Hazelett带式铸造与辊式铸轧比对研究_陈品坚

合集下载

ASTM D3299-00

ASTM D3299-00

Designation:D3299–00An American National Standard Standard Specification forFilament-Wound Glass-Fiber-Reinforced Thermoset ResinCorrosion-Resistant Tanks1This standard is issued under thefixed designation D3299;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope*1.1This specification covers cylindrical tanks fabricated by filament winding for above-ground vertical installation,to contain aggressive chemicals at atmospheric pressure as clas-sified herein,and made of a commercial-grade polyester or vinylester resin.Included are requirements for materials,prop-erties,design,construction,dimensions,tolerances,workman-ship,and appearance.1.2This specification does not cover the design of vessels intended for pressure above atmospheric,vacuum conditions, except as classified herein,or vessels intended for use with liquids heated above theirflash points.1.3The values given in parentheses are provided for infor-mation purposes only.N OTE1—Special design consideration should be given to vessels subject to superimposed mechanical forces,such as earthquakes,wind load,or agitation,and to vessels subject to service temperature in excess of180°F(82°C),and to vessels with unsupported bottoms.N OTE2—There is no similar or equivalent ISO standard.1.4The following safety hazards caveat pertains only to the test method portion,Section11,of this specification:This standard does not purport to address all of the safety concerns, if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limita-tions prior to use.2.Referenced Documents2.1ASTM Standards:C581Practice for Determining Chemical Resistance of Thermosetting Resins Used in Glass Fiber Reinforced Structures Intended for Liquid Service2C582Specification for Contact-Molded Reinforced,Ther-mosetting Plastic(RTP)Laminates for Corrosion Resistant Equipment3D618Practice for Conditioning Plastics and Electrical Insulating Materials for Testing2D883Terminology Relating to Plastics2D1599Test Method for Short-Time Hydraulic Failure Pres-sure of Plastic Pipe,Tubing,and Fittings3D2150Specification for Woven Roving Glass Fabric for Polyester-Glass Laminates4D2583Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor5D2584Test Method for Ignition Loss of Cured Reinforced Resins5D2996Specification for Filament-Wound Reinforced Ther-mosetting Resin Pipe3D2997Specification for Centrifugally Cast“Fiberglass”(Glass-Fiber-Reinforced Thermosetting-Resin)Pipe3D3892Practice for Packaging/Packing of Plastics6D4024Specification for Machine Made Fiberglass Flanges3D5421Specification for Contact Molded Flanges3F412Terminology Relating to Plastic Piping Systems3 2.2ANSI Standards:B16.1Cast Iron Pipe Flanges and Flanged Fittings,Class 25,125,250,and80073.Terminology3.1General—Definitions are in accordance with Termi-nologies D883and F412,unless otherwise indicated.3.2filament-wound—as applied to tanks,a process in which the principal circumferential load-bearing reinforcement is applied by continuousfilament winding.1This specification is under the jurisdiction of ASTM Committee D-20on Plastics and is the direct responsibility of Subcommittee D20.23on Reinforced Plastic Piping Systems and Chemical Equipment.Current edition approved March10,2000.Published June2000.Originally published as D3299–st previous edition D3299–95a e1.2Annual Book of ASTM Standards,V ol08.01.3Annual Book of ASTM Standards,V ol08.04.4Discontinued;see1986Book of ASTM Standards,V ol08.02.5Annual Book of ASTM Standards,V ol08.02.6Annual Book of ASTM Standards,V ol08.03.7Available from American National Standards Institute,11West42nd Street, 13th Floor,New York,NY10036.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.3.3contact molding—a molding process that includes “hand lay-up,”“spray-up,”or a combination of these manu-facturing processes.4.Classification4.1Tanks meeting this specification are classified according to type as follows,and it is the responsibility of the purchaser to specify the requirement for Type II tanks,the operating pressure or vacuum levels,and the safety factor required for external pressure.Absence of a designation of type required shall imply that Type I is adequate.4.1.1Type I—Atmospheric pressure tanks vented directly to the atmosphere,designed for pressure no greater or lower than atmospheric.4.1.2Type II—Atmospheric pressure tanks vented directly into a fume conservation system,and designed to withstand the specified positive and negative pressure not to exceed14in. (355.6mm)of water when all tie-down lugs are properly secured,in accordance with the fabricator’s recommendations forflat-bottom tanks.4.2Tanks meeting this specification are classified according to grade as follows:4.2.1Grade1—Tanks manufactured with a single generic type of thermoset resin throughout.4.2.2Grade2—Tanks manufactured with different generic types of thermoset resin in the barrier and the structural portion.N OTE3—The external corrosive environment due to spillage or corro-sive vapors should be considered when specifying Grade2tanks(see 7.1.3.3).5.Materials and Manufacture5.1Resin—The resin used shall be a commercial-grade, corrosion-resistant thermoset that has either been evaluated in a laminate by test in accordance with11.3or that has been determined by previous documented service to be acceptable for the service conditions.Where service conditions have not been evaluated,a suitable resin also may be selected by agreement between fabricator and purchaser.5.1.1The resin shall contain no pigment,dyes,colorants,or filler,except as follows:5.1.1.1A thixotropic agent that does not interfere with visual inspection of laminate quality,or with the required corrosion resistance of the laminate,may be added for viscos-ity control.N OTE4—The addition of a thixotropic agent may reduce the resistance of many resin systems to certain corrosive chemical environments.It is the responsibility of the fabricator,using a thixotropic agent in the resin required for7.1.1and7.1.2,to ascertain its compatibility with the corrosive environment when this has been reported to him by the purchaser.5.1.1.2Resin pastes used tofill crevices before overlay shall not be subject to the limitations of5.1.1.5.1.1.3Resin may contain pigment,dyes,or colorants when agreed upon between fabricator and purchaser.N OTE5—The addition of pigment,dyes,or colorants may interfere with visual inspection of laminate quality.5.1.1.4Ultraviolet absorbers may be added to the exterior surface for improved weather resistance,if agreed upon be-tween fabricator and purchaser.5.1.1.5Antimony compounds or otherfire-retardant agents may be added to halogenated resins for improvedfire resis-tance,if agreed upon between fabricator and purchaser.N OTE6—Because the addition offire-retardant agents may interfere with visual inspection of laminate quality,they should not be used in the inner surface(7.1.1)or interior layer(7.1.2)unless their functional advantages would outweigh the loss of visual inspection.5.2Reinforcement:5.2.1Chopped-Strand Mat—Chopped-strand mat shall be constructed from chopped commercial-grade E-type glass strands bonded together using a binder.The strands should be treated with a sizing that is chemically compatible with the resin system used.N OTE7—The selection of the particular chopped-strand mat is depen-dent upon the performance characteristics required of thefinished product and upon the processing techniques to be used.5.2.2Continuous Roving—Continuous roving shall be a commercial-grade of E-type glassfiber with a sizing that is chemically compatible with the resin system used.5.2.3Nonwoven Biaxial or Unidirectional Fabric—These products shall be a commercial Grade of E-type glassfiber with a sizing that is chemically compatible with the resin system used.5.2.4Woven Roving—Woven roving shall be in accordance with Specification D2150.5.2.5Surface Mat—The reinforcement used for the inner surface(7.1.1)shall be either a commercial-grade chemical resistant glass surface mat or an organic-fiber surface mat.In environments that attack glass,the use of an organic-fiber surface mat is required.6.Design Requirements Design Requirements6.1Filament-Wound Laminates—The maximum allowable stress of the total laminate(that is,filament winding plus inner surface(7.1.1)and interior layer(7.1.2))shall be limited by the allowable movement(strain)of the tank wall whenfilled with fluid.6.1.1The maximum allowable hoop stress shall be deter-mined as follows:S H5~E T~Z!!(1) where:S H=hoop stress,psi(kPa),E T=hoop tensile modulus of the total laminate(seeAppendix X3),psi(kPa),andZ=allowable strain.N OTE8—The use of an accepted analytical technique,such as lami-nated plate theory(LPT),for design and analysis of composite vessels may predict stresses,strains,and strength on a ply-by-ply basis,given some basic lamina properties.N OTE9—Tanks for installation outdoors shall be designed for the effect of wind loading and other environmental factors in accordance with sound design practice,including tank buckling analysis.N OTE10—Tanks with significant physical loadings other thanfluid head(such as side mounted equipment,violent agitation,unusuallyhighflow rates,and unsupported bottoms)shall be given special design consideration.6.1.2The allowable strain of the tank wall shall not exceed 0.0010in./in.(mm/mm)at70°F(21°C).6.1.3Tanks shall have a longitudinal strength at least equal to that of a helically wound tank having a maximum angle of wind of80°(measured from the tank axis,that is,90°is hoop winding).For reference,the longitudinal tensile strength of a typical80°helical winding is approximately2200psi(15168 kPa).N OTE11—Tanks with unsupported bottoms require special design consideration.6.1.4The minimum required wall thickness of thefilament wound portion of the tank shall be determined as follows:t5PD2S H50.036g HD2E T Z orS0.2489g HD2E T ZD(2)where:t=thickness,in.(mm),P=pressure0.036H,psi(0.2489H,kPa),H=fluid head,in.(mm),g=specific gravity offluid,andD=inside diameter of tank,in.(mm).The thickness of the inner surface and interior layer(7.1.1 and7.1.2)shall be added to this calculated thickness.6.1.4.1The minimum thickness of the tank shall be0.1875 in.(4.76mm).6.2Design for External Pressure:6.2.1Cylindrical Shells—For cylindrical shell,compute the value1.73(D o/t)0.5.If the result is less than L/D o of the cylinder,compute P a as follows:P a52.6~E/F!~D o/L!~t/D o!2.5(3) If the result is greater than L/D o of the cylinder,compute P a as follows:P a52.6~E/F!~D o/L!~t/D o!2.5~L/D o!20.45~t/D o!0.5(4)where:D o=outside diameter,in.(mm),E=lower of hoop tensile modulus or axial tensile modu-lus,psi(kPa),F=design factor=5,L=design length,in.,of a vessel section,taken as the largest of the following:(a)the distance betweenhead-tangent lines plus one-third the depth of eachformed head if there are no stiffening rings(excludingconical heads and sections);(b)the distance betweencone-to-cylinder junctions for vessels with a cone orconical heads if there are no stiffening rings;(c)thegreatest center-to-center distance between any twoadjacent stiffening rings;(d)the distance from thecenter of thefirst stiffening ring to the formed headtangent line plus one-third the depth of the formedhead(excluding conical heads and sections),allmeasured parallel to the axis of the vessel;(e)thedistance from thefirst stiffening ring in the cylinder tothe cone-to-cylinder junction,P a=allowable external pressure,psi(kPa),andt=wall thickness,in.(mm)(nominal).6.2.2Torispherical Heads—For torispherical heads,com-pute the allowable external pressure P a as follows:P a50.36~E/F!~t/R o!2(5) where:R o=outside crown radius of head,in.(mm).6.2.2.1For torispherical heads subject to internal loading, the knucle radius shall be externally reinforced in accordance with Fig.1.The reinforcement thickness shall be equal to the thickness of the head as calculated above.The thickness of a joint overlay near the knucle radius tangent line of a dished head contributes to the knucle reinforcement.6.2.3Stiffening Rings—The required moment of inertia,I s, of a circumferential stiffening ring for cylindrical shells under external pressure or internal vacuum shall not be less than that determined by the following formula:I s5PL s D o3F/24E h(6) where:D o=shell outside diameter,in.(mm),E h=hoop tensile modulus,psi(kPa),F=design factor=5,I s=moment of inertia,in.4(mm4),of stiffener and effec-tive length of shell,L s=one-half of the distance from the centerline of the stiffening ring to the next line of support on one side,plus one-half of the centerline distance to the next lineof support on the other side of the stiffening ring,bothmeasured parallel to the axis of the cylinder,in.A lineof support is the following:(a)a stiffening ring thatmeets the requirements of this paragraph;(b)acircumferential line on a head at one-third the depthof the head from the head tangent line;(c)a cone-to-cylinder junction,andP=actual external pressure,psi(kPa).FIG.1Jointed Head DetailSketchATypical half-round stiffener sizes and dimensions for differ-ent values of I s are shown in Fig.2.Other stiffener profiles meeting the required moment of inertia may be used.6.3Contact Molded Laminates—Portions of the tank,such as joints,heads,nozzles,and supports,may be fabricated by contact molding.Contact-molded laminates shall satisfy the minimum property requirements listed in Specification C582, as shown in Table1.6.3.1Top Head—The top head,regardless of shape,shall be able to support a single250-lbf(113.4kg)load on a4by4-in. (100by100-mm)area without damage and with a maximum deflection of1⁄2%of the tank diameter at the area the load is applied.6.3.1.1The minimum thickness shall be0.1876in.(4.76 mm).N OTE12—Support of auxiliary equipment,snow load,or operation personnel may require additional reinforcement or the use of stiffener ribs, sandwich construction,or other stiffening systems.Type II tanks may also require additional reinforcement.6.3.2Bottom Head—The minimum thickness for a fully supportedflat-bottom head for Type I tanks shall be as follows:3⁄16in.(4.8mm)for2to6ft(0.6to1.8m)diameter,1⁄4in.(6.4 mm)for over6to12ft(1.8to3.7m)diameter,and3⁄8in.(9.5 mm)for over12ft(3.7m)diameter.6.3.2.1Deflection of theflat bottom when the tank is empty, commonly known as“oil canning,”is permissible as long as the requirements of6.3.2.4are met.6.3.2.2Bottom heads may be molded integrally with the straight shell or may be molded separately with a straight flange length for subsequent joining to shell.6.3.2.3The radius of the bottom knuckle of aflat-bottom tank shall be not less than1in.(25mm)on tanks4ft(1.22m) or smaller in diameter and1.5in.(38mm)on tanks larger than 4ft(1.22m)diameter.The minimum thickness of the radiused section shall be equal to the combined thickness of the shell wall and the bottom.The reinforcement of the knuckle-radius area shall taper so that it is tangent to theflat bottom,and shall not extend beyond the tangent line onto the tank bottom,unless methods of manufacture are used that maintainflat-bottom configuration,and shall extend up the vertical tank wall a minimum of8in.(200mm)on tanks up to4ft(1.22m)in diameter,and12in.(304mm)on tanks over4ft(1.22m)in FIG.2Penetrating NozzleInstallationdiameter.The reinforcement shall then taper into the side wall over an additional length of 4in.(102mm)(see Fig.3).Methods of manufacture that incorporate stiffening bands as a means of knuckle stabilization,are permissible alternatives by agreement between purchaser and fabricator,provided the fabricator can document the validity of the design.6.3.2.4The tank bottom shall not have variations from a nominally flat plane that would prevent uniform contact of the entire bottom surface with a properly prepared flat support surface when the tank is filled with liquid.The bottom laminate surface shall be a hand-work finish,and shall have no exces-sive laminate projections that would prevent uniform contact with a properly prepared flat support surface when the tank is filled with liquid.N OTE 13—This requirement is not intended to exclude the use of drainnozzles which are commonly used at the bottom of the side shell.They do,however,require foundation cut-outs of the appropriate dimensions for the nozzle type and size.6.3.2.5The thickness of an elevated torispherical dished bottom,suitable for supporting the weight of the fluid head,shall be determined by the following equation,but shall not be less than 3⁄16in.(4.8mm):t 50.885PR S 50.885~0.036g HR !S or S 0.885~0.2489g HR !SD(7)where:t =thickness,in.(mm),S =allowable tensile strength (not to exceed 1⁄10of ultimatestrength),psi (kPa)(see 11.6.1),g =specific gravity of fluid,TABLE 1Minimum Contact-Molded Laminate Physical Properties AN OTE 1—Based on use of woven roving in thickness 1⁄4in.(6mm)and above.PropertyThickness,in.(mm)1⁄8to 3⁄16(3.2to 4.8)1⁄4(6.4)5⁄16(7.9)3⁄8&up (9.5and up)Ultimate tensile strength,min,psi (MPa)9000(62.05)12000(82.74)13000(89.63)15000(103.4)Tensile modulus,psi (MPa)1000000(6895)1300000(8963)1400000(9653)1500000(10342)Flexural strength,min,psi (MPa)16000(110.3)19000(131.0)20000(137.9)22000(151.7)Flexural modulus of elasticity (tangent),min,psi (MPa)700000(4826)800000(5516)900000(6205)1000000(6894)ALaminates that do not meet the minimum values of Table 1are considered acceptable,provided they are made to afford the same overall strength that would be obtained with a laminate meeting the specifiedthickness.FIG.3Flat-Bottom Tank CornerDetailP =pressure,psi (kPa),R =inside radius of dished head,in.(mm),andH =distance from the top of the fluid to the deepest portionof the bottom,in.(mm).For Elliptical Bottom Head:t 5PD 2S(8)For Cone Bottom:t 5PD2S ·cos ~a!(9)where:a =1⁄2the included (apex)angle of the cone at thecenterline of the head.(Not greater than 30°)N OTE 14—An alternative method for design of an elevated torispherical dished bottom is shown in Appendix X2.6.3.2.6The torispherical dished-bottom head shall have a radius of curvature that is equal to or less than the inside diameter of the tank straight shell,and a minimum knuckle radius of at least 6%of the diameter of the head.6.3.3Open-Top Tanks —The top edge of open-top tanks shall have a horizontal reinforcing flange or other means of reinforcement sufficiently rigid to maintain the shape of the tank after installation,such as stiffener ribs.The flange shall be in accordance with Table 2.6.3.4Joints :6.3.4.1The cured resin surfaces to be overlaid shall be roughened using 36or coarser grit abrasive media and shall extend beyond the lay-up area so that no reinforcement is applied to an unroughened surface.Surfaces shall be clean and dry before lay-up.The entire roughened area shall be coated with paraffinated resin after the joint lay-up is made.6.3.4.2Joints between tank-wall sections shall be over-wound to a thickness as calculated in 6.1.4,or they may be overlaid by a contact-molded laminate.When contact-molded laminate joints are used to join hoop segments of the straightshell,or to join the bottom or top head to the shell,the thickness of the structural joint overlay shall be determined by the following equation,but shall not be less than 3⁄16in.(4.8mm):t 5PD 2S h50.036g HD2S h or S 0.2489g HD 2S h D(10)where:t =wall thickness,in.(mm),S h =allowable hoop tensile strength (not to exceed 1⁄10ofthe ultimate hoop strength),psi (kPa),P =pressure,psi (kPa),H =fluid head,in.(mm),g =specific gravity of fluid,andD =inside diameter of tank,in.(mm).6.3.4.3The minimum width of the structural joint overlay for bottom-supported tanks is shown in Table 3.6.3.4.4The corrosion-resistant barrier component of the joint shall be formed in the same manner as the inner surface and the interior layer (7.1.1and 7.1.2)and the minimum overlay width shall be 4in.(100mm).This internal overlay shall not be considered a structural element in determining joint thickness.6.3.4.5The thickness of a joint near the bottom tangent line shall not be considered to contribute to the knuckle reinforce-ment of 6.3.2.3,but shall be additive thereto.6.3.5Fittings :6.3.5.1The more common method of fabricating nozzles is by contact molding both the nozzle neck and flange to the dimensions shown in Specification D 5421and Table 4.The corrosion-resistant barrier of the nozzle shall be at least equivalent to the inner surface and interior layer (7.1.1and 7.1.2)and shall be fabricated from the same resin as the tank head or shell to which it is attached.6.3.5.2Acceptable alternative methods to be agreed upon between fabricator and purchaser are the use of contact-molded pipe,filament-wound pipe,in accordance with SpecificationTABLE 2Reinforcing Flange for Open-Top Tanks A ,BL ,C ft (m)Tank Diameter,ft (m)Flange TypeFlange Dimensions 2(0.610)4(1.219)6(1.629)8(2.438)9(2.743)10(3.048)11(3.353)12(3.658)WidthThickness D in.(mm)in.(mm)2(0.610)A A A C D E F G A 2(51)1⁄4(5)4(1.212)A A A C D E F G B 2(51)3⁄8(10)6(1.829)A A A C D E F G C 2(51)1⁄2(13)8(2.438)A A A C D E F G D 21⁄2(64)3⁄8(10)10(3.048)A A B C D E F G E 21⁄2(64)1⁄2(13)12(3.658)A A B D D E F G F 3(76)3⁄8(10)14(4.267)A A B D E F F G G 3(76)1⁄2(13)16(4.877)A A C E E G G H H 3(76)5⁄8(16)18(5.486)A A C E F G G H J 3(76)3⁄4(19)20(6.096)A A D E F G H J K3(76)1(25)24(7.315)A B D F G H J K 30(9.144)A B E G H H K K36(10.973)A B E H J K K40(12.192)ABEHJKA This table is based on handling considerations only.Significant superimposed loads,such as from wind or seismic conditions,should be considered independently.BReinforcement configurations other than a flange may be used if equal or greater stiffness is provided.CL =maximum distance from flange to the tank bottom or to the uppermost shell stiffener when used.DFlange thickness shall be at least equal to local vesselthickness.D 2996,or centrifugally cast pipe,in accordance with Speci-fication D 2997,joined to a suitable contact-molded (Specifi-cation D 5421),or filament-wound flange (Specification D 4024).The corrosion-resistant barrier of the contact-molded portions of such nozzles shall be equivalent to the inner surface and interior layer (7.1.1and 7.1.2)and shall be fabricated from the same resin as the tank head or shell to which they are attached.6.3.5.3Nozzles 4in.(100mm)and smaller shall be supported by a suitable gusseting technique,using plate gussets or conical gussets,as shown in Fig.4and Fig.5.Plate gussets,where needed,shall be evenly spaced around the nozzle and are to be added after complete assembly by the nozzle on the rger nozzles,subject to superimposed mechanical forces,require special consideration.6.3.5.4Manways installed in top heads may be of the flanged or nonflanged design,as agreed upon between the fabricator and purchaser.6.3.5.5Side-shell manways shall be installed in accordance with7.3.2,7.3.3,and Fig.6.6.3.5.6Typical manway dimensions are shown in Table 5.N OTE 15—Tanks over 6ft (1.8m)straight-shell height may need both top-and side-shell opening manways for safety and maintenance consid-erations.6.4Vents :6.4.1Vents that discharge freely into the atmosphere must be provided in all Type I closed-top tanks.Minimum vent size shall be sufficient to handle the flow displacement of all combined inlet or outlet nozzles without creating any pressure above atmospheric,or any vacuum condition.N OTE 16—Special vent sizing consideration should be given to the numerous operating situations that could otherwise cause a positive or a negative pressure in a closed tank.Since overfilling a closed tank with the vent on the top can cause the tank to be over-pressured,a suitably sized overflow,properly located,or other appropriate protection,may be required to prevent over-pressuring the tank.6.4.2Type II tanks shall be designed to withstand the specified positive or negative pressures not to exceed 14in.(355.6mm)of water.Special design consideration must be given to buckling of tank wall and heads,the hold-down lug system,and top and bottom knuckle requirements.Fluid level in the tank is an important consideration in the analysis.6.4.2.1Flat-bottom Type II tanks must have all hold-down lugs properly secured to the foundation,in accordance with the tank fabricator’s recommendation for the design of the lugs used and for the tank installation and operation.6.5Hold-Down Lugs —Hold-down lugs shall be a require-ment on all tanks for outdoor service,on all Type II tanks,and on tanks subject to seismic loads or vibrations.The design number and attachment of such lugs is the responsibility of the fabricator,based on the wind,seismic,and other loads speci-fied by the purchaser.6.5.1Hold-down lugs shall be placed on the tank in such a way that they do not protrude below the bottom surface of the tank.6.6Lifting Lugs —Lifting lugs or other provisions for lifting tanks (see Appendix X1)shall be provided for tanks over 500lb (227kg)in weight.TABLE 3Minimum Widths of Joint Overlay for CircumferentialJointsH 3D A =minimum width of outside B 60100140180220260300340380420460500in.44567891011121314(mm)(102)(102)(127)(152)(178)(203)(229)(254)(279)(305)(330)(356)Awhere:H =distance from the top of the liquid level to the joint,ft (m)andD =inside diameter of the tank,ft (m).BAxial joint overlay widths shall be twice the width shown intable.TABLE 4Dimensions for Contact-Molded Flanged Nozzles (25psi Rating)Nozzle InsideDiameter (D ),in.(mm)Minimum Wall Thickness (t n ),in.(mm)Minimum Flange Thickness (t f ),in.(mm)Minimum Hub Thickness (t h ),in.(mm)Minimum Hub Length(h ),in.(mm)1(25)3⁄16(5)1⁄2(13)1⁄4(6)2(51)11⁄2(38)3⁄16(5)1⁄2(13)1⁄4(6)2(51)2(51)3⁄16(5)1⁄2(13)1⁄4(6)2(51)3(76)3⁄16(5)1⁄2(13)1⁄4(6)2(51)4(102)3⁄16(5)1⁄2(13)1⁄4(6)2(51)6(152)3⁄16(5)1⁄2(13)1⁄4(6)2(51)8(203)3⁄16(5)9⁄16(14)5⁄16(8)21⁄2(57)10(254)3⁄16(5)11⁄16(17)3⁄8(10)23⁄4(70)12(305)3⁄16(5)3⁄4(19)3⁄8(10)3(76)14(356)1⁄4(6)13⁄16(21)7⁄16(11)31⁄4(83)16(406)1⁄4(6)7⁄8(22)7⁄16(11)31⁄2(89)18(457)1⁄4(6)15⁄16(24)1⁄2(13)33⁄4(95)20(508)1⁄4(6)1(25)1⁄2(13)4(102)24(610)1⁄4(6)11⁄8(29)9⁄16(14)41⁄2(114)FIG.4Plate-Type Gussetsminate Construction Requirements7.1Structural Tank —The laminate comprising the struc-tural tank (bottom,cylindrical shell,top head)shall consist of a corrosion-resistant barrier comprised of an inner surface,interior layer,and a structural layer.7.1.1Inner Surface —The inner surface exposed to the chemical environment shall be a resin-rich layer 0.010to 0.020in.(0.25to 0.5mm)thick,reinforced with a suitable chemical-resistant glass fiber surface mat or with an organic fiber surface mat,in accordance with 5.2.5.N OTE 17—This resin-rich inner surface will usually contain less than 20%by weight of reinforcingmaterial.N OTE 1—This design does not require lay-up of nozzle neck to exterior of tank wall.Nozzle may be penetrating type or flush type as illustrated.FIG.5Conical TypeGussetsN OTE 1—This installation method is used only when the nozzle is being installed with an integral conical gusset which would prevent application of an exterior laminate.FIG.6Nozzle Installation and Cutout Reinforcement LocationAlternative。

2011铸造活动周论文题录

2011铸造活动周论文题录
郭景杰 哈 尔滨工业大学
2. 0 铸造涂 料在 大型汽轮 机铸件 中的应 用
施风 华 上海市机械制造 工艺研 究所有 限公 司
4 中 国汽 车铸件 轻量化发展前景 .
万仁芳 东风汽车公 司
2. 1 气相 二氧 化硅在水 基涂料 中的应 用
龚圣峰 上 海市机械 制造 工艺研 究所有限公 司
舒虎平 长安汽 车集团发 动机 工厂技术处
封板所 受温度 场和应 力场 的影响
宋小伟 太原科技 大学材料科 学与工程 学院
9 涡流分 选在铸 铁件硬度检测 中的研 究 与应 用 。
张文 杰 东风 汽车有 限公 司 东风商用车公 司
2. 5 含硼 低合金 高速钢 轧辊组 织和性 能研 究
9 . I 9 缸体 组芯立 浇工艺 设计 1 欧I 4 8 I

张显 宜 一汽铸 造公 司铸 造一厂技术开发部
7. 3 六联体 导 向叶 片无余 量精铸 技术研 究
韩宏 中航 工业沈 阳黎 明航发 集团责任有 限公司
9. 2 气缸体 低压铸 造工艺 与模具 结构设计
刘兴 富 一汽铸 造有 限公 司铸造模具设备 厂
5 。 乙烯醇 粘结剂 气硬造型 法的研 究 9聚
李英民等 沈 阳工业大学材料科 学与工程 学院
4 . 合金转 向器壳体 真空压 铸工艺研 究 {镁
王峰 等 沈 阳工业大学材料科 学与工程 学院
6。 O 新型铸造高锰钢材料 的研发
孙伟等
三一 重 型装备有限公 司研究本 院液控研 究院材料研 究所
王瑞春等 沈阳工业大学材料科学与工程 学院
3 l l 晶粒 细 化剂 对A - 0 M 2 l 金 的组织 与性 8 A Te l3 % gS 合

冷轧部分《冷轧带钢制工艺》大纲

冷轧部分《冷轧带钢制工艺》大纲

《冷轧带钢轧制工艺》教学大纲编制陆品荣1.冷轧带钢产品有哪些特点冷轧带产品从外形特点讲A)形状扁平、横断面为矩形、B/h较大、 B)单位体积的表面截面积大。

冷轧板带产品从质量的特点讲有“尺寸准确板形好表面光洁度性能高”。

即 a)尺寸精度要求高,b)板形好。

c)表面质量好。

d)性能好2.冷轧带钢产品规格是怎样分类的?冷轧板带产品规格按厚度分中厚板、薄带钢、和极薄带钢《箔材》三类。

中厚板的板带厚度在4 .mm以上、薄板带的板带厚度一般在4.0 —— 0.2 mm,极薄板带的带钢厚度为0.2 mm以下。

3.冷轧带钢钢种有何分类?冷轧板带按钢种分类有:优质碳素钢、高碳钢(简称优钢)、低合金钢、硅钢、不锈钢、201不锈钢、202不锈钢、T10、40#钢、50#钢、60#钢65MN、铁素体1GR13---9GR13、SK4、SK5、纯铁、纯镍带、铜带、高温合金、精密合金、功能合金和复合钢带、涂锡。

镀锌板等等。

4.精密合金带钢怎样分类?有何用途?精密合金带钢按材料的理化特性和用途分为软磁合金、硬磁合金、弹性合金、膨胀合金、热敏双金属、电阻合金、热电偶材料等七大类。

其用途分别为:软磁合金的特点是磁导率高、广泛用于磁放大器、特殊变压器、磁屏敞、磁头等。

硬磁合金具有较高的矫顽力和剩余磁应值的材料,适用于制造电工仪表中的磁铁、电讯、电声、控制器件和磁分离器、磁滞马达的磁铁。

弹性合金按其性质可分高弹性和恒弹性二种,高弹性材料广泛用于制造精密机械和仪表中的膜片、膜盒、发条及其它弹性组件、恒弹性可用于制造各种频率组件。

膨胀合金分低膨胀合金和定膨胀两种,低膨胀合金用于制造精密仪器、仪表中的平衡轴轮、标准尺和谐振腔等,定膨胀合金用于制造与硬、软玻璃或陶瓷正配的封接部件。

热敏双金属当温度变化时发生定向弯曲、适用于制造继电器、专用温度计以及自控温度装置或自控电流装置中的敏感组件。

电阻合金是指那些具有较恒定的高电阻的合金,它广泛用于制造测量仪器仪表的电阻、电器回路中的精密电阻和电阻应变计。

《2024年低压铸造A356合金轮毂的组织与性能研究》范文

《2024年低压铸造A356合金轮毂的组织与性能研究》范文

《低压铸造A356合金轮毂的组织与性能研究》篇一一、引言低压铸造技术,在制造高质量轮毂,如A356合金轮毂中,扮演着至关重要的角色。

本文旨在深入探讨低压铸造A356合金轮毂的组织结构与性能特点,以期为相关制造工艺的优化和产品性能的提升提供理论支持。

二、低压铸造技术概述低压铸造是一种金属铸造技术,其特点是在较低的压力下,使金属液逐渐充满模具,以实现产品的成型。

对于A356合金而言,这种技术有助于优化其显微组织和性能。

三、A356合金介绍A356合金是一种常见的铝硅合金,具有优异的铸造性能、良好的机械性能和抗腐蚀性能。

它被广泛应用于轮毂、发动机零部件等产品的制造中。

四、组织结构研究1. 显微组织观察:通过对低压铸造A356合金轮毂的显微组织进行观察,发现其组织主要由铝基体、硅相和其他杂质相组成。

其中,硅相的形态、大小和分布对合金的性能具有重要影响。

2. 晶粒尺寸:晶粒尺寸是影响材料性能的重要因素。

低压铸造过程中,通过控制冷却速度和温度梯度,可以获得不同晶粒尺寸的A356合金轮毂。

研究表明,较小的晶粒尺寸有助于提高材料的力学性能。

五、性能研究1. 力学性能:低压铸造A356合金轮毂具有较高的抗拉强度、屈服强度和延伸率。

这些性能指标与合金的显微组织、晶粒尺寸、杂质含量等因素密切相关。

2. 耐腐蚀性能:A356合金具有良好的耐腐蚀性能,尤其是在大气、海水等环境中表现出较好的稳定性。

这主要归功于其致密的氧化膜和较低的杂质含量。

六、影响因素及优化措施1. 铸造工艺参数:铸造温度、压力和冷却速度等工艺参数对A356合金轮毂的组织和性能具有重要影响。

通过优化这些参数,可以获得更好的显微组织和性能。

2. 合金成分:合金中的杂质含量、硅含量等也会影响其组织和性能。

因此,在保证性能的前提下,应尽量降低杂质含量,并合理调整硅含量。

3. 后处理工艺:对A356合金轮毂进行适当的后处理,如热处理、表面处理等,可以进一步提高其性能。

铸造高强耐热Mg-Y-Nd(-Gd)-Zr和Mg-Gd-Y-Zr系镁合金组织性能和铸造缺陷对比

铸造高强耐热Mg-Y-Nd(-Gd)-Zr和Mg-Gd-Y-Zr系镁合金组织性能和铸造缺陷对比

2021年第1期/第70卷镁合金专题iW\B15铸造局强耐热M g-丫-N d(_G d)-Z r和M g- G d-丫—Z r系镁合金组织性能和铸造缺陷对比陈荣石1,周波1’2,李吉林1’3,单智伟4(1.中国科学院金属研究所,辽宁沈阳110016; 2.中国科学技术大学材料科学与工程学院,辽宁沈阳110016; 3.北方 民族大学材料科学与工程学院,宁夏银川750021; 4.西安交通大学金属材料强度国家重点实验室,陕西西安710049)摘要:以Mg-Y-Nd(-Gd>-Zr和Mg-Gd-Y-Zr系高强耐热镁合金为分析对象,从铸造成形方法和铸造缺陷两个方面进行了比较。

结果表明,这些合金可以采用砂型铸造、金属型铸造、熔模铸造、低压熔模铸造和半固态触变成形等方法铸造;铸造缺陷(如热裂和疏松等)形成机理及其对力学性能的影响与其他合金相比没有明显区別;建立了疏松缺陷与力学性能的关系。

关键词:高强耐热;镁合金;铸造工艺;铸造缺陷作者简介:陈荣石(1968-),男,博 士,研究员,研究方向为镁合金材料及其应用。

电 话:138****0711,E-mail: rschen@im 中图分类号:TG292文献标识码:A文章编号:|〇〇1-4977(2021 ) 01-0015-06收稿曰期:2020-09-11。

相比于铝合金,镁合金的绝对强度低、耐热性能差,这极大地限制了镁合金的应用范围111。

添加稀土元素能有效地改善镁合金的强度与耐高温性能;另外,稀土元素在铸造镁合金中还可以有效地减少气体、氧化物和有害元素的影响,起净化、除 气和除渣的作用121。

这些稀土高强耐热镁合金一般采用金属型或砂型重力铸造工艺。

低压反重力铸造过程中的熔体充型平稳,并且外加压力能增加补缩效果,可以改善夹杂和疏松缺陷,但关于低压铸造高强耐热镁合金的研究报道相对较少,目前还处于研发的起步阶段。

高强耐热镁合金还可以采用熔模铸造和半固态触变成形方法,但这两种成形方法在高强耐热撲合金中还不成熟。

镁合金压铸技术分析

镁合金压铸技术分析

· 4 44 · Aug 2000
FOUNDRY
Vol149 No18
111 压铸镁合金的物理特性 (1) 密度低 、比强度和比刚度高 。如表 1 所示 ,
压铸镁合金的密度仅为铝合金的 2/ 3 、钢铁的 1/ 4 , 比强度和比刚度均优于钢和铝合金 , 远高于工程塑
料 。因此 , 压铸镁合金是一种优良的 、在许多应用领 域内可与上述材料竞争的轻质结构材料 。
对于压铸镁合金这一新宠 , 我们既不能坐视观 望 , 也不应采取简单的投石问路方式盲目上马 , 而应 对其技术特征作一番透视和冷静 、客观 、深入的分 析 , 真正做到知己知彼 , 有备应对 。
1 压铸镁合金的特点
常用压铸镁合金大多采用美国牌号 , 主要有 Mg2 Al2Zn , Mg2Al2Si , Mg2Al2Mn 和 Mg2Al2RE 四 大 系 列〔2〕。其主体成分镁的制取分二大类 : 一类是热还 原法 , 一类是电解法 。其中 60 %厂家以电解法制镁 。 电解法又可细分为 I G 法 , Dow 法和新电解法三种 。 镁来源于海水 、白云石矿与菱镁矿 , 原料十分丰富 , 但制备过程十分复杂 , 而且在制炼初期不能直接与空 气接触 , 须制成氧化镁或置于惰性气体中 , 故原镁的 制造成本相对较高 。压铸镁合金在熔炼时还易氧化燃 烧 , 必须采取相应的保护措施 。压铸镁合金具有一系 列与压铸铝合金不同的特点 。
(3) 尺寸稳定性高 , 使镁合金压铸件因环境温度 和时间变化所造成的尺寸不稳定减小 。
(4) 热导率高 (60~70W·m - 1·K- 1) , 仅次于铝 合金 (约 100~70W·m - 1·K- 1) , 故热扩散性良好 。
(5) 无磁性 , 可用于电磁屏蔽 。 (6) 耐磨性好 。 112 压铸镁合金的经济性分析 (1) 镁合金的尺寸稳定性好 , 在压铸作业中收缩 率一定 , 易事先预定 。 (2) 生产率高 。与铝合金相比 , 其比热容和结晶 潜热小 , 在压铸型内凝固速度快 (100~1000 ℃/ s) , 单位时间作业率可比铝合金压铸提高 40 %~ 50 % , 起模斜度也比铝合金压铸件小 , 更易保证获得表面粗 糙度细的压铸件 。

河科大铸造机械化课后习题答案

河科大铸造机械化课后习题答案

第一章 1.用平板压实时,砂型内的应力大体如何分布?在没有模样情况下,平板压实后,砂型内哪些点的紧实度较低,哪些点的紧实度较高? 平板慢速压实时,在砂型中心的高度上,紧实度的差别不大,在大约相当于砂型宽度2/3的深度上,出现极大值。

在砂型的边角处,紧实度上高下低,特别是下边模板的边角处,紧实度很低。

平板高速压实时,紧实度分布呈C 形,顶部及底部应力高,中部应力较低。

型砂下面模板的边角处和砂型中心最高处紧实度较低,砂型宽度2/3深度紧实度较高。

2.为什么减小压缩比的差别能使压实紧实度均匀化?有哪些减小压缩比的方法? 1)210δδδ分别为压实前的紧实度以及压实后模样四周及模样顶上型砂平均紧实度,其中1δ=0δ+0δh/H 2δ=2δ+0δh/(H-m)。

h/H 和h/(H-m) 为砂柱的压缩比。

由上式可以看出减小压缩比能使1δ约等于2δ,也即是砂型紧实度均匀化。

2)方法:用油脂作粘结剂或流态砂等湿强度很低的型砂;提高模样顶上砂柱的高度比B=hs/bmin 使B 大于等于1—1.25;适当的提高压实比 3.有哪一些因素能影响射砂时型砂从射砂孔顺利射出? 影响射砂的因素:(1)射砂气压及气压梯度:提高射砂气压,能提高气压梯度,加强气流渗透,使砂能顺利射出。

(2)型砂性能与射砂筒中型砂的紧实:型砂性能 粘结力小,流动性好(油砂,树脂砂);湿强度高,粘结力大的型砂,流动性差,不易出砂,易搭棚。

射筒中型砂的紧实,型砂越紧实,气流渗透阻力越大。

(3)进气方式:采用均匀进气时,有利于射砂。

这时气压梯度密集在锥型射砂孔处,增强气流渗透有利于射砂。

射头边上的等压线比中心密不易搭棚。

但均匀进气的射砂机构设计制造较复杂。

(4)锥型射头与射孔大小:锥形射头使射砂筒的气流向射头集中,增大渗透速度。

有利于射砂。

射孔不易过小,小射孔孔壁对砂粒的射出阻力相对增大,使渗透气流速度减小,不利于射砂,射孔足够大,利于射砂。

4.为什么气冲第一阶段紧实过程可以视为为初实层形成、扩展及冲击过程? 在低紧实度范围内,紧实力提高不大,可使型砂的紧实度提高很多,所以在气压差的作用下,ab 区间的型砂迅速形成一层紧实度较高,对空气渗透阻力较大,对上面下来的气流渗透有一定隔离作用的砂层,这一隔绝层使气体对砂层的推动力变大,使以后的气冲过程成为这一砂层推动下面砂层向下运动及扩大的过程。

habasit推出了一种对传送带友好的tpu刮板,确保食品生产安全

habasit推出了一种对传送带友好的tpu刮板,确保食品生产安全

葛亚·HDPE 干燥机泄漏故障分析及结构改进研究2020年 第46卷·49·设备管理与维护Abstract: The frequent leakage of the heating pipe of the dryer in HDPE device restricts the operation and development of the device. Based on the theoretical analysis of the causes of the leakage, the leakage mechanism is further explored by using the static strength and dynamic characteristics test, and the main factors causing the leakage failure of the dryer are identified, which provides the theoretical basis and optimization scheme for the subsequent modification of the dryer, and successfully solves the leakage problem.Key words: HDPE; dryer; heating pipe; leakage; alternating stress (R-03)Habasit 推出了一种对传送带友好的TPU 刮板,确保食品生产安全Habasit introduced a conveyor belt friendly TPU scraper to ensure food production safty在食品生产线上,皮带刮板是必不可少的。

他们被用于清除皮带表面的产品残留并保持卫生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年9月(总第288期)法制与经济FAZHIYUJINGJINO.9,2011(Cumulatively,NO.288)

[摘要]根据美国Hazelett公司和西班牙CVA公司的

Hazelett双带式连铸机,研究双带式连铸机设备特性以及生产工艺,对比国内流行的双辊铸轧,从投资、生产产量、技术特点、工艺参数等方面进行对比,对国内进行建设新连铸机生产线提供建议和参考。[关键词]双带式连铸机;双辊铸轧;项目建设对比

一、Hazelett带式铸造轧制机概述(一)Hazelett带式铸造轧制机生产特性位于美国ColchesterVermont的Hazelett双带式连铸机公司生产的Hazelett双带式铸机是由张紧的上、下两条转动的环状钢带组成上、下铸模壁,两侧环状的档块链组成铸模的侧壁,钢带绕在带槽的上游主动轮和下游张紧轮上,紧张轮使钢带张紧并保证钢带的运动轨迹,使其达到最佳平直度,上、下钢带通过齿轮和万向联轴节传动而同步。挡块链则是依靠与它接触的下钢带的驱动而同步移动。这样组成的铸模是完全直型、对称的,因而铸件也就具有这种形状。Hazelett带式铸造轧制机,是从熔铸到热轧的连续生产线。金属是在一条机组上连续成型的。在轧制时,由于速度低、变形速率慢、产生的立方织构和再结晶过程同时形成,轧件的温降大。Hazelett轧机生产规格(max)19-25×1930mm;轧机出口厚度2-3mm;出口轧速50m/min;出口卷材温度小于280℃;变形速率慢;再结晶形成粗。(二)Hazelett轧机主要特点目前世界上有近20套这种设备,它的主要特点是:1.产品品种、规格齐全。2.从铸到粗轧、精轧在同一条生产线上完成,设备投资少,经济规模适中。3.由于铸到轧制在同一条生产线上,轧制速度低,轧制板形和表面质量不易控制。4.轧制卷头、尾与中间温差大。5.年生产能力在30-40万吨,产能大,能耗低。6.建设投资较大,估计包括配套设施在内需在30亿人民币左右。Hazelett是双带式连铸机的发明者,故而以此命名。(三)双带式连铸生产工艺生产工艺路线采用铝锭熔化、保温、在线除气、陶瓷板过滤。双带连铸是用前箱通过铸嘴,沿整个宽度方均匀地供铝液给连铸机,铸出的铝带坯厚度为14~25mm。连铸连轧则不能完全完成金属的再结晶,只能算是温轧,使后加工工艺略复杂。双带式连铸+3机架连轧减少了铣面、刨边、均热、加热等

工序,即减少了大量投资、节能。省了1机架开坯轧机。另外,连铸后使用的连轧机的技术装备水平要求比较低,投资少。如与产能与之相当的1台双机架热轧机相比,投资则相当。双带式连铸连轧,可以生产1000系、3000系、8000系,部分5000系和个别6000系。合金产品用作铝箔坯料、建筑用材、交通运输用材、化工用压力容器、民用焊管、家电日用品用材、炊具等,但目前还不能生产制罐料和可热处理强化合金产品。属专业化产品生产厂,在生产中变换生产合金比较困难。采用双带式连铸连轧机生产,存在连铸用的钢带需从美国进口,钢带的生产技术,Hazelett公司不会向国外转让技术,国内提供连铸用钢带存在难度。另外,前箱铸嘴制造,国内难以解决。钢带、前箱、铸嘴需从美国购买。最宽的铝带连铸连轧机可达2300mm。其铸造宽度从750毫米到2300毫米目前所能铸造的厚度范围是9~75毫米。最高速度是15米/分。在线轧制可采用单机架、二机架或三机架。轧制加工量很大,最终可轧到1~2毫米厚度。轧制终轧温度可达370℃。铸造速度约为每分钟10米,每小时每米宽度的生产率为40吨。可以铸造的合金品种甚多,包括1000、3000、5000和6000系列的合金。在Hazelett连续铸轧机上所获得的较高的凝固速率会出现较细的枝晶组织,较小的晶粒尺寸,较小的不同相及化学成分的晶间微粒,以及在固溶体中某种元素的高度富集。Hazelett连续铸轧的厚板被连续在线轧制。轧制事实上是温轧过程,因为在热轧完成后没有出现再结晶。热轧带材的出口温度主要取决于铸轧速度,轧机结构,轧机冷却技术等。一般来说,对于典型的两机架或三机架轧机结构,带材的出口温度不会高于315℃,而且不会足以出现再结晶过程。对于AA3XXX合金,固溶体中锰的高度富集降低了变形期间的动态恢复趋势,因而成为再结晶的驱动力。Hazelett连续铸轧的厚板中保留了固溶体中85-90%的锰。连续铸轧的带材需要在538?C的温度下两个小时才能获得完全的再结晶。(四)双带式连铸生产的产品分类1000系列合金典型合金:1100,1350典型用途:箔,电导体,散热片,建筑产品组件3000系列合金典型合金:3003,3105,3004,3005

Hazelett带式铸造与辊式铸轧比对研究陈品坚(南宁国凯铝材有限责任公司,广西南宁530000)

146[上接第145页]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!不同形状阻挡件的惯性撞击效率公式,设计相应的分离器,布置在烟道中对可燃颗粒进行回收复燃。综上所述,随着节能减排的要求不断提高,各种新技术在层燃链条炉上得到应用,如:声波吹灰尘技术提高了锅炉管束的传热效率,复合燃烧技术和二次风改造技术,新型涂料增强炉膛辐射等技术都促进了锅炉的燃烧效果,用户应结合实际加以研究适合自身的方法,实现对供暖锅炉的燃烧调节,同时提高锅炉的节能效果。

[参考文献][1]俞海斌,褚健,江加猛.链条炉燃烧专家控制系统[J].机电工程,2009,17(2).[2]刘雪华.链条炉排锅炉均匀分层燃烧[J].工业锅炉,2005,(6).[3]王善武.我国工业锅炉节能潜力分析与建议[J].工业锅炉,2005,(1).

[作者简介]欧科雄、万业芬,广西桂城建筑工程有限公司。

典型用途:建筑产品,炊具,标志牌,卡车拖车面板,灌溉系统用板,光面踏板,焊接管用材。5000系列合金典型合金:5052,5754典型用途:汽车内部部件用板,家用电器板,建筑面板,船用板,卡车拖车和出租车用板,电子产品用板,蛇形管用板房屋建筑:95%3105+变种;其余为5%1100+3004交通(不包括汽车工业):65%3004+20%5052+15%3003家电:3003;电子产品:5052;包装:3004;(五)双带式连铸实际生产参数铸造厚度14-25毫米;铸造速度6-12米/分;铸造率25吨/米/小时;最大宽度2300毫米;合金1050最终产品:制冷用散热片坯料、冲挤坯料、炊具;合金1060最终产品:冲挤坯料;合金1070最终产品:冲挤坯料;合金1100/1145最终产品:牌照、重箔、辊压接合材料、热交换器炊具、平版标牌;合金1170最终产品:重箔;合金1200最终产品:转炉用箔、炊具、食品药物包装用箔;合金1350最终产品:电导体应用;合金3003最终产品:挡板、炊具、重箔;合金3004最终产品:家具管材、挠性导线管、光亮板、金刚石板、瓶盖;合金3104最终产品:挠性导管;合金3105最终产品:雨水沟、窗框、挠性导管、牌照、屋面材料、光亮板、金刚石板、瓶盖;合金3204最终产品:灌溉管;合金5005最终产品:装饰板;合金5042/5049最终产品:饮料罐扣环/焊管;合金5052最终产品:通用板材、拖车用围板、焊接贮罐、标牌、锻造坯料;合金5082/5349最终产品:饮料罐扣环/通用板材;合金5454最终产品:饮料罐扣环;合金6061最终产品:冲挤与锻造坯料、切削加工板料;合金6063最终产品:冲挤与锻造坯料;合金7072最终产品:散热片坯料;合金8011最终产品:建筑用材料、烹饪用盘与分菜盘、重箔锅、家用箔、散热片坯料、DDQ瓶盖;合金8111最终产品:烹饪用盘与分菜盘、重箔锅;合金2024测试铸造系列:回火杆材(紧固件);合金3004测试铸造系列:饮料罐盒体;合金5056测试铸造系列:回火杆材(筛选);合金5154测试铸造系列:汽车板材;合金5182测试铸造系列:饮料罐盖子、汽车板材;合金5754测试铸造系列:汽车板材;合金6111测试铸造系列:汽车板材;合金7072测试铸造系列:切削加工板料;合金测试铸造系列。

三、双带式连铸生产与双辊铸轧的比较双辊铸轧:铸造厚度5—10(毫米);冷却率100—1000℃/秒;生产率1.5—2.5(吨/米.宽/小时);最大宽度(毫米)2300;不是热轧结构;连铸加串联热轧机:铸造厚度14—25(毫米);冷却率5—7℃/秒;生产率25(吨/米.宽/小时);最大宽度(毫米)2300;是热轧结构。四、双带式连铸生产的综合评价Hazelett铸造机是整个连续生产线的核心设备,同时此项目的铸造机也是目前世界采用Hazelett法生产铝板带最宽的连续铸造机之一。经炉内精炼、在线细化晶粒、在线除气、过滤装置处理,铝熔体满足Hazelett铸造机要求后,进入连续铸造过程。生产工艺流程为:铝液熔炼保炉→在线除气过滤装置→Hazelett双钢带连续铸造机→弧形辊道→液压剪→3机架热连轧机→分段飞剪→张力卷取机→半自动打捆机→成品仓库(或送至冷轧)。产品用途涉及到民用产品的许多方面,包括普通铝板带材、双零铝箔坯料、建筑用幕墙板和铝塑板、厚箔、汽车用板材、深冲用板材、各类装饰板、家电机壳、包装材料、PS版基等产品。虽然哈兹列特生产工艺在罐体料生产方面尚未进入商业市场,但其在罐料的生产研发取得了成功,与半连续铸造一热轧法工艺相比,其产品性能特别是罐料的关键指标一制耳率达到了2—3.5%的理想状态。事实上,罐料未列入大规模的商业生产,其主要原因在于美国的罐料市场为铸锭+热连轧法专业生产厂所占领,哈兹列特法生产厂家未与之分切市场蛋糕而已。在铝箔坯料的生产方面,美铝、法铝等铝箔厂采用哈兹列特法生产出0.O0635mm厚的铝箔,其针孔度小于100个/m。连铸连轧工艺在节能减排、成本方面的明显优势,符合国家节能减排产业策,是现在煤———电———铝行业逐渐推行的一个投资少、见效快的深加工线。掌握铝板带连铸连轧的众多技术难点,将为进一步推进有色金属领域的业务奠定良好的基础。

[作者简介]陈品坚,南宁国凯铝材有限责任公司。

147

相关文档
最新文档