数字信号处理(第四版)(高西全)章 (10)

合集下载

程佩青《数字信号处理教程》(第4版)(课后习题详解 数字滤波器的基本结构)

程佩青《数字信号处理教程》(第4版)(课后习题详解 数字滤波器的基本结构)
偶对称或奇对称,因而可简化结构。 由题中所给条件可知

6 / 40
圣才电子书

十万种考研考证电子书、题库视频学习平 台
即 h(n)是偶对称,对称中心在 5-5 所示。
处,N 为奇数(N=5)。线性相位结构如图
图 5-5
5-6 设滤波器差分方程为
(1)试用直接工型、典范型及一阶节的级联型、一阶节的并联型结构实现此差分方 程;
8 / 40
圣才电子书

并联结构见图 5-6(d)。
十万种考研考证电子书、题库视频学习平 台
(2)由题意可知
图 5-6(d)
可推出
幅度为
相位为
(3)输入正弦波为 x(t)=5sin(2πt·103)
由 ΩT1=2π×103T1=2π,可得周期
又抽样频率为 10kHz,即抽样周期为
(1)根据 H(z)的表达式,可画出卷积型(直接型)结构如图 5-1(a)所示。
(2)可将 H(z)改写为
图 5-1(a)
相应的级联型结构如图 5-1(b)所示。 (3)将图 5-1(b)中两个延时链子系统的次序交换,并将有相同输出的中间两延时
链加以合并,可得出如图 5-1(c)所示直接Ⅱ型结构图。
图 5-3(1)
图 5-3(2) 5-4 用频率抽样结构实现以下系统函数:
4 / 40
圣才电子书
十万种考研考证电子书、题库视频学习平


抽样点数 N=6,修正半径 r=0.9。
解:FIR 滤波器修正后的频率抽样结构(当 N 为偶数时)有以下关系
其中 θ(k)=arg[H(k)]。因而有 因为 N=6,所以根据公式可得
(2)根据图 5-7(b)可通过对各结点的求解来获得:即将输入结点和输出结点分别 用中间结点 x1 表示,然后将中间结点消去,即可得到输入结点与输出结点之间的关系,从 而求得系统函数。所设结点可得

(完整word版)《数字信号处理》课程教学大纲

(完整word版)《数字信号处理》课程教学大纲

课程编号15102308《数字信号处理》教学大纲Digital Signal Processing一、课程基本信息二、本课程的性质、目的和任务《数字信号处理》课程是信息工程本科专业必修课,它是在学生学完了高等数学、概率论、线性代数、复变函数、信号与系统等课程后,进一步为学习专业知识打基础的课程。

本课程将通过讲课、练习使学生建立“数字信号处理”的基本概念,掌握数字信号处理基本分析方法和分析工具,为从事通信、信息或信号处理等方面的研究工作打下基础。

三、教学基本要求1、通过对本课程的教学,使学生系统地掌握数字信号处理的基本原理和基本分析方法,能建立基本的数字信号处理模型。

2、要求学生学会运用数字信号处理的两个主要工具:快速傅立叶变换(FFT)与数字滤波器,为后续数字技术方面课程的学习打下理论基础。

3、学生应具有初步的算法分析和运用MA TLAB编程的能力。

四、本课程与其他课程的联系与分工本课程的基础课程为《高等数学》、《概率论》、《线性代数》、《复变函数》、《信号与系统》等课程,同时又为《图像处理与模式识别》等课程的学习打下基础。

五、教学方法与手段教师讲授和学生自学相结合,讲练结合,采用多媒体教学手段为主,重点难点辅以板书。

六、考核方式与成绩评定办法本课程采用平时作业、期末考试综合评定的方法。

其中平时作业成绩占40%,期末考试成绩占60%。

七、使用教材及参考书目【使用教材】吴镇扬编,《数字信号处理》,高等教育出版社,2004年9月第一版。

【参考书目】1、姚天任,江太辉编,《数字信号处理》(第二版),华中科技大学出版社,2000年版。

2、程佩青著,《数字信号处理教程》(第二版),清华大学出版社出版,2001年版。

3、丁玉美,高西全编著,《数字信号处理》,西安电子科技大学出版社,2001年版。

4、胡广书编,《数字信号处理——理论、算法与实现》,清华大学出版社,2004年版。

5、Alan V. Oppenheim, Ronald W. Schafer,《Digital Signal Processing》,Prentice-Hall Inc, 1975.八、课程结构和学时分配九、教学内容绪论(1学时)【教学目标】1. 了解:什么是数字信号处理,与传统的模拟技术相比存在哪些特点。

数字信号处理(第四版)第四章ppt

数字信号处理(第四版)第四章ppt

Digital Signal Processing
© 2013 Jimin Liang
Discrete-Time Systems Outline Discrete-time system examples Classification of DT systems Impulse and step responses Time-domain characteristics of LTI Simple interconnection schemes
Process a given sequence, called the input system, to generate another sequence, called the output sequence, with more desirable properties or to extract certain information about the input signal. DT system is usually also called the digital filter
12
Digital Signal Processing
© 2013 Jimin Liang
Discrete-Time Systems 4.2 Classification of DT systems Stable system
A system is stable if and only if for every bounded input, the output is also bounded, called BIBO stable.
Discrete-Time Systems 4.1 Discrete-time system examples (4) Linear Interpolator Linear factor-2 interpolator

数字信号处理教案

数字信号处理教案

数字信号处理教案数字信号处理教案课程特点:本课程是为电子、通信专业三年级学生开设的一门课程,它是在学生学完了信号与系统的课程后,进一步为学习专业知识打基础的课程。

本课程将通过讲课、练习使学生掌握数字信号处理的基本理论和方法。

课程内容包括:离散时间信号与系统;离散变换及其快速算法;数字滤波器结构;数字滤波器设计;数字信号处理系统的实现等。

本课程逻辑性很强, 很细致, 很深刻;先难后易, 前三章有一定的难度, 倘能努力学懂前三章(或前三章的0080), 后面的学习就会容易一些;只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成。

这是因为数字信号分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的。

论证训练是信号分析课基本的,也是重要的内容之一, 也是最难的内容之一。

因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是信号分析教学贯穿始终的一项任务。

鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成。

课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写。

基本掌握了课堂教学内容后, 再去做作业。

在学习中, 要养成多想问题的习惯。

课堂讲授方法:1. 关于教材: 《数字信号处理》作者丁玉美高西全西安电子科技大学出版社2. 内容多, 课时紧: 大学课堂教学与中学不同的是每次课介绍的内容很多, 因此, 内容重复的次数少, 讲课只注重思想性与基本思路, 具体内容或推导特别是同类型或较简的推理论证及推导计算, 可能讲得很简, 留给课后的学习任务一般很重。

.3. 讲解的重点: 概念的意义与理解, 理论的体系, 定理的意义、条件、结论、定理证明的分析与思路, 具有代表性的证明方法, 解题的方法与技巧,某些精细概念之间的本质差别. 在教学中, 可能会写出某些定理证明, 以后一般不会做特别具体的证明叙述.4. 要求、辅导及考试:a. 学习方法: 适应大学的学习方法, 尽快进入角色。

数字信号处理教程第四版课程设计

数字信号处理教程第四版课程设计

数字信号处理教程第四版课程设计作者:未命名一、引言数字信号处理是一种广泛应用于各个领域的技术,例如音频处理、图像处理、通信等。

本文档主要介绍数字信号处理教程第四版的课程设计,着重介绍设计的目的、设计思路以及实现方法。

二、设计目的本次课程设计的目的在于帮助学生通过实际操作加深对数字信号处理的理解,提高对数字信号处理算法实现的掌握能力。

通过该课程设计,学生将能够掌握以下内容:1.数字信号的常见基本概念2.数字滤波器设计与实现3.傅里叶变换理论及其应用三、设计思路为了达到设计目的,本次课程设计将按照以下流程进行:1.熟悉数字信号处理的基本概念及相关算法理论知识2.学习数字信号处理工具箱的使用方法3.实现基于离散傅里叶变换的数字信号滤波器设计与实现四、实现方法1. 数字信号处理基本概念数字信号是现实世界的模拟信号经过模数转换器,重新离散化波形而得到的。

数字信号可以用离散函数的形式表示,具有很多优异的性质,例如可以进行数字滤波、傅里叶变换等操作。

在该部分,学生需要了解数字信号的基本概念,例如采样频率、量化精度等。

2. 数字信号处理工具箱的使用方法MATLAB是一个十分流行的数字信号处理工具,是本次课程设计中的主要工具。

学生需要使用MATLAB进行数字信号处理工具箱相关程序的调用与使用,例如数字滤波器设计与实现。

3. 基于离散傅里叶变换的数字信号滤波器设计与实现在实现数字信号滤波器时,学生需要掌握采样定理、滤波器的设计原理以及滤波器的相关参数(例如滤波器的阶数、采样率等)。

通过这些基本知识的掌握,学生将能够实现基于离散傅里叶变换的数字信号滤波器。

五、结论通过数字信号处理教程第四版的课程设计,学生将能够理解数字信号处理基础的相关算法理论,了解数字信号处理工具箱的使用方法,掌握数字信号滤波器设计与实现的基本知识。

这将有助于学生更深入地理解数字信号处理的应用场景,提高数字信号处理能力,为今后从事相关领域的研究或工作奠定基础。

数字信号处理(第四版)高西全第3章详解

数字信号处理(第四版)高西全第3章详解
应当说明,若x(n)实际长度为M,延拓周期为N,则当
N<M时,(3.1.5)式仍表示以N为周期的周期序列,但(3.1.6)
和 (3.1.7)式仅对N≥M时成立。图3.1.2(a)中x(n)实际长度
M=6,当延拓周期N=4时, ~x(n)如图3.1.2(c)所示。
如果x(n)的长度为M,且 ~x (n) x((n)) N,N≥M,则可
的周期延拓序列,x(n)是 ~x(n)
第3章 离散傅里叶变换(DFT)
为了以后叙述简洁,当N大于等于序列x(n)的长度时, 将(3.1.5)
x(n) x((n))N
(3.1.7)
式中x((n)) N表示x(n)以N为周期的周期延拓序列,((n))N表
示模N对n求余,即如果
n=MN+n1 0≤n1≤N-1, M
第3章 离散傅里叶变换(DFT)
图3.2.1 x(n)及其循环移位过程
第3章 离散傅里叶变换(DFT)
2. 时域循环移位定理 设x(n)是长度为M(M≤N)的有限长序列,y(n)为 x(n)
Y(k)=DFT[y(n)]N=aX1(k)+bX2(k) 0≤k≤N-1
(3.2.1) 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N点DFT。
第3章 离散傅里叶变换(DFT)
3.2.2 循环移位性质
1 设x(n)为有限长序列,长度为M,M≤N,则x(n)的循环 移位定义为
y(n)=x((n+m)) NRn(n)
(3.2.2)
(3.2.2)式表明,将x(n)以N为周期进行周期延拓得到
~x (n) x((n))N ,再将 ~x(n) 左移m得到 ~x (n m) ,最后
取 ~x (n m) 的主值序列则得到有限长序列x(n)的循环移位序

精品课件-数字信号处理(第四版)(高西全)-第4章

精品课件-数字信号处理(第四版)(高西全)-第4章

点DFT和(4.2.10)式或(4.2.11)式所示的N/4个蝶形运算,
如图4.2.3所示。依次类推,经过M次分解,最后将N点DFT
分解成N个1点DFT和M级蝶形运算,而1点DFT就是时域序列
本身。一个完整的8点DIT-FFT运算流图如图4.2.4所示。
图中用到关系式
。W图N中k / m输入W序Nmk列不是顺序排
In Time FFT,简称DIT-FFT ); 频域抽取法FFT (Decimation In Frequency FFT,简称DIF-FFT)。本节介 绍DIT-FFT
设序列x(n)的长度为N,且满足N=2M,M为自然数。按n 的奇偶把x(n)分解为两个N/2点的子序列
x1(r) x(2r), x2 (r) x(2r 1),
x1
(2l
1)WNk
( /
2l 2
1)
l 0
l 0
N / 41
N / 41
x3 (l)WNkl/ 4 WNk / 2
x4
(l
)WNk
l /
4
l 0
l 0
X 3 (k ) WNk/ 2 X 4 (k )
k 0, 1, , N 1 2
(4.2.9)
第4章 快速傅里叶变换(FFT)
式中
N / 41
r0
2
(4.2.6)
由于X1(k)和X2(k)均以N/2为周期,
kN
WN 2
WNk

,因此X(k)又可表示为
第4章 快速傅里叶变换(FFT)
X (k) X1(k) WNk X 2 (k),
X
(k
N 2
)
X1(k)
WNk
X

数字信号处理 答案 第四章

数字信号处理 答案 第四章

z −1
r sin θ
− r sin θ r cos θ
y ( n)
z −1
网络Ⅱ 解 网络Ⅰ:根据信号流程图写出差分方程
y (n) = 2r cos θ y (n − 1) − r 2 y (n − 2) + x(n)
由差分方程得系统函数
H1 ( z ) =
Y ( z) 1 = X ( z ) 1 − 2r cos θ z −1 + r 2 z −1 1 )(rz −1 − e jθ )
(4)并联型
x ( n)
z −1
1/4 10/3
-7/3
y ( n)
z −1
1/2 将系统函数写成部分分式形式
H ( z) =
−7 / 3 10 / 3 + 1 −1 1 1− z 1 − z −1 4 2
4.4 用直接Ⅰ型和直接Ⅱ型结构实现以下系统函数; (1)
H(z)=
−5 + 2 z −1 − 0.5 z −2 1 + 3z −1 + 3z −2 + z −3
3z 3 + 2 z 2 + 2 z + 5 (2) H(x)=0.8 3 z + 4 z 2 + 3z + 2
解 (1)根据系统函数写出差分方程
y (n) + 3 y (n − 1) + 3 y (n − 2) + y (n − 3) = −5 x(n) + 2 x(n − 1) − 0.5 x(n − 2)
可见网络Ⅰ和网络Ⅱ具有相同极点。 4.3 一个因果线性离散系统由下列差分方程描述:
3 1 1 y(n)- y(n-1)+ y(n-2)=x(n)+ x(n-1) 4 8 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 给定输入信号为
x(n) sin(0.014n) sin(0.4n)
第10章 上机实验
4. (1) 如果输入信号为无限长序列,系统的单位脉 冲响应是有限长序列,可否用线性卷积法求系统的响 应? (2) 如果信号经过低通滤波器,把信号的高频分 量滤掉,时域信号会有何变化? 用前面第一个实验结
第10章 上机实验
第10章 上机实验
2. 时域采样定理的要点是: ① 对模拟信号xa(t)以T进行时域等间隔理想采样, 形成的采样信号的频谱 Xˆ ( j会) 以采样角频率Ωs (Ωs=2π/T)为周期进行周期延拓。公式为
Xˆ a
(
j
)ห้องสมุดไป่ตู้
FT[ xˆa
(t)]
1 T
n
Xa
(
j
jns
)
第10章 上机实验
② 采样频率Ωs必须大于等于模拟信号最高频率的 两倍以上,才能使采样信号的频谱不产生频谱混叠。
第10章 上机实验
10.1 实验一: 系统响应及系统稳定性 1. (1) (2) (3)
第10章 上机实验
2. 在时域中,描写系统特性的方法是差分方程和单位脉冲 响应,在频域可以用系统函数描述系统特性。已知输入信号, 可以由差分方程、单位脉冲响应或系统函数求出系统对于该 输入信号的响应,本实验仅在时域求解。在计算机上适合用 递推法求差分方程的解,最简单的方法是采用MATLAB语言的 工具箱函数filter函数。也可以用MATLAB语言的工具箱函数 conv函数计算输入信号和系统的单位脉冲响应的线性卷积,
第10章 上机实验 3. (1) 编制程序,包括产生输入信号、单位脉冲响应序 列的子程序,用filter函数或conv函数求解系统输出响应的
(2)
y(n) 0.05x(n) 0.05x(n 1) 0.9y(n 1)
输入信号
x1(n) R8 (n), x2 (n) u(n)
① 分别求出x1(n)=R8(n)和x2(n)=u(n)的系统响应,
频域采样定理的要点是: ① 对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔 采样N点,得到:
X N (k) X (ej ) 2πk , k 0,1, 2, , N 1
则N点IDFT[XN(k)]得到的序N列就是原序列x(n)以N为周期进 行周期延拓后的主值区序列,公式为
xN (n) IDFT[ X N (k)]N [ x(n iN )]RN (n) i
第10章 上机实验
第10章 上机实验
10.1 实验一: 系统响应及系统稳定性 10.2 实验二: 时域采样与频域采样 10.3 实验三: 用FFT对信号作频谱分析 10.4 实验四:IIR数字滤波器设计及软件实现 10.5 实验五: FIR数字滤波器设计与软件实现 10.6 实验六:数字信号处理在双音多频拨号系统 中的应用
系统的时域特性指的是系统的线性时不变性质、因果性 和稳定性。重点分析实验系统的稳定性,包括观察系统的暂
第10章 上机实验
系统的稳定性是指对任意有界的输入信号,系统都能得 到有界的系统响应。或者系统的单位脉冲响应满足绝对可和
实际中检查系统是否稳定,不可能检查系统对所有有界 的输入信号,输出是否都是有界输出,或者检查系统的单位 脉冲响应满足绝对可和的条件。可行的方法是在系统的输入 端加入单位阶跃序列,如果系统的输出趋近一个常数(包括 零),就可以断定系统是稳定的[19]。系统的稳态输出是指 当n→∞时,系统的输出。如果系统稳定,信号加入系统后, 系统输出的开始一段称为暂态效应,随n的加大,幅度趋于稳
对比上面叙述的时域采样原理和频域采样原理,得到一 个有用的结论: 这两个采样理论具有对偶性,即“时域采样 频谱周期延拓,频域采样时域信号周期延拓”。因此, 将它
第10章 上机实验
② 由上式可知,频域采样点数N必须大于等于时域离 散信号的长度M(即N≥M),才能使时域不产生混叠,则N点 IDFT[XN(k)]得到的序列xN(n)就是原序列x(n), 即 xN(n)=x(n)。如果N>M,xN(n)比原序列尾部多N-M个零点; 如果N<M,则xN(n)=IDFT[XN(k)]发生了时域混叠失真,而 且xN(n)的长度N也比x(n)的长度M短,因此, xN(n)与x(n)
(t nT )]e jtdt
n

xa
(t)
(t
nT
)e
j t dt
n
上式中,在数值上xa(nT)=x(n),再将ω=ΩT代入,得到:
上式的右边就是序Xˆ a列( j的傅) 里n叶变xa换(nXT()eejωj)n,T 即
Xˆ a ( j) X (ej ) T
第10章 上机实验
上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换 得到,只要将自变量ω用ΩT
5. (1) (2) 简述通过实验判断系统稳定性的方法。分析 上面第三个实验的稳定输出的波形。 (3) 对各实验所得结果进行简单分析和解释。 (4) (5)
第10章 上机实验
10.2 实验二: 1. 时域采样理论与频域采样理论是数字信号处理中的重 要理论。要求掌握模拟信号采样前后频谱的变化,以及如 何选择采样频率才能使采样后的信号不丢失信息;要求掌 握频率域采样会引起时域周期化的概念,以及频率域采样

第10章 上机实验 (3) 给定系统的单位脉冲响应为
h1 (n) R10 (n) h2 (n) (n) 2.5 (n 1) 2.5 (n 2) (n 3)
用线性卷积法求x1(n)=R8(n)分别对系统h1(n)和h2(n)
第10章 上机实验 (4) 给定一谐振器的差分方程为 y(n) 1.8237 y(n 1) 0.9801 y(n 2) b0 x(n) b0 x(n 2) 令b0=1/100.49,谐振器的谐振频率为0.4 rad ① 用实验方法检查系统是否稳定。输入信号为u(n)时,
利用计算机计算上式并不方便,下面我们导出另外
理想采样信号 xˆa (t) 和模拟信号xa(t)之间的关系为
xˆa (t) xa (t) (t nT ) n
对上式进行傅里叶变换,得到:
第10章 上机实验
在上式的积分号内只有当t=nT时,才有非零值,因此:
Xˆ a ( j )
[xa (t)
相关文档
最新文档