陶瓷烧结四个过程

合集下载

第五章 烧结-1

第五章 烧结-1

2. 中温阶段(300~950℃)
• 任务:脱水、分解、氧化、晶型转变
• 结构水排除(高岭土) Al2O3 . 2SiO2 . 2H2O
Al2O3 . 2SiO2+2H2O
• 碳酸盐分解
✓由原料中带入
✓分解反应
500~850℃
MgCO3
MgO+CO2
CaCO3 850~1050℃CaO+CO2
MgCO3 . CaCO3 730~950℃ CaO+MgO+2CO2
研究表明,较小的颗粒尺寸分布范围是获取高烧结密度的必要条件。
二、影响陶瓷材料烧结的工艺参数
(1)烧成温度对产品性能的影响
烧成温度是指陶瓷坯体烧成时获得最优性质时的相应温度,即操作 时的止火温度。
烧成温度的高低直接影响晶粒尺寸和数量。对固相扩散或液相重结 晶来说,提高烧成温度是有益的。然而过高的烧成温度对特瓷来说,会因总 体晶粒过大或少数晶粒猛增,破坏组织结构的均匀性,因而产品的机电性能 变差。
颗粒间由点接触转变为面接触,孔隙缩小,连通孔 隙变得封闭,并孤立分布。 ③ 小颗粒间率先出现晶界,晶界移动,晶粒长大。
2)烧结后期阶段 ① 孔隙的消除:晶界上的物质不断扩散到孔隙处, 使孔隙逐渐消除。 ② 晶粒长大:晶界移动,晶粒长大。
➢ 烧结的分类:
烧结
固相烧结(只有固相传质) 液相烧结(出现液相) 气相烧结(蒸汽压较高)
颗粒形状和液相体积含量对颗粒之间作用力的影响 只有在大量液相存在的情况下,才能使这些具有一定棱角形状 的陶瓷粉体之间形成较高的结合强度。
(4)颗粒尺寸分布对烧结的影响
颗粒尺寸分布对最终烧结样品密度的影响可以通过分析有关的动力学 过程来研究,即分析由不同尺寸分布的坯体内部,在烧结过程中“拉出气孔” (pore drag)和晶粒生长驱动力之间力的平衡作用。

窑炉及陶瓷烧成

窑炉及陶瓷烧成
葫芦形窑炉是在龙窑的基础上发展、改进而来的,在景 德镇元代民窑中大量使用,在御窑(官窑)遗址中也曾 被发现过。清《南窑笔记》载:葫芦形窑“窑如卧地葫 芦”。窑因其形状而得名。
葫芦窑是景德镇人在元代把马蹄窑和龙窑的特点 结合起来,产生的新窑体。
葫芦窑综合了马蹄窑半倒焰的技术和龙窑窑体结 构的长处,形成了南北优势并存的产物。
第一讲
窑炉及陶瓷烧成
李萍 2013年5月
陶瓷是火的艺术。 烧成(烧结)是在热工设备中进行的。 这里热工设备指的是陶瓷生产窑炉及其附属设备。 烧结陶瓷的窑炉类型很多,同一种制品可在不同 类型的窑内烧成,同一种窑也可烧结不同的制品。
第一节 窑炉的发展历程——古代窑炉
1. 最原始烧陶的方法是不用窑的 垒坯露天烧:在地面上挖一浅坑或在地面铺上小 石头块,上面放上陶坯后,用干枝柴草围住周围 顶部,外面涂抹较稠的黄土泥,上留通风小孔, 地面点火烧制。
窑内容量大约在200-240m3左右,整个窑由多个室串联组成, 每个窑室有大有小,窑头与窑尾小,越接近中间越大,每个窑 室的隔墙下有通火孔,窑室的每个后顶上有排气口,同时每边 各开一个窑门,窑长因各地不同而异。
8. 明末景德镇创造发明了烧制温度达1300℃以上 的景德镇窑。
窑身如半个瓮俯覆,又似半个蛋形覆置,也象一个前 高后低的隧道。 景德镇窑是在明末清初时期,在葫芦窑基础上演化而 成的。其特点是把葫芦窑两室之间的折腰取消,使之 变成“形如覆瓮”的蛋型,所以也叫瓮形窑或蛋形窑, 景德镇人把这个独具地方特色,独具技术优势的属于
梭式窑
梭式窑是一种现代化的间歇窑,其结构与 隧道窑的烧成带相近,由窑室和窑车两大部 分组成,坯件码放在窑车棚架上,推进窑室 内进行烧制,在烧成冷却后将窑车和制品拉 出窑室外卸车,窑车的运动犹如织布机上的 梭子,故称为梭式窑。

《陶瓷材料的烧结》课件

《陶瓷材料的烧结》课件
资源循环利用
对废弃的陶瓷材料进行回收和再利用,实现资源的循环利用,降 低对自然资源的依赖。
THANKS。
致密度、均匀性和性能。
烧结设备的改进
03
随着技术的进步,烧结设备的性能和效率也将得到提升,为陶
瓷材料的制备提供更好的设备支持。
环保和可持续发展在陶瓷烧结领域的应用
环保材料的研发
为了降低陶瓷产业对环境的影响,未来将大力研发环保型的陶瓷 材料,如低毒陶瓷、可降解陶瓷等。
节能减排技术的应用
通过采用新型的节能技术,降低陶瓷烧结过程中的能耗和排放, 实现低碳、环保的生产。
04
陶瓷材料的烧结性能
烧结密度和孔隙率
烧结密度
烧结后的陶瓷材料密度,影响材料的 机械性能和热学性能。
孔隙率
陶瓷材料内部孔隙的多少,与材料的 强度、热导率和绝缘性能有关。
烧结陶瓷的力学性能
01
硬度
烧结陶瓷的硬度取决于其成分和 显微结构,硬度高的陶瓷耐磨、 耐划痕。
02
03
抗弯强度
韧性
陶瓷抵抗弯曲应力的能力,与材 料的成分、显微结构和制备工艺 有关。
航天器结构材料
陶瓷材料具有轻质、高强度和耐高温的特性,适用于航天器结构材料,如卫星天线骨架、太阳能电池板支架等。
06
未来展望
新型陶瓷材料的开发
高性能陶瓷
随着科技的发展,对陶瓷材料性能的要求越来越高,未来 将开发出具有更高强度、硬度、耐磨性、耐高温等高性能 的新型陶瓷材料。
多功能陶瓷
除了传统的结构陶瓷外,未来还将开发出具有多种功能如 导电、导热、压电、磁性等功能的新型陶瓷材料。
05
陶瓷材料的烧结应用
在电子行业的应用
电子封装

陶瓷的烧结工艺流程

陶瓷的烧结工艺流程

陶瓷的烧结工艺流程嘿,咱今儿来聊聊陶瓷的烧结工艺流程呀!你可别小瞧这陶瓷,那可是咱老祖宗留下来的宝贝呢!先来说说原料准备吧,这就好比是要做一顿大餐,得先把食材准备好呀!各种黏土、石英啥的,都得精挑细选,就跟咱买菜得挑新鲜的一样。

然后把它们按照一定的比例混合在一起,这可是个技术活,多一点少一点都可能影响最后的效果。

接下来就是成型啦!就像是捏泥巴,不过这可比咱小时候玩的高级多了。

可以用各种方法,什么拉坯呀、注浆呀,把那一堆原料变成各种各样好看的形状。

想象一下,一块泥巴在师傅的巧手下慢慢变成了一个精美的花瓶,是不是很神奇?然后呢,就该干燥啦!这就好比洗完衣服要晾干一样。

把成型的陶瓷放在合适的地方,让水分慢慢跑掉。

可不能着急哦,要是没干好,后面可就麻烦啦!终于到了最重要的烧结环节啦!这就像是陶瓷的一场大考。

把陶瓷放进高温的炉子里,那温度高得吓人,就像夏天里的大太阳。

在里面经过一番“烤验”,陶瓷才能变得坚硬、漂亮。

这过程可不简单,火候得掌握好,时间也得恰到好处,不然不是没烧好就是烧过头啦,那不就前功尽弃了嘛!你说这陶瓷的烧结工艺流程是不是很有意思?从一堆普通的原料,经过这么多道工序,最后变成了让人爱不释手的艺术品。

这就像我们的人生呀,要经过各种磨练才能变得更加精彩。

咱再想想,要是没有这精细的烧结工艺流程,哪来那些精美的陶瓷呢?那些摆在博物馆里的珍贵瓷器,可都是经过了无数人的心血和努力才诞生的呀!所以说呀,做什么事都得认真对待,就像对待陶瓷的烧结一样,不能马虎。

咱平时用的碗呀、杯子呀,看着普通,可背后都有着这么复杂的工艺呢!咱可得好好珍惜这些陶瓷制品,它们可都是来之不易的呀!你说是不是这个理儿?反正我觉得是这么回事儿!这陶瓷的烧结工艺流程,真的是充满了智慧和魅力,让人不得不佩服咱老祖宗的厉害呀!。

氧化锆陶瓷烧结工艺

氧化锆陶瓷烧结工艺

氧化锆陶瓷烧结工艺一、前期准备1. 氧化锆粉末筛选:将氧化锆粉末进行筛选,去除大颗粒和杂质,确保烧结后陶瓷的致密度和均匀性。

2. 添加助剂:根据需要添加适量的助剂,如聚乙二醇、聚甲基丙烯酸甲酯等,以提高陶瓷的成型性能和烧结性能。

3. 搅拌混合:将氧化锆粉末和助剂进行搅拌混合,使其均匀分散。

4. 成型:采用注塑成型、压制成型等方法将混合物成型为所需形状的陶瓷坯体。

二、干燥处理1. 自然干燥:将成型后的陶瓷坯体放置在通风良好的环境中自然干燥,以去除水分和溶剂。

2. 烘干:采用低温或中温烘干方式加速去除水分和溶剂,以避免在高温下产生气泡或开裂。

三、预烧处理1. 加载:将已经干燥处理好的陶瓷坯体放置在预烧炉中。

2. 升温:将预烧炉加热至所需温度,进行升温处理。

3. 保温:将预烧炉保持在所需温度下,进行保温处理。

4. 冷却:将预烧后的陶瓷坯体从预烧炉中取出,进行自然冷却或快速冷却处理。

四、最终烧结1. 加载:将经过预烧处理的陶瓷坯体放置在最终烧结设备中。

2. 升温:将最终烧结设备加热至所需温度,进行升温处理。

3. 保温:将最终烧结设备保持在所需温度下,进行保温处理。

4. 冷却:将最终烧结后的陶瓷制品从设备中取出,进行自然冷却或快速冷却处理。

五、后期加工1. 精密加工:采用机械或化学方法对陶瓷制品进行精密加工,如切割、打孔、抛光等。

2. 表面涂层:根据需要对陶瓷制品表面进行涂层处理,以提高其耐磨性、耐腐蚀性等。

3. 检验:对加工后的陶瓷制品进行检验,以确保其质量符合要求。

六、总结氧化锆陶瓷烧结工艺是一项复杂的过程,需要经过前期准备、干燥处理、预烧处理、最终烧结和后期加工等多个步骤。

其中,掌握好各个步骤的操作技巧和注意事项,能够提高陶瓷制品的成型质量和性能表现。

陶瓷熔块生产工艺

陶瓷熔块生产工艺

陶瓷熔块生产工艺
陶瓷熔块生产工艺主要包括原料准备、制备、成型和烧结四个主要步骤。

第一步:原料准备
1. 原料筛选:选择合适的原料,包括主要原料(如瓷土、石英)和辅助原料(如助熔剂、消泡剂)。

2. 原料配比:按照一定的比例将各种原料混合,以确保最终产品的性能和质量。

第二步:制备
1. 粉碎:将原料经过粉碎机或球磨机等设备进行破碎,使其达到一定的粒径要求。

2. 研磨:通过研磨机或球磨机对粉碎后的原料进行更细的研磨,以提高研磨后的原料的粒度和均匀性。

3. 混合:将研磨后的原料进行混合,以确保不同原料的均匀性。

第三步:成型
1. 压制:将混合后的原料放入压力机或注塑机等设备中,通过一定的压力将原料压制成坯体,即熔块的初形。

2. 压制成形:根据产品的形状和要求,在压制机上使用相应的模具,将坯体按照预定的形状和尺寸进行成型。

第四步:烧结
1. 烧结:将成型的熔块放入烧结窑中,通过对熔块升温、保温、冷却等操作,使其在高温下发生烧结反应,使熔块均质化和增强力学强度。

2. 温度控制:根据不同的熔块材料和产品要求,控制烧结窑的温度和烧结时间,以确保熔块的烧结效果。

以上是陶瓷熔块生产工艺的主要步骤,每个步骤都需要配备相应的设备和技术人员来进行操作。

在整个生产过程中,对原料的选择和配比、制备和成型的过程都需要严格控制,以保证最终产品的质量和性能。

同时,对烧结过程中的温度和时间的控制也是非常重要的,它们直接影响着熔块的结构和性能。

烧结的工艺流程

烧结的工艺流程

烧结的工艺流程烧结是一种将粉末状原料通过高温加热使其结合成坚固的成型件的工艺,广泛应用于陶瓷、金属、电子器件等领域。

下面将介绍一下烧结的工艺流程。

烧结的工艺流程主要包括原料准备、混合、成型、预烧、烧结和后处理等步骤。

首先是原料准备。

在烧结工艺中,需要选取合适的原料,这些原料可以是陶瓷粉体、金属粉末或其他种类的粉末。

不同的原料需要根据不同的工艺要求进行选择和准备,包括颗粒大小、成分比例等。

接下来是混合。

将选取好的原料进行混合,目的是使其成分均匀分布,以提高成品的均一性。

混合的方式可以有机械混合、湿法混合等。

机械混合是将原料放置在机械设备中进行高速旋转或搅拌以实现混合,湿法混合则是将原料和适量的溶剂混合形成糊状物。

第三步是成型。

成型是将混合好的原料按照设计要求进行形状的制作。

常见的成型方式有压制、注射、挤出等。

压制是将混合好的原料放置在模具中,然后通过压力使其固化成型。

注射是将混合好的原料注射到模具中形成所需形状,而挤出则是将原料通过挤压机挤出成带有所需形状的条状。

完成成型后,需要进行预烧。

预烧是将成型后的零件进行低温热处理,目的是去除残留的溶剂和结合剂,并改变其结构,以便后续的烧结工艺。

预烧的温度一般在原料的稳定燃烧范围之内进行,并根据具体需要确定预烧时间。

接下来是烧结。

烧结是将预烧后的零件进行高温加热使其结合成坚固的成型件。

烧结的温度一般高于原料的燃点,以保证原料能够完全熔化并形成均匀的结构。

烧结的过程中,需要控制合适的温度和时间,以及合适的气氛,以确保最终成品的质量。

最后是后处理。

在烧结完成后,还需要进行一些后处理工序,如修整、抛光、涂层等。

修整是通过机械加工等手段将成品的外形进行修正和整理;抛光是使成品表面更加光滑和平整;涂层是将成品表面涂上一层保护膜或装饰性涂层。

总体来说,烧结工艺流程包括原料准备、混合、成型、预烧、烧结和后处理等多个步骤。

每个步骤都需要严格控制操作条件,以保证最终成品的质量和性能。

5-4_陶瓷材料的烧结

5-4_陶瓷材料的烧结

可广泛用于磁性材料、梯度功能材料、纳米陶瓷、纤维增强陶瓷和金 属间化合物等系列新型材料的烧结。
一、放电等离子体烧结的优点 ①烧结温度低(比HP和HIP低200-300℃)、烧结时间短(只需3-10min, 而HP和HIP需要120-300min)、单件能耗低; ②烧结机理特殊,赋予材料新的结构与性能;
2.2 烧结驱动力
烧结的驱动力就是总界面能的减少。粉末坯体的总界面能表示为 γA, 其中γ为界面能;A为总的比表面积。那么总界面能的减少为:
A A A
其中,界面能的变化(Δγ)是因为样品的致密化,比表面积的变化 是由于晶粒的长大。对于固相烧结,Δγ主要是固/固界面取代固/气界面。
(2)保温时间对产品性能的影响 在烧成的最高温度保持一定的时间,一方面使物理化学变化更趋完全,使 坯体具有足够液相量和适当的晶粒尺寸,另一方面组织结构亦趋均一。但保温 时间过长,则晶粒溶解,不利于在坯中形成坚强骨架,而降低机械性能。 (3)烧成气氛对产品性能的影响 ① 气氛对陶瓷坯体过烧膨胀的影响 ② 气氛对坯体的收缩和烧结的影响 ③ 气氛对坯的颜色和透光度以及釉层质量的影响 (4)升温与降温速度对产品性能的影响
(pore drag)和晶粒生长驱动力之间力的平衡作用。
研究表明,较小的颗粒尺寸分布范围是获取高烧结密度的必要条件。
二、影响陶瓷材料烧结的工艺参数 (1)烧成温度对产品性能的影响 烧成温度是指陶瓷坯体烧成时获得最优性质时的相应温度,即操作时的 止火温度。 烧成温度的高低直接影响晶粒尺寸和数量。对固相扩散或液相重结晶来 说,提高烧成温度是有益的。然而过高的烧成温度对特瓷来说,会因总体晶 粒过大或少数晶粒猛增,破坏组织结构的均匀性,因而产品的机电性能变差。
4.3 晶粒生长和粗化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陶瓷烧结四个过程
陶瓷烧结是一种重要的陶瓷加工方法,通过高温下的压制和烧结将陶瓷原料转变为致密的陶瓷制品。

它主要包括四个过程:原料制备、成型、烧结和后处理。

一、原料制备
陶瓷烧结的第一个过程是原料制备。

通常,陶瓷烧结所用的原料主要包括粉末、添加剂和溶剂。

粉末是陶瓷的主要成分,可以是氧化物、硝酸盐、碳酸盐等,根据不同的陶瓷材料选择合适的粉末。

添加剂用于改善陶瓷的性能,如增加强度、改善导电性等。

溶剂用于调节陶瓷糊料的流动性和粘度。

二、成型
成型是陶瓷烧结的第二个过程,它将原料制备好的糊料通过成型工艺转变为成型体。

常见的成型方法有压制、注塑、挤出等。

其中,压制是最常用的方法之一,通过将糊料放入模具中,施加一定的压力使其成型。

注塑则是将糊料注入模具中,通过模具的空腔形状使其成型。

挤出则是将糊料通过挤出机挤出成型。

三、烧结
烧结是陶瓷烧结的核心过程,通过高温下的加热和压制使成型体中的颗粒结合成致密的陶瓷制品。

烧结过程中需要控制温度、时间和压力等参数,以确保陶瓷制品的质量。

烧结温度一般高于原料的熔
点,但低于熔融温度,使得陶瓷颗粒能够粘结在一起。

烧结压力可以提高陶瓷的致密度和强度,但过高的压力会导致产品变形或开裂。

四、后处理
烧结后的陶瓷制品还需要进行后处理,以提高其性能和外观质量。

后处理的方法包括抛光、研磨、清洗等。

抛光和研磨可以去除陶瓷制品表面的粗糙度,使其更加光滑。

清洗则是去除烧结过程中产生的灰尘和残留物,以保证产品的纯净度。

陶瓷烧结的四个过程分别是原料制备、成型、烧结和后处理。

每个过程都起着重要的作用,相互关联,缺一不可。

只有在严格控制每个过程的参数和工艺条件下,才能生产出优质的陶瓷制品。

陶瓷烧结技术的不断发展和改进,使得陶瓷制品在各个领域得到了广泛的应用,如电子、化工、航空等。

相关文档
最新文档