=2x/110-x/130=2130x-110x=2860020x=28600x=1430AB两地的距离是1430米例4如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行。

它们第一次相遇在离A点8厘米处的B点,第二次相遇在离c点处6厘米的D点,问,这个圆周的长是多少?解:如上图所示,第一次相遇,两只小虫共爬行了半个圆周,其中从A点出发的小虫爬了8厘米,第二次相遇,两只小虫从出发共爬行了1个半圆周,其中从A点出发的应爬行8×3=24(厘米),比半个圆周多6厘米,半个圆周长为8×3—6=18(厘米),一个圆周长就是:(8×3—6)×2=36(厘米)答:这个圆周的长是36厘米。

练习:1.某体育场的环形跑道长400m,甲、乙二人在跑道上练习跑步,已知甲的速度为 250m/min,乙的速度为290m/min,在两人同时从同一地点同向出发,经过多长时间两人才能再次相遇?答案:乙的速度比甲快,所以再次相遇的时候情况是乙正好比甲多跑一圈,也就是400m,设Xmin后两人再次相遇,列式:乙跑的路程-甲跑的路程=400米290X-250X=400X=10min答:10分钟后两人再次相遇.2.甲乙两人骑自行车从一环形公路的同一地点同时出发,背向行驶,甲行一圈要60分钟,在出发45分钟后两人相遇,甲立即调转车头,与乙再次相遇需要多少分?例5甲乙两人同时从相距1000米的两地相向而行,甲每分钟行120米,乙每分钟行80米。

如果有一只狗与甲车同时同向而行,每分钟行500米,遇到乙后,立即回头向甲跑去,遇到甲后又立即回头向乙跑去,这样不断来回,直到两人相遇为止,这时狗共跑了多少米?【答案】2500米。

【解析】狗行驶的时间就是甲乙两人的相遇时间,抓住相遇时间=路程和÷速度和。

解:路程和=1000米速度和=120+80=200(米每分)相遇时间=1000÷200=5(分钟)这5分钟狗一直在跑所以狗行驶的路程=500×5=2500米。

答:狗共跑了2500米。

练习:1.甲乙两辆汽车同时从东站开往西站。

甲车每小时比乙车多行12千米。

甲车行驶小时到达西站后,没有停留,立即从原路返回,在距西站千米的地方和乙车相遇,甲车每小时行多少千米?答案×2÷12=(小时)(小时)÷=42(千米)答:甲车每小时行42千米。

从图上可以看出,两车相遇时,甲车比乙车多行了两个千米,即63千米,由题意可知,甲车每小时比乙车多行12千米,就可求出两车的相遇时间,即63÷12=(小时),已知甲车行驶小时到达西站,可求出甲车从西站返回到与乙车相遇共用了(小时),共行了千米,进而运用公式“路程÷时间=速度”求出甲车每小时行÷=42(千米)。

2.甲乙两人相向而行,甲以每小时8千米的速度由A地出发到B 地走了15千米后,乙以每小时10千米的速度由B地出发,结果在两地中点相遇,A、B两地相距多少千米?答案:甲每小时8千米,乙每小时10千米,说明乙比甲每小时多行2千米,甲乙两人在两地中点相遇,说明甲乙两人所行路程相同,甲先出发,走了15千米,乙比甲每小时多行2千米,所以乙要用时间15/2=小时才能将所行路程补上,从而A、B两地相距:10**2=150千米.例6一只轮船的速度是每小时3600米,船在水的流速为30米/分钟的河里航行,从下游的一个港口到上游的某地,再返回到原港口,共用了3小时20分,则这条船从下游港口到上游某地共航行了多少米?【答案】3600米/小时=60米/分钟——静水速度;60+30=90(米/分钟)——顺水速度;60-30=30(米/分钟)——逆水速度;顺水速度:逆水速度=90∶30=3∶1 说明顺水航行的时间与逆水航行的时间比为:1∶3 往返总共用时3小时20分=200分钟那么顺水航行所用的时间为12005013⨯=+(分钟)全程:(60+30)×50=4500(米)答:这条船从下游港口到上游某地共航行4500米。

练习:1.一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米。

求这艘小船的静水速度和水流速度。

【答案】两次航行顺流的路程差:33-24=9(千米);逆流的路程差:14-11=3(千米);顺流速度:逆流速度=9:3=3:1;顺流航行33千米与逆流航行33÷3=11(千米)时间相同则逆流速度:(11+11)÷11=2(千米/小时);顺流速度:2×3=6(千米/小时);静水速度:(6+2)÷2=4千米/小时);水流速度:(6-2)÷2=2(千米/小时)答:小船在静水中的速度为4千米/小时,水流速度为2千米/小时。

2.游船顺流而下,每小时前进7公里,逆流而上,每小时前进5公里.两条游船同时从同一个地方出发,一条顺水而下,然后返回;一条逆流而上,然后返回.结果,1小时以后它们同时回到出发点,忽略船头掉头时间.在这1小时内有多少分钟这两条船的前进方向相同?【答案】解:设1小时顺流时间为x分钟,则逆流时间为(60-x)分钟,故x:(60-x)=5:7.解得x=25,所以60-x=35.35-25=10(分钟).答:有10分钟这两条船的前进方向相同.课后作业:1、甲、乙两人同时从相距39千米的两地相向而行,甲步行每小时行3千米,乙骑自行车每小时行10千米。

相关文档
最新文档