高中物理五大实验类型实验总结
高中物理几个实验总结归纳

高中物理几个实验总结归纳实验一:牛顿第一定律实验实验目的:验证牛顿第一定律实验装置:光滑水平桌面、滑块、弹簧测力计、细绳实验步骤:首先将滑块放在光滑水平桌面上,使其保持静止。
然后用弹簧测力计挂在滑块上,再用一根细绳绑在弹簧测力计上,使之与滑块相连。
接下来,以恰当速度用手拉住细绳,使滑块受到水平拉力。
观察滑块的运动情况。
实验结论:根据实验结果可以发现,当滑块受到水平拉力时,滑块将保持匀速运动,直到受到其他外力的作用才会改变运动状态。
这符合牛顿第一定律的描述:物体在受力为零或受到平衡力时保持静止或匀速直线运动。
实验二:平抛运动实验实验目的:验证平抛运动的特点实验装置:平滑水平桌面、小球、测距尺、计时器实验步骤:首先在水平桌面上放置一个小球,并将其从一定高度抛出。
在小球的抛出点和着地点之间用测距尺测量距离,用计时器计算小球的飞行时间。
实验结论:通过实验可以得出平抛运动的结论:在水平桌面上,小球在受到抛出力的作用下,以一个初速度垂直向上抛出,同时受到重力的作用向下运动。
其运动轨迹呈抛物线,飞行距离与飞行时间的平方成正比。
实验三:杨氏模量实验实验目的:测量并计算材料的杨氏模量实验装置:弹簧、质量挂钩、游标卡尺、测微计实验步骤:首先将弹簧悬挂起来,并在其下方挂上一个质量。
然后用游标卡尺测量弹簧的长度,并用测微计测量质量挂钩下方的位移。
将测量到的数据代入公式计算杨氏模量。
实验结论:通过实验可以得出杨氏模量实验的结论:杨氏模量是描述材料弹性性质的一个物理量,代表着单位面积内材料在拉伸时的抵抗力。
实验可以得到一个材料的杨氏模量值,通过比较不同材料的杨氏模量值可以了解其弹性性质的差异。
综上所述,高中物理中的几个实验都是通过实际操作来验证理论,并总结归纳出一些结论。
通过这些实验,我们可以深入理解物理规律,加深对相关概念的理解,同时也培养了实验操作和数据处理的技能。
物理实验对于学习物理学科具有重要的作用,是提高学生自主探究和动手能力的有效方式。
高中物理五大实验类型实验总结

高中物理五大实验类型实验总结在高中物理学习中,实验是一项非常重要的环节,通过实验可以帮助学生巩固理论知识,提高动手实践能力,培养科学精神和创新意识。
本文从物理实验的分类和特点出发,总结了高中物理学习中常见的五大实验类型及其相关知识。
物理实验分类按照物理学规律的不同,物理实验可以分为以下五大类型:1.等比实验: 在实验中变量之间的比例关系不变。
2.反比实验: 在实验中变量之间的比例关系为反比关系。
3.等差实验: 在实验中变量之间的差值关系不变。
4.反馈实验: 在实验中留下影响自身的反馈信息,对自身进行修正。
5.综合实验: 在实验中同时涉及到以上多个类型的关系。
以上实验类型旨在通过不同的方式,探究物理学的不同性质和规律,展现物理学的多样性和丰富性,增加实验的趣味性和创新性。
五大实验类型下面针对不同类型的实验,总结实验的特点和重点。
1. 等比实验等比实验是一种变量比例不变而变化实验,常用于研究物理量的函数关系。
其特点是同样的变化量在实验不同阶段中都是等比变化的,因此需要注意在实验过程中保持变化量的比例关系不变。
例如在研究弹簧的胡克定律关系时,需要保证弹簧拉伸长度与所受拉力成正比,这就是一个等比实验。
2. 反比实验反比实验是一种变量比例呈反比关系而变化实验。
其特点是变量存在着互为倒数的关系,因此需要注意对变量的量纲和单位的选择。
例如在研究牛顿定律中质量与重力的反比关系时,需要保持质量与重力除法的结果不变,即所受重力和质量之比保持不变。
3. 等差实验等差实验是一种变量之间的差值保持不变而变化的实验,其特点是变量之间的关系可以用等差数列的形式表示。
例如在研究匀变速直线运动时,可以通过测量相同时间间隔内运动物体发生的位移变化量,来确定运动物体的速度和加速度。
4. 反馈实验反馈实验是一种在实验过程中留下对实验自身进行修正的反馈信息的实验。
例如在研究摩擦力时,只有检测到实验中发生的摩擦力,引起运动状态的变化,才能对实验进行修正和调整。
高中物理五大实验要点整理

高中物理五大实验要点整理在高中物理学习过程中,实验是非常重要的一环。
通过实验,学生可以直观地观察并验证理论知识,加深对物理现象的理解。
为了帮助同学们更好地掌握物理实验,以下整理出了高中物理中的五大实验要点,希望对大家有所帮助。
一、杨氏双缝干涉实验杨氏双缝干涉实验是物理实验中经典的实验之一,它是通过双缝干涉现象来验证波动理论的重要实验之一。
在进行这个实验时,要注意以下几个要点:1. 确保双缝之间的距离和波长的比值要在一定范围内,才能观察到明显的干涉条纹;2. 调整光源和屏幕的位置,使之能够产生清晰的干涉条纹;3. 测量光程差,并根据干涉公式计算出波长等相关物理量。
二、焦距测量实验焦距测量实验是物理中研究透镜成像特性的重要实验之一。
在进行焦距测量实验时,需要注意以下几个要点:1. 使用准直器和物镜,确保光线准直,使得成像清晰;2. 测定不同物镜位置下物像距离,通过透镜公式计算出透镜焦距;3. 注意实验误差的控制,提高实验结果的准确性。
三、牛顿环实验牛顿环实验是通过薄膜干涉现象研究光的波动性质的重要实验之一。
在进行牛顿环实验时,需要注意以下几个要点:1. 调整光源和凸透镜的位置,使得在凸透镜下能够观察到清晰的牛顿环;2. 测量不同环形的直径,根据公式计算出薄膜的厚度;3. 注意观察环形的颜色,分析光的波长和薄膜的性质。
四、弹簧振子实验弹簧振子实验是物理中研究振动规律和能量转化的实验之一。
在进行弹簧振子实验时,需要注意以下几个要点:1. 确保弹簧的弹簧常数和质点质量,在一定范围内,能够产生明显的振动;2. 测量振动的周期和频率,通过相关公式计算出弹簧振子的频率;3. 观察振幅和振动过程,分析振动的规律和能量转化过程。
五、光电效应实验光电效应实验是研究光和物质相互作用的重要实验之一。
在进行光电效应实验时,需要注意以下几个要点:1. 调整光源和光敏电池之间的距离,使得光照射到光敏电池表面产生光电效应;2. 测量不同光强下的光电流和电压,绘制出光电效应的伏安特性曲线;3. 分析光电效应的规律,探讨光的波粒二象性和光电效应的物理机制。
物理高中实验归纳总结大全

物理高中实验归纳总结大全在高中物理实验教学中,实验是学生学习物理知识、培养实验技能、提高科学素养的重要环节。
通过实验,学生可以亲自动手、观察现象、感受物理规律,从而加深对物理知识的理解。
为了帮助同学们更好地掌握物理实验,我对我们进行过的实验进行了归纳总结,以便于日后的复习与参考。
一、力学实验1. 弹簧常数的测量实验实验目的:测量弹簧的弹簧系数。
实验原理:胡克定律实验装置:弹簧、质量砝码、托盘、测力计、尺子等。
实验步骤:根据给定的实验装置,先将弹簧挂在支架上,然后使用尺子测量弹簧的长度,再向托盘上加质量砝码,记录下测力计上的示数,然后逐渐增加质量砝码,重复测量示数,最后得到不同质量时示数的变化情况。
实验结论:根据实验数据,利用胡克定律的公式计算出弹簧的弹簧系数。
2. 弹簧振子实验实验目的:研究弹簧振子在不同质量下的振动规律。
实验原理:简谐振动实验装置:弹簧振子、计时器等。
实验步骤:将一端固定住,然后将质点拴在另一端,对振子进行微扰,记录下振动的周期和振幅,然后分析数据得出振子的频率和周期。
实验结论:振子的频率和周期与质点的质量和弹簧的劲度系数有关。
二、热学实验1. 比热容实验实验目的:测量物质的比热容。
实验原理:热量守恒定律、比热容的定义实验装置:加热器、容器、温度计等。
实验步骤:将一定质量的物质加热至较高温度,然后放入一容器中,记录下物质的质量和温度,再将物质与容器放入水中,使其温度达到热平衡,记录下此时水的质量和温度,最后根据热量守恒定律计算物质的比热容。
实验结论:物质的比热容与物质的种类有关。
2. 质量守恒实验实验目的:验证质量守恒定律。
实验原理:质量守恒定律实验装置:实验皿、天平等。
实验步骤:将一定质量的物质放入实验皿中,使用天平精确称量。
然后对物质进行燃烧、溶解等实验操作,再使用天平进行称量,记录下不同实验操作前后的质量变化。
实验结论:根据质量守恒定律,实验操作前后物质的质量应保持不变。
高中物理实验大全总结

高中物理实验大全总结实验一:运用杠杆测量物体的质量实验目的通过实验,掌握杠杆的原理,利用杠杆实现测量物体的质量。
实验仪器杠杆装置、物品、斗秤。
实验过程1. 将货物放到一个杠杆上。
2. 调整杠杆的平衡点,使杠杆达到平衡状态。
3. 使用斗秤测量并记录所需的力。
实验原理物理学的杠杆原理。
实验结论可通过测量施加的力和所需的力来计算物体的质量。
实验二:用水银气压计测定大气压力实验目的通过实验,了解测量大气压力的原理和方法。
实验仪器水银气压计。
实验过程1. 在一盆水中,先向上提高水银管口,以增加水银柱的高度。
2. 打开气压计的塞子,使水银柱缓慢下降。
3. 通过读取水银柱头部的数字,确定当前大气压力。
实验原理大气压力是通过将水银柱的高度转换为相应数字来测量的。
实验结论通过使用水银气压计,可以测量大气压力,并得出这一指数。
实验三:测量热传导实验目的通过实验,了解热传输的基本原理,掌握测量热传导的方法。
实验仪器3片相同的金属片,点火器,温度计。
实验过程1. 当前三个金属片平且靠近,然后将一个板加热15秒钟。
2. 使用温度计测量金属片的结束温度,并记录它。
3. 重复步骤1和2,直到所有金属片的温度都被计量。
实验原理热传导原理。
实验结论通过对三个金属片进行测量,可以比较它们在相同时间内吸收的热量。
实验四:研究串联电路的特性实验目的通过实验,了解串连电路的基本原理,掌握测量串连电路电流、电压的方法。
实验仪器电路板,电流计,电压表,开关。
实验过程1. 用电路板配置一个串联电路。
2. 使用电流计和电压表测量电路的电流和电压。
3. 重复此操作,更改电路的电阻,以了解串联电路的特性。
实验原理串联电路理论。
实验结论通过对电流和电压的测量,可以比较串联电路中的不同电阻。
以上实验方法适用于高中物理实验培训,目的在于引导学生掌握物理课堂中的基础实验技能,并通过实验理解物理原理。
高中物理实验总结大全

高中物理实验总结大全一、匀速直线运动实验1. 实验原理:通过纸带测量时间,根据匀速直线运动的规律计算瞬时速度和加速度。
2. 实验步骤:安装器材,打纸带,测量数据,处理数据。
3. 注意事项:平衡摩擦力,确保纸带匀速运动,避免手抖动。
二、牛顿第二定律实验1. 实验原理:通过控制变量法,探究加速度与力和质量的关系。
2. 实验步骤:安装器材,打纸带,测量数据,处理数据。
3. 注意事项:平衡摩擦力,控制小车的拉力,确保小车做匀加速运动。
三、自由落体运动实验1. 实验原理:自由落体运动是初速度为零、加速度为g的匀加速直线运动。
2. 实验步骤:打开电磁铁,释放小球,打纸带,测量数据,处理数据。
3. 注意事项:确保小球在自由落体过程中不受干扰,测量多次取平均值。
四、碰撞实验1. 实验原理:碰撞过程中动量守恒,能量守恒。
2. 实验步骤:安装器材,打纸带,测量数据,处理数据。
3. 注意事项:确保两小球在同一直线上碰撞,控制小球的初始速度。
五、电磁感应实验1. 实验原理:电磁感应现象是指磁场变化时会在导体中产生感应电流。
2. 实验步骤:连接电路,调节磁场,观察电流表的变化。
3. 注意事项:确保电路连接正确,注意磁场的变化和电流表的正负极。
六、电阻定律实验1. 实验原理:电阻定律是描述电阻与长度、横截面积和材料的关系。
2. 实验步骤:连接电路,调节电阻值,测量电流和电压。
3. 注意事项:确保电路连接正确,注意保护电阻不被烧坏。
七、焦耳定律实验1. 实验原理:焦耳定律是描述电热与电流、电阻和时间的关系。
2. 实验步骤:连接电路,调节电阻值,测量电流、电压和时间。
3. 注意事项:确保电路连接正确,注意保护电热丝不被烧坏。
高中物理实验总结大全

高中物理实验总结大全一、引言高中物理实验是学生掌握物理理论知识、培养动手实践能力的重要环节。
通过实验,学生能够深刻理解物理规律,提高实验操作技能,锻炼逻辑思维和实验设计能力。
本文将总结一些高中物理实验,包括实验目的、实验装置、实验操作与观察现象、实验结果与分析以及实验结论等内容。
二、实验一:杨氏静力学实验实验目的:验证胡克定律,研究绳线对物体的力学性质。
实验装置:弹簧,质量盒子,刻度尺,细绳等。
实验操作与观察现象:将弹簧固定在一个支架上,质量盒子挂在弹簧下方,实验者测量质量盒子位置和拉力的变化,记录数据。
实验结果与分析:根据拉力和质量盒子位置的关系,绘制力与位移的图像。
根据胡克定律的公式,计算弹簧的劲度系数。
实验结论:在弹簧的弹性变形范围内,拉力与位移呈线性关系,并且力的大小与弹簧的劲度系数成正比。
三、实验二:简谐振动实验实验目的:研究弹簧振子的振动规律,探究简谐振动的特性。
实验装置:弹簧振子,计时器,测量尺等。
实验操作与观察现象:将弹簧振子悬挂在一个支架上,拉动振子释放后,实验者测量振子的振动时间和振幅,记录数据。
实验结果与分析:根据振动时间和振幅的关系,绘制振动周期与振幅的图像。
计算振动频率和角频率。
实验结论:在一定范围内,振动周期与振幅呈线性关系,而振动频率与振幅无关。
四、实验三:光的折射实验实验目的:验证光的折射定律,探究光的折射规律。
实验装置:光盒,三棱镜,刻度尺等。
实验操作与观察现象:打开光盒,通过狭缝射出单色光,实验者调整角度使光线经过三棱镜,并观察光线的折射现象。
实验结果与分析:根据入射角和折射角的关系,验证折射定律。
计算折射率。
实验结论:光从一种介质向另一种介质传播时,入射光线与法线的夹角和折射光线与法线的夹角之间满足折射定律。
五、实验四:电磁感应实验实验目的:通过实验验证法拉第电磁感应定律,研究电磁感应现象。
实验装置:导体线圈,磁铁,电流计等。
实验操作与观察现象:实验者将导体线圈放置在磁铁附近,快速改变磁场强度,观察电流计的指示。
高中物理实验的实验结果和结论

| n | $v{1i}$, $v{2i}$ | $v{1f}$, $v{2f}$ | $\Delta p_1$, $\Delta p_2$ |
结论分析
01
根据实验数据,可以得 出以下结论
02
1. 在误差允许范围内, 碰撞前后两滑块的动量 变化量近似为零,即动 量守恒。
03
2. 通过多次实验和数据 处理,可以减小误差, 提高实验的准确性和可 信度。
培养学生实验操作能力,提高实验数 据处理和分析能力。
实验器材
气垫导轨 光电计时器
弹性碰撞架
游标卡尺
滑块(两个 ,质量已知 )
天平
实验步骤与操作
3. 启动光电计时器,使两滑块以 一定的初速度相向运动,发生弹 性碰撞。
2. 将两个滑块放置在导轨上,用 游标卡尺测量两滑块间的初始距 离,并记录。
4. 记录碰撞后两滑块的运动时间 和通过的距离,计算碰撞后的速 度。
实验步骤与操作
95% 85% 75% 50% 45%
0 10 20 30 40 5
1. 将打点计时器固定在光滑水平桌面上,接通电源。
2. 将纸带穿过打点计时器,一端固定在小车上,另一 端穿过细绳与砝码相连。
3. 调整砝码质量,使小车在水平方向上受到一定的拉力。
4. 释放小车,让其在水平桌面上做匀加速直线运动, 同时打点计时器在纸带上打下点迹。
实验结果
| 1 | 0.500 | 1.42 | 2.02 | 1.01 |
| --- | --- | --- | --- | --- |
| 序号 | 摆长L(m) | 周期
T(s) | T^2(s^2) |
L×T^2(m×s^2) |
01
03 02
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理五大实验类型实验总结相较于比较抽象、“高深”的定理推论,物理实验更注重与现实生活相结合的知识及同学们的动手能力。
所以物理实验显得尤为重要。
如何才能学好物理呢?小编在这里整理了相关资料,快来学习学习吧!高中物理五大实验类型验证性实验一、验证力的平等四边形定则1.目的:验证平行四边形法则。
2.器材:方木板一个、白纸一张、弹簧秤两个、橡皮条一根、细绳套两个、三角板、刻度尺,图钉几个。
3.主要测量:a.用两个测力计拉细绳套使橡皮条伸长,绳的结点到达某点O。
结点O的位置。
记录两测力计的示数F1、F2。
两测力计所示拉力的方向。
b.用一个测力计重新将结点拉到O点。
记录:弹簧秤的拉力大小F及方向。
4.作图:刻度尺、三角板5.减小误差的方法:a.测力计使用前要校准零点。
b.方木板应水平放置。
c.弹簧伸长方向和所测拉力方向应一致,并与木板平行.d.两个分力和合力都应尽可能大些.e.拉橡皮条的细线要长些,标记两条细线方向的两点要尽可能远些.f.两个分力间的夹角不宜过大或过小,一般取600---1200为宜二、验证动量守恒定律原理:两小球在水平方向发生正碰,水平方向合外力为零,动量守恒。
m1v1=m1v1/+m2v2/本实验在误差允许的范围内验证上式成立。
两小球碰撞后均作平抛运动,用水平射程间接表示小球平抛的初速度:OP-----m1以v1平抛时的水平射程OM----m1以v1’平抛时的水平射程O‘N-----m2以V2’ 平抛时的水平射程验证的表达式:m1OP=m1OM+m2O/N1.实验仪器:斜槽、重锤、白纸、复写纸、米尺、入射小球、被碰小球、游标卡尺、刻度尺、圆规、天平。
2.实验条件:a.入射小球的质量m1大于被碰小球的质量m2(m1 >m2)b.入射球半径等于被碰球半径c.入射小球每次必须从斜槽上同一高度处由静止滑下。
d.斜槽未端的切线方向水平e.两球碰撞时,球心等高或在同一水平线上3.主要测量量:a.用天平测两球质量m1、m2b.用游标卡尺测两球的直径,并计算半径。
c.确定小球的落点位置时,应以每次实验的落点为参考,作一尽可能小的圆,将各次落点位置圈在里面,就把此圆的圆心定为实验测量数据时所对应的小球落点位置。
三、验证机械能守恒1.原理:物体做自由落体运动,根据机械能守恒定律有:mgh=在实验误差范围内验证上式成立。
2.实验器材:打点计时器,纸带,重锤,米尺,铁架台,烧瓶夹、低压交流电源、导线。
3.实验条件:a.打点计时器应该竖直固定在铁架台b.在手释放纸带的瞬间,打点计时器刚好打下一个点子,纸带上最初两点间的距离约为2毫米。
4.测量的量:a.从起始点到某一研究点之间的距离,就是重锤下落的高度h,则重力势能的减少量为mgh1;测多个点到起始点的高h1、h2、h3、h4(各点到起始点的距离要远一些好)b.不必测重锤的质量5.误差分析:由于重锤克服阻力作切,所以动能增加量略小于重力势能减少量6.易错点a.选择纸带的条件:打点清淅;第1、2两点距离约为2毫米。
b.打点计时器应竖直固定,纸带应竖直。
测量性实验一、长度的测量1. 测量原则a. 为避免读数出错,三种测量器具(包括毫米刻度尺)均应以mm 为单位读数!b. 用游标尺或螺旋测微器测长度时,均应注意从不同方位多测量几次,读平均值。
c. 尺应紧贴测量物,使刻度线与测量面间无缝隙。
2.实验原理游标卡尺:(1)每等份为0.9mm,每格与主尺最小分度差0.1mm;20分度的卡尺,游标总长度为19mm,分成20等份,每等份为19/20 mm,每格与主尺最小分度差0.05(即二十分子一)mm;50分度的卡尺,游标总长度为49mm,分成50等份,每等份为49/50mm,每格与主尺最小分度差0.02(即1/50)mm。
二、读数方法以标尺的零刻线对就位置读出主尺上的整毫米数,再读出洲标尺上的第几条线一心尽的某条线重合,将对齐的洲标尺刻度线数乘以该卡尺的精确度(即总格的倒数),将主尺读数与游标读数相加即得测量值。
螺旋测微器a.工作原理:每转一周,螺杆运动一个螺距0.5mm,将它等分为50等份,则每转一份即表示0.01mm,故它精确到0.01mm即千分之一厘米,故又叫千分尺。
b.读数方法:先从主尺上读出露出的刻度值,注意主尺上有整毫米和半毫米两行刻线,不要漏读半毫米值。
再读可动刻度部分的读数,看第几条刻度线与主尺线重合(注意估读),乘以0.01mm即为可动读数,再将固定与可动读数相加即为测量值。
注意:螺旋测微器读数如以mm为单位,小数点后一定要读够三位数字,如读不够,应以零来补齐。
三、注意事项a.游标卡尺读数时,主尺的读数应从游标的零刻度处读,而不能从游标的机械末端读。
b.游标尺使用时,不论多少分度都不用估读20分度的读数,末位数一定是0或5;50分度的卡尺,末位数字一定是偶数。
c.若游标尺上任何一格均与主尺线对齐,选择较近的一条线读数。
d.螺旋测微器的主尺读数应注意半毫米线是否露出。
e.螺旋测微器的可动部分读数时,即使某一线完全对齐,也应估读零。
四、用单摆测重力加速度1.实验目的:用单摆测定当地的重力加速度。
2.实验原理:g=4T2L/T23.实验器材:长约1m的细线、小铁球、铁架台、米尺、游标卡尺、秒表。
4.易错点:a.小球摆动时,最大偏角应小于50。
到10度。
b.小球应在竖直面内振动。
c.计算单摆振动次数时,应从摆球通过平衡位置时开始计时。
d.摆长应为悬点到球心的距离。
即:L=摆线长+摆球的半径。
五、用油膜法估测分子直径1.实验原理:油酸滴在水面上,可认为在水面上形成了单分子油膜,,如把分子认为是球状,,测出其厚度即为直径。
2.实验器材:盛水方盘、注射器(或胶头滴管)、试剂瓶、坐标纸、玻璃、痱子粉(或石膏粉)、酒精油酸溶液、量筒3.步骤:盘中倒水侍其静,胶头滴管吸液油,逐滴滴入量筒中,一滴体积应记清,痱粉均撒水面上,靠近水面一滴成,油膜面积稳定后,方盘上放玻璃稳,描出轮廓印(坐标)纸上,再把格数来数清,多于半格算一格,少于半格舍去无,数出方格求面积,体积应从浓度求。
4.注意事项:(1)实验前应注意方盘是否干净,否则油膜难以形成。
(2)方盘中的水应保持平衡,痱子粉应均匀浮在水面上(3)向水面滴酒精溶液时应靠近水面,不能离水面太高,否则油膜难以形成。
(4)向水面只能滴一滴油酸溶液(5)计算分子直径时,注意滴加的不是纯油酸,而是酒精油酸溶液,应用一滴溶液的体积乘以溶液的体积百分比浓度六、测定金属的电阻率1.电路连接方式是安培表外接法,而不是内接法。
2.测L时应测接入电路的电阻丝的有效长度。
3.闭合开关前,应把滑动变阻器的滑动触头置于正确位置。
4.多次测量U、I,先计算R,再求R平均值。
5.电流不宜过大,否则电阻率要变化,安培表一般选0—0.6安挡。
七、测定电源的电动势和内电阻1.实验电路图:安培表和滑动变阻器串联后与伏特表并联。
2.测量误差:e、r测量值均小于真实值。
3.安培表一般选0-0.6A档,伏特表一般选0-3伏档。
4.电流不能过大,一般小于0.5A。
误差:电动势的测量值e测和内电阻的测量值r测均小于真实值八、电表改装(测内阻)实验注意:(1)半偏法测电流表内阻时,应满足电位器阻值远远大于待测表内阻(倍左右)的条件。
(2)选用电动势高的电源有助于减少误差(3)半偏法测得的内阻值偏小(读数时干路电流大于满度电流,通过电阻箱的电流大于半偏电流,由分流规律可得)(4)改装后电表的偏转仍与总电流或总电压成正比,刻度或读数可由此来定且刻度线应均匀。
(5)校准电路一般采用分压器接法(6)绝对误差与相对(百分)误差相比,后者更能反应实验精确程度。
研究性实验一、研究匀变速运动练习使用打点计时器:1.构造:见教材。
2.操作要点:接50HZ,4---6伏的交流电正确标取记:在纸带中间部分选5个点3.重点:纸带的分析a.判断物体运动情况:在误差范围内:如果S1=S2=S3=……,则物体作匀速直线运动。
如果DS1=DS2=DS3=…….=常数, 则物体作匀变速直线运动。
b.测定加速度:公式法:先求DS,再由DS= aT2求加速度。
图象法:作v—t图,求a=直线的斜率c.测定即时速度: V1=(S1+S2)/2T V2=(S2+S3)/2T测定匀变速直线运动的加速度:1.原理::DS=aT22.实验条件:a.合力恒定,细线与木板是平行的。
b.接50HZ,4—6伏交流电。
3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的长木板、刻度尺、钩码、导线、两根导线。
4.主要测量:选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3 。
图中O是任一点。
5. 数据处理:根据测出的用逐差法处理数据求出加速度:S4—S1=3a1T2 ,S5—S2=3a2T2 ,S6—S3=3a3T2,a=(a1+a2+a3)/3=(S4+S5+S6— S1—S2—S3)/9T2测匀变速运动的即时速度:(同上)二、研究平抛运动1.实验原理:用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。
2.实验器材:木板,白纸,图钉,未端水平的斜槽,小球,刻度尺,附有小孔的卡片,重锤线。
3.实验条件:a. 固定白纸的木板要竖直。
b. 斜槽未端的切线水平,在白纸上准确记下槽口位置。
c.小球每次从槽上同一位置由静止滑下。
三、研究弹力与形变关系1. 方法归纳:(1)用悬挂砝码的方法给弹簧施加压力(2)用列表法来记录和分析数据(如何设计实验记录表格)(3)用图象法来分析实验数据关系步骤:a以力为纵坐标、弹簧伸长为横坐标建立坐标系;b根据所测数据在坐标纸上描点;c按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线);d以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等;e解释函数表达式中常数的意义。
2. 注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度观察描绘实验一、描绘伏安特性曲线1. 实验原理:在小灯泡由暗变亮的过程中,温度发生了很大的变化,而导体的电阻会随温度的变化而增大,故在两端电压由小变大的过程中,描绘出的伏安特性曲线就不是一条直线,而是一条各点斜率逐渐增大的曲线。
2. 实验步骤:(1)开关断开的状态下连好电路(分压器接法、安培表外接)后再把滑动变阻器的滑动头调到使负载所加电压最小的位置(2)调节滑变,读数记录约12组值(不要断开电键进行间断测量)(3)断电,折线路(4)建立坐标,选取适当标度,描点,连线(平滑)。